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Lecture #12 of 18(?)
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Mass Transfer Processes

Chapters 1 and 4
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Q: What’s in this set of lectures?
A: B&F Chapters 1 & 4 main concepts:

e Section 1.4: Mass transfer

e Chapter4: Mass transfer



Looking forward... Section 1.4 and Chapter 4

Mass transfer

Diffusion

Migration / Drift

Convection

Semi-empirical diffusive models

Conductivity

Transport (Transference) number

Balance sheets

Ohmic drop/loss

425



Now, do the following trends make sense? Reaction is TI* + e 2 TI° 426

RECALL.:

We derived the following

| | l equation considering
a . .
i i diffusive transport onl
20 L cathodic reaction _— - dittu P y
b (i.e. in the presence of
sl ¢ | large amounts of
< = supporting electrolyte)...
=
E 10 . V — . %
5 Increasing [ = F’IFAH’IOCO
5 supporting Do /8
— ] mo = |
electrolyte 0~ ~0/70
g —| ... but this cannot explain
the behavior here as none
5 l | | of these variables is
-0.6 -0.8 -1.0 -1.2 -1.4 .
EN changing

Figure 4.3.5 Voltammograms for reduction of 0.65 mM T1,S0O, at a mercury film on a silver
ultramicroelectrode (radius, 15 pm) in the presence of (a) 0, (b) 0.1, (¢) 1, and (d) 100 mM LiClO,.
The potential was controlled vs. a Pt wire QRE whose potential was a function of solution
composition. This variability is the basis for the shifts in wave position along the potential axis.
[Reprinted with permission from M. Ciszkowska and J. G. Osteryoung, Anal. Chem., 67, 1125
(1995). Copyright 1995, American Chemical Society.]



Now, do the following trends make sense? Reaction is TI* + e 2 TI° 427

... why are the diagonal trends not changing like in the lab?... see next slide...

% | | l RECALL.:

cathodic reaction A
20 | L ] _
51| /.11, tO bring TI*
151- ¢ 1} to the electrode
= d X
2 0 v
E increasing | t0 brine TI*
0 s supporting || d-TH’ 8
electrolyte || tO the electrode

0 v

... and thislshift in curlrent onset ils curious...|more on that later...

-0.6 -0.8 -1.0 -1.2 -1.4
E/V

Figure 4.3.5 Voltammograms for reduction of 0.65 mM T1,S0O, at a mercury film on a silver
ultramicroelectrode (radius, 15 pm) in the presence of (a) 0, (b) 0.1, (¢) 1, and (d) 100 mM LiClO,.
The potential was controlled vs. a Pt wire QRE whose potential was a function of solution
composition. This variability is the basis for the shifts in wave position along the potential axis.
[Reprinted with permission from M. Ciszkowska and J. G. Osteryoung, Anal. Chem., 67, 1125
(1995). Copyright 1995, American Chemical Society.]




... S0 supporting electrolyte removes (most) migration for redox species 428
of interest... but it also removes iR, drop from data... a two-for-onel...

Materials and Corrosion 2006, 57, No. 6 DOI: 10.1002/maco.200603982

The iR drop - well-known but often
underestimated in electrochemical polarization
measurements and corrosion testing

W. OelBner*, F. Berthold and U. Guth

... let’s just look at some figures: 1, 4,5, 7, 14,16

curve | iR comp
7 154 1 without
_) L £ 2 with 1
<
E1 0

- 5"
T =
0 T T T
0 100 200 300 400
\ f Ea [(MV]
! I I 1
WE Ru LC IV RE CE Fig. 14. Polarization curves of zinc in 0.25M zinc sulphate solu-

. . .. . tion (x = 19 mS/cm) without (curve 1) and with (curve 2) auto-
Fig. 1. Electrode configuration in a corrosion test cell (Sensortech-

nik Meinsberg GmbH, Germany). WE: working electrode, CE:
counter electrode, RE: reference electrode, LC: Lugging capillary,
IV: intermediate vessel, R : uncompensated resistance

matic iR compensation by the interrupter method. Distance
Luggin capillary — working electrode z = 0.2 cm, area of the work-
ing electrode A = 0.25 cm? scan rate st = 0.2 mV/s, E,: applied
potential, i: polarization current



... SO supporting electrolyte removes (most) migration for redox species
of interest... but it also removes iR, drop from data... a two-for-onel...

