The Crystalline Solid State

Chapter 7

Monday, October 19, 2015

Midterm Exam I

this Friday, Oct 23, 9-9:50a

- Chapters 4, 5, and today's part of 7 (no chapter 6)
- multiple short answer problems testing basic concepts
- closed book, closed notes
- bring pen, pencil, calculator, ID
- study lectures, book, suggested and online problems
- look for seating chart on lecture room door
- don't cram!

Review Sessions:

Weds, Oct 21 @ 4-6 pm, SSL 270 (Juliet) Thurs, Oct 22 @ 5-7 pm in SSL 228 (Kyle)

Materials Provided

of irreducible representations of a given type =
$$\frac{1}{\text{order}} \sum_{R} \begin{bmatrix} \text{# of } & \text{character of operations} \\ \text{operations} & \times & \text{reducible} \\ \text{in the class} & \text{representation} \end{bmatrix}$$

Character tables also provided (unless the point of the question is to build the table).

Types of Solids

Amorphous Solids are solids that lack a regular three-dimensional arrangement of atoms. They lack long-range structural order.

Crystalline solids have atoms/ions/molecules arranged in regular, repeating patterns. They possess long-range periodicity.

- minimizes free energy of the atoms/ions/molecules
- the unit cell is the smallest repeating structural unit that has the full crystal symmetry

Types of Solids

Amorphous Solids are solids that lack a regular three-dimensional arrangement of atoms. They lack long-range structural order.

Crystalline solids have atoms/ions/molecules arranged in regular, repeating patterns. They possess long-range periodicity.

- minimizes free energy of the atoms/ions/molecules
- the unit cell is the smallest repeating structural unit that has the full crystal symmetry

Types of crystalline solids:

- Ionic Crystals
- Covalent or Network Crystals
- Molecular Crystals
- Metallic Crystals
- Group VIII Crystals (frozen Noble Gases)

The 7 Crystal Systems

All 3D crystals belong to one of 7 crystal systems.

Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Monoclinic $a \neq b \neq c$ $\gamma \neq \alpha = \beta = 90^{\circ}$

Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}$. $\gamma = 120^{\circ}$

The 14 Bravais Lattices

All 3D crystals belong to one of 14 Bravais lattices.

Bravais lattice: An infinite array of points with an arrangement and orientation that looks exactly the same from any lattice point.

Types of Cubic Lattices

There are three cubic Bravais lattices:

- The lengths of the unit cell edges (a,b,c) are called lattice constants.
- For cubic crystals, a = b = c, so there is only one lattice constant (a).

Contents of a Unit Cell

An important feature of the unit cell is the number of lattice points it contains. Atoms/ions/molecules are often located at lattice points.

$$8 \cdot atoms \times \frac{1}{8} \cdot occupancy$$

$$+ 1 \cdot atom \times 1 \cdot occupancy$$

2 atoms in a Body-Centered Cubic cell

$$8 \cdot atoms \times \frac{1}{8} \cdot occupancy$$

1 atom in a Simple Cubic cell

$$8 \cdot atoms \times \frac{1}{8} \cdot occupancy$$

+ $6 \cdot atoms \times \frac{1}{2} \cdot occupancy$

4 atoms in a Face-Centered Cubic cell

Contents of a Unit Cell

An important feature of the unit cell is the number of lattice points it contains. Atoms/ions/molecules are often located at lattice points.

Atoms	Shared Between:	Each atom counts:
corner	8 cells	1/8
face center	2 cells	1/2
body center	1 cell	1
edge center	4 cells	1/4

$$8 \times 1/8 = 1$$

$$8 \times 1/8 + 1 \times 1 = 6$$

$$8 \times 1/8$$
 $8 \times 1/8$ $8 \times 1/8$ $+ 1 \times 1 = 2$ $+ 2 \times 1/2 = 2$ $+ 4 \times 1/2$

$$8 \times 1/8$$
 $8 \times 1/8$ $8 \times 1/8$ $+ 1 \times 1 = 2$ $+ 2 \times 1/2 = 2$ $+ 4 \times 1/2 = 4$

Contents of a Unit Cell

Consider sodium chloride: rock salt (not Bravais)

C1 at corners: $(8 \times 1/8) = 1$ Na at edge centers $(12 \times 1/4) = 3$ Cl at face centres $(6 \times 1/2) = 3$ Na at body centre = 1

Unit cell contents: 4(Na⁺Cl⁻)

Types of Cubic Cells

Different cubic cells result from different packing of atoms.