Problems
180
Jopp = CONStant
_200.
5
E -2204
I
=
-2404
—o— measured values
-260 - . ' ' .
0 2 4 6 8 10
d [mm]

Fig. 4. Measured potentials in dependency on the distance of the
Luggin capillary from the electrode surface (E. Heitz et al. in [6], p.
236). Uy potential of the Haber-Luggin probe, d: distance between
the Haber-Luggin probe and the working electrode

30
during CV
.. Shows that R, is not
20 very constant during
g the experiment!
m:
10
0
0 10 20
i [WA]

Fig. 16. Change of the ohmic resistance R, in the experiment
shown in Fig. 15. i: polarization current
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Solutions
| '
E“ .
EEI
Imu
TN N

o b o t
Fig. 7. Characteristic shape f the interrupter pulses. 1: polarizing
current, iR ohmic drop, E: Rlectrode potential, E : applied poten-

tial, E : “true’ " polarization of the working electrode, t: interrupter
penod) t,: polarization period\(duration ratio ty/t; not in scale)

60 X
Single values... should

" / be good enough!
)
- :
s 204

0 " ’ .
0 20 40 60 80 100

Re (Z) (2]

Fig. 5. Determination of the resistance R for the system steel
X20Cr13 in 0.05M H,SO, from a Nyquist plot Re (Z): real part
of impedance, Im (Z): 1mag1nary part of impedance, R : uncompen-
sated resistance



.. SO supporting electrolyte removes (most) migration for redox species

430

of interest... but it also removes iR, drop from data... a two-for-onel...

Problems
=180
Jopp = CONStant
-200 4
=
E -2204
T
S
-2404
—0— measured values
-260 T r T - ;
0 2 4 6 8 10
d [mm)]

Fig. 4. Measured potentials in dependency on the distance of the
Luggin capillary from the electrode surface (E. Heitz et al. in [6], p.
236). Uy potential of the Haber-Luggin probe, d: distance between
the Haber-Luggin probe and the working electrode

E.T 1 N 1
1 Fei DIIECI::: 1f2 b

N/

assume these are the
same value

units of
Ohm/s/2

.. so that the units work out most easily...
.. use meters as the length in A, D, and C

||

11

AT— ce
R C—W
RZ e

Start by fitting EIS data using this equivalent circuit:
* What is R1? Fix it to the clear value for R,.
 What is R2? Charge-transfer resistance; fix it to 0.
* What is C2? Cap,; just let it float.
 What is W2? Warburg diffusion, o; find it!

https://www.palmsens.com/knowledgebase-
topic/warburg-impedance/

Solutions

60
=) 40 4
~N
e LRu.
520

0 T r y .
0 20 40 60 B0 100
Re (Z) [€2]

Fig. 5. Determination of the resistance R for the system steel
X20Cr13 in 0.05M H,SO, from a Nyquist plot Re (Z): real part
of impedance, Im (Z): 1mag1nary part of impedance, R : uncompen-
sated resistance


https://www.palmsens.com/knowledgebase-topic/warburg-impedance/
https://www.palmsens.com/knowledgebase-topic/warburg-impedance/

.. finally, iR, drop does not always have a typical length-dependent “R”... 431

Electrolyte Solution

< X

Working A

Volume Containing
Electrode \

Current Paths

Counter
/| Electrode

Electrolyte Solution

... current is limited by largest resistor in series... which is at WE

Uncompensated resistance:

_ . see B&F,
K=0 Planar WE Point WE op. 27-28,
_ _ 1 X and pp.
= R =
Ry = x/kA Y dakrg\x t ro) 216-218 for
/ details

Units: Ohm1 cm?

What happens when x —> o0o? Just this term... with 1/(2 circumference) in place of X/A
Némec, J. Electroanal. Chem., 1964, 8, 166
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A review of Section 1.4 (and Chapter 4)

e Mass transfer

e Diffusion

e Migration / Drift

e Convection

e Semi-empirical diffusive models

e Conductivity

e Transport (Transference) number

e Balance sheets

e Ohmic drop/loss
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Time-Dependence in
Electrochemistry

Chapters 4 and 5
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Q: What’s in this set of lectures?
A: B&F Chapters 4 & 5 main concepts:

e Section 4.4.2: Fick’s Second Law of Diffusion
e Section 5.1: Overview of step experiments

e Section 5.2: Potential step under diffusion controlled



(UPDATED) 435

Looking forward... Section 4.4.2 and Chapter 5

e Fick’s Second Law of Diffusion
e Linear Diffusion = time-dependent current (Cottrell Equation)
® Anson Plots for surface adsorbed species

® Radial Diffusion = time-independent current (at steady-state)
e Ultramicroelectrodes (UMEs)
e Scanning Electrochemical Microscopy (SECM)

e Single molecule electrochemistry



We use both of Fick’s laws of diffusion to derive equations for 436
time-dependent (not steady-state) transport-controlled electrochemistry...

Pl s A Fick’s 15t Law of Diffusion:

this is flux (not current density)

B&F, pg. 149

... but taking baby steps toward the
Cottrell equation... conceptually, one can
derive Fick’s law in a manner similar to
how we thought about the diffusion
coefficient... grab your favorite beverage
and go on a walk!

&= it nFADY*C
(1) = i4(t) =
7T1/2t1/2

... and here’s the conclusion of that derivation... the Cottrell Equation



We use both of Fick’s laws of diffusion to derive equations for 437
time-dependent (not steady-state) transport-controlled electrochemistry...

'Adolph Eugen Fick

Fick’s 15t Law of Diffusion:

dCp(x, 1)
__JO(‘I’ f) — DO I
<"(g§—> <—(;§"'> B&F, pg. 149

Ax
this is number (not flux)
/
No(x) B No(x + Ax)
1 2 2
A At

JO(xa t) =

N

This is the net flux (correct dimensions)...
... with half moving right and half moving left




We use both of Fick’s laws of diffusion to derive equations for 438
time-dependent (not steady-state) transport-controlled electrochemistry...

'Adolph Eugen Fick

Fick’s 15t Law of Diffusion:

dCp(x, 1)
__JO(‘I’ f) — DO I
(pg_é < (@ B&F, pg. 149
< Ax >

No(x) B No(x + Ax)

1 2 2 Ax?
JO(xa t) = Z At Aii’
. sz Co(x + AX) - Co(X)
~Jolx, 1) = 2At Ax
Do

Recall... AZ=m]2= %12 = 2D¢ ... derived!



We use both of Fick’s laws of diffusion to derive equations for 439
time-dependent (not steady-state) transport-controlled electrochemistry...

'Adolph Eugen Fick

Fick’s 15t Law of Diffusion:

dCp(x, 1)
ox

B&F, pg. 149

Fick’s 2" Law of Diffusion:

5C0(x, f) _ D 62C0(x, I)
o TO\ gy

... derive this non-steady-state
equation (approximately) in a
similar fashion as Fick’s first law...



... the derivation is not so bad... 440

{?CO(X, f) _ D 52(?0(1, I)
ot O 92

B&F, pp. 149-150

ICo(x, 1) J(x, 1) — J(x + dx, 1)
o dx

- &

e

Jo (%, 1) =———> —t— Jy (x+dx, 1)

Figure 4.4.4 Fluxes into and
x + dx out of an element at x.