Atoms per Coordination **Unit Cell Lattice Constant Packing Fraction** cell Number **Simple Cubic** 6 2r52% 4*r* 2 8 68% **Body-Centered Cubic** $2r\sqrt{2}$ **Face-Centered Cubic** 12 74% 4

Close-Packed Structures

Consider the *close-packing* of incompressible (hard) spheres:

In 2D, regular close-packing requires an hexagonal array (HCP)

Most efficient way to pack spheres of single size

6 nearest neighbors

Coordination number (CN): 6

In 3D, regular close-packing involves stacking 2D HCP arrays

Regular (crystalline) packing

Irregular packing

The Hexagonal Close-Packed Structure

An HCP crystal is a close-packed structure with the stacking sequence ...ABABAB...

To construct:

1st layer: 2D HCP array (layer A)

2nd layer: HCP layer with each sphere placed in alternate interstices in 1st layer (B)

3rd layer: HCP layer positioned directly above 1st layer (repeat of layer A)

HCP is two interpenetrating simple hexagonal lattices displaced by $\mathbf{a_1}/3 + \mathbf{a_2}/3 + \mathbf{a_3}/2$

The Hexagonal Close-Packed Structure

• not a Bravais lattice

Orientation alternates with each layer

• each sphere touches 12 equidistant nearest neighbors (CN = 12)

Six in plane, six out-of-plane

• structure has maximum packing fraction possible for single-sized spheres (0.74)

The Hexagonal Close-Packed Structure

• about 30 elements crystallize in the HCP form

Table 4.4
ELEMENTS WITH THE HEXAGONAL CLOSE-PACKED CRYSTAL STRUCTURE

ELEMENT	a (Å)	с	c/a	ELEMENT	a (Å)	c	- c/a
Be	2.29	3.58	1.56	Os	2.74	4.32	1.58
Cd	2.98	5.62	1.89	Pr	3.67	5.92	1.61
Ce	3.65	5.96	1.63	Re	2.76	4.46	1.62
α-Co	2.51	4.07	1.62	Ru	2.70	4.28	1.59
Dy	3.59	5.65	1.57	Sc	3.31	5.27	1.59
Er	3.56	5.59	1.57	Tb	3.60	5.69	1.58
Gd	3.64	5.78	1.59	Ti	2.95	4.69	1.59
He (2 K)	3.57	5.83	1.63	T1	3.46	5.53	1.60
Hf	3.20	5.06	1.58	Tm	3.54	5.55	1.57
Но	3.58	5.62	1.57	Y	3.65	5.73	1.57
La	3.75	6.07	1.62	Zn	2.66	4.95	1.86
Lu	3.50	5.55	1.59	Zr	3.23	5.15	1.59
Mg	3.21	5.21	1.62			_	
Nd	3.66	5.90	1.61	"Ideal"			1.63

The Cubic Close-Packed Structure

A CCP crystal is a close-packed structure with the stacking sequence ...ABCABC...

To construct:

1st layer: 2D HCP array (layer A)

2nd layer: HCP layer with each sphere placed in alternate interstices in 1st layer (B)

3rd layer: HCP layer placed in the *other* set of interstitial depressions (squares, C)

4th layer: repeats the 1st layer (A)

...ABCABC...

It turns out that the CCP structure is just the FCC Bravais lattice!

Close-Packed Structures

Most common are HCP and CCP, but an infinite number of stacking sequences are possible.

Example: silicon carbide has over 250 *polytypes* e.g., 6H-SiC stacking sequence ...ABCACB...

silicon carbide

Metallic Solids

Most metals crystallize in ccp, hcp, or bcc structures

 Metallic bonding is stronger than London dispersion forces, but weaker than covalent bonding

Solid	M / g mol ⁻¹	Melting Point / °C
Kr	83.80	–157
Cu	63.55	1083
C (diamond)	12.01	3500