... the derivation is not so bad... 441

{?CO(X, f) _ D 52(?0(1, I)
ot O A2

B&F, pp. 149-150

ICo(x, 1) _Jx ) = Jx + dx, 1)

ot dx
de
dCnH(x, t)
'_JO(I, f) — DO ??x (First Law)

... derived!



The experiment we will model is a potential step experiment... 442
key points: at E,: no reaction (C,(x, 0) = C,*)
at E,: diffusion-controlled reaction (C,(0, t) = 0)

E > 200 mV Co ¢

>200 mV l E, t<0

0 t
(a) (b) (c)

Figure 5.1.2 (a) Waveform for a step experiment in which species O is electroinactive at £y, but
is reduced at a diffusion-limited rate at £;. (b) Concentration profiles for various times into the

experiment. (c¢) Current flow vs. time.



How to derive expressions for diffusion-controlled current vs. time:

1. Solve Fick’s Second Law to get C,(x, t), and in the process
of doing this, you will use boundary conditions that
“customize” the solution for the particular experiment of
interest:

(?Co(x, f) _ D {9200(.1’, I)
o0 0O )

2. Use Fick’s First Law to calculate J5(0, t) from C,(x, t):

qux\
oCnH(x, t
~Jox, 1) = Do —5- )

3. Calculate the time-dependent diffusion-limited current:
i =nFAJ,(O, t)

443

... using the... Laplace transform, integration by parts, L'Hopital’s rule, Schrodinger

equation, complementary error function, Leibniz rule, chain rule... Wow! Cool!



Step 1 is the kicker... we’ll use the Laplace Transform to solve the 444
linear partial differential equation

The Laplace transform of any function F(t) is:

L{F(n)} = f e S'F(t)dt
0
how about F(t) =1?
r o—st|” " 1
L{1} = f e St (1)dt = =0 — (_> _
—S . —S S
0

how about F(t) = kt?

00) (00)

L{kt} = j e St(kt)dt = k f te~Stdt = k (e_St (—st — 1))

0 0




how about F(t) = kt? /-\antegrated by parts 445

- - oSt =
L{kt} = f e St(kt)dt = kf te Stdt = k( = (—st — 1))
0 0 0
Used L’Hopital’s rule 1 I
s k 0 — S_Z (—1) —_ S_2
how about F(t) = e™9t?
(0.0 (0.0 _ t (0'0)
L{e™*} = f e St~ t = f oty = &0
—(s+a)
0 0 0
o 1 1

_—(s+a)zs+a



OK, now for our case: F(t) =

(?Co(x, f) _D {9200(.1’, I) 446
ot O\ o

Recall, Second Law:

o, _ F*Co(x, 1)
o TO\ g2




2 447
OK, now for our case: F(t) = ICo(x, 1) - D °Colx, 1)
ot 0 92

3C0(x, f) 52C0(x, I)
L{ o DO( P )}z?

well, wait a second, this
term is not so bad...

00 o Y

fe‘St 0°C(x,t) ik

52
—st _
722 dt =D axzf C(x,t)dt =D—— C(x,s)

ax
0 0 l

the Laplace transform
of C(x, t)? ... Isn’t this
cheating?

Well, ahem, no!



) 448
: . (?Co(x, f) _D 0 Co(x, I)
OK, now for our case: F(t) = g o &xz
3C0(x, f) 52C0(x, I)
L C? - DO ) =7
! ax
t so lucky with 0°
not so lucky _ =
this term... . 0x 2 C(x, )

D £



b

b
| g0or'@adx = l9r |, - [ F@g e

449

Integration, by parts, again!

a
f e_St aCO(X, t) dt
0

ot
|
g(x) f'(x)
— [e—st(;(x, t)”:)o —f C(x, t)(—Se_St)dx
0

=0—-C(x,0) +sC(x,s)

!

... and at time =0, what is the value of C, anywhere?
... just C*!



2 450
L.T. of Fick’s 2" Law... F(t) = dCo(x, 1) - D °Colx, 1)
ot 0 Ix2
now is turns out that ; dCo(x, 1) _D é.QCO(x, 1)
the L.T. of this... ot O 51.2
_ 92 _ see B&F,
is this... SC(X, S) —C*—=D ) C(x, S) pg. /75,
dx for details

Now what? Well, recall these terms are equal to each other (= 0), then rearrange...
... and what does it look like?

our equation: dQE'(x, S) —_ C(x S) =
’ D

S
dx> D
the time-independent d?

2m
Schrédinigne;|§7: ﬁlp(x) — ﬁ (E — V(x))llj(x) = (




2T ) 451
our equation: df;’ 5) — % E'(x, §) = _%

the time-independent dZ

2m
Schrédin?ne;[li?: Wl/)(x) — F (E — V(X))l/)(x) =0

the solution of the
Schrédinger Eq. is:

—\/Zm(E — V(x)) \/Zm(E — V(x))
P x | + B'exp X

Y(x) = A'exp :

... and by analogy, the solution of our equation is:

C(x,s) = %* + A'(s)exp <—\/§x> + B'(s)exp <\/§x>



452
C(x,s) = % + A'(s)exp (—\/%x) + B’(s)exp (ng)

Now, what are A’ and B’ (to simplify), and how do we get rid of the “s”?
... just like in any calculus problem, we need some boundary conditions!

- — ok called semi-infinite linear
1. Iim Cq(x, 1) = C
X—> 0 ol ) O (because of x) diffusion

L.T.l .

lim C(x,s) = —
S

X— 00

What does this do for us?

_ C*
C(x,s) = s + A'(s)exp Ex) + B'(s)exp 5x>

0
... and so B'must be equal to O



453

C(x,s) = %* + A'(s)exp (—\/gx)

some more boundary conditions...

2. C(0,t) =0
L.T.l
C(0,s) =0

What does this do for us? 1

C(x,s) = %* + A'(S)W

.andso A'(s) = Y



now our solution is fully constrained... but we still need “t” back!! 454

*

- C C N
Colx, ) = —> — —~ e~ V3/Por

inverse L.T. Jusing Table A.1.1 in B&F

v

e PYs = erfc[x/2(kt)?]
where 8 = (s/k)”2

v

Colx, 1) = 03{1 — erfc[z(th)m]}




What'’s efrc?... Well, first of all, what’s the error function: erf? 455

Error Function

erfix




Now... what’s efrc?

aric(x)

Complementary Error Function

erfc(x) =1 — erf(x)

Gaussian distribution,
with mean =0 and
std. dev. = 1/sqrt(2)

Area = erf(x)

Area = erfe(x)

&=

456



Does this make sense? 457

Colx, ) = Cg{l — erfc[z(th)m]}

C (x,t)—-"———C*erf[ A ]
O O 2(DOI)U2

... well, for large x, erf =1 (erfc = 0) and so C(x, t) = C* ... Check!

..and forx=0, erf =0 (erfc =1) and so C(x, t) =0 ... Check!

... SO, it seems reasonable... Let’s plot it!



The experiment we will model is a potential step experiment... 458
key points: at E,: no reaction (C,(x, 0) = C,*)
at E,: diffusion-controlled reaction (C,(0, t) = 0)

E > 200 mV Co ¢

>200 mV l E, t<0

0 t
(a) (b) (c)

Figure 5.1.2 (a) Waveform for a step experiment in which species O is electroinactive at £y, but
is reduced at a diffusion-limited rate at £;. (b) Concentration profiles for various times into the

experiment. (c¢) Current flow vs. time.

... oh right... and this is the condition that we were deriving...



Hey, these look completely reasonable... and they are not exponential! 459

lleIU_ﬁ [T | | T T ]
0.0001s
08 —
0.6 - -
A
X
O 0al C*=1x10° mol cm‘3_
' D=0.5x10"cm?s?
02+ i
Colx, 1) = C§ erf [ s ]
Z(DOI)I/Z
0.0} -
| ] | | | | !
0 2 4 6 8 10x10

X, CM (100 um)



How large is the diffusion layer? Recall the rms displacement... (BRIEFLY) 460

*the rms displacement

Dimension * =
A In both directions from a...

1D \/ZDt ... plane
2D \/4Dt ... wire, line, tube

3D \/6Dt .. point, sphere, disk

_ cm? a characteristic
A=+ (2d)Dt = \ (T 5= ctm "diffusion length"

_ _ _ _ root mean square (rms)
A = /(2d)Dt, where d is the dimension displacement

... and the “2” 1s for positive and negative directions  (standard deviation)



Hey, these look completely reasonable for 1D diffusion in one direction! 461

(BRIEFLY)
[.OxIU_E [ | | | T ™
0.1s
0.0001s 601
0.8 t=1s —
Why is 52% of the
bulk concentration
noteworthy? wf— ~
=
-~.>:<..-- ' * 6 3
O i C*=1x10 molcm‘_
Plug inx-= (Dt)0-5! ' D=0.5x 10_5 sz S_1
... Ah ha!
021 —
Colx, 1) = C erf[ s ]
Z(DOI)I/Z
00F -
| | 1 \ | L
0 2 4 6 8 10x10°
7.1um22um X, €M (100 um)

VDt =2.2pum

... use the geometric area for calculations



... that’s Step #1... Whoa! That was deep!... The last two steps are not... 462
(BRIEFLY)

1. Solve Fick’s Second Law to get C,(x, t), and in the process
of doing this, you will use boundary conditions that
“customize” the solution for the particular experiment of
interest:

ICoxs D) _ F*Colx, 1)
ot - 70 x>

2. Use Fick’s First Law to calculate J5(0, t) from C,(x, t):

flux
IC(x, 1)
ox

3. Calculate the time-dependent diffusion-limited current:
i =nFAJ,(O, t)




... now Step #2... (BRIEFLY) 463

Cox, 1)
_JQ(I, f) — DO g (Fick’s First Law)

... but we just derived C,(x, t):

C (x,t)—"——-C*erf[ 2 ]
O O Z(DOI)UZ

... ahd so we need to evaluate:

0 X
—]O(X, t) = DOE[C*erf<2 > t)]
)




... now Step #2... (BRIEFLY) 464

0 X
—Jo(x,t) = Doa[C*erf(z\/m)]

... we use the Leibniz rule, to get d/dx(erf(x)) as follows:

d X 5 7 _.2 see B&F,
— erf(x) = %/2 d eV dy = ¢ X pg. 780,
dx a2 dx Jg T for details

... and using this in conjunction with the chain rule, we get:

1 2 —x?
—jo(x, t) = D()C* exp

2./Dot ) T 4Dot

... and when x = 0 (at the electrode), we get: —
D

—Jo(0,8) = C* ~0

V Tt

... which is what we needed for Step #3...



OK... that’s Steps #1 and 2... (BRIEFLY) 465

1. Solve Fick’s Second Law to get C,(x, t), and in the process
of doing this, you will use boundary conditions that
“customize” the solution for the particular experiment of
interest:

ICoxs D) _ F*Colx, 1)
ot - 70 Ix?

2. Use Fick’s First Law to calculate J5(0, t) from C,(x, t):

flux
dCn(x, 1)
~Jolx, 1) = Do —=-

3. Calculate the time-dependent diffusion-limited current:
i =nFAJ,(O, t)




... and finally, Step #3 using Step #2... 466

Do

—Jo(0,t) =C VE

nFADY*C3
771/2t1/2

... and with i = nFAJ,(0, t)... i(1) = iy(f) =

the Cottrell Equation

Frederick Gardner Cottrell, in 1920

b. January 10, 1877, Oakland, California, U.S.A.
d. November 16, 1948, Berkeley, California, U.S.A.

... established Research Corporation for Science
Advancement in 1912

... initial funding from profits on patents for the
electrostatic precipitator, used to clear
smokestacks of charged soot particles
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