Midterm I Results

Mean: 35.5 (out of 100 pts)

Median: 33

Mode: 25

Max: 104

Min: 2

SD: 18

Compare to:

2013 Mean: 59%

2014 Mean: 51%

Crystal Thermodynamics and Electronic Structure

Chapter 7

Monday, October 26, 2015

Explaining Simple Ionic Structures

The crystal structure adopted depends mostly on:

- The relative sizes of the atoms/ions
- The relative number of the two types of atoms/ions
- The electronic structure of the atoms/ions

The radius ratio is typically defined as r^+/r^- , where r^+ is the radius of the cation and r^- is the radius of the anion.

Radius Ratio Rules

In order to maximize the net electrostatic attraction between ions in a structure, the Coordination Number of the Cation will be Maximized subject to the criterion of Maintaining Cation-Anion Contact

Determined by comparison of the ratio of the ionic radii (r+/r-), with values derived from the **geometric contact criterion**

Radius Ratio Rules

The Radius Ratio Rules are correct ONLY 2/3 of the time!

Thermodynamics of Ionic Crystal Formation

The energetics associated with the formation of an ionic crystal can be calculated using Hess' Law (Born-Haber cycle).

$$Li(s) \longrightarrow Li(g)$$
 ΔH_{sub}

$$\frac{1}{2}F_2(g) \longrightarrow F(g)$$
 BDE
$$Li(g) \longrightarrow Li^+(g) + e^- \qquad \text{IP}$$

$$F(g) + e^- \longrightarrow F(g)$$
 EA
$$Li^+(g) + F(g) \longrightarrow LiF(s)$$
 $-\Delta H_{lattice} = -\Delta U - \Delta nRT$

$$Li(s) + \frac{1}{2}F(g) \longrightarrow LiF(s)$$
 ΔH_f

Thermodynamics of Ionic Crystal Formation

The energetics associated with the formation of an ionic crystal can be calculated using Hess' Law (Born-Haber cycle).

$$Li(s) \longrightarrow Li(g)$$

$$\Delta oldsymbol{H_{sub}}$$

$$\frac{1}{2}F_2(g) \longrightarrow F(g)$$

$$Li(g) \longrightarrow Li^+(g) + e^-$$

$$F(g)+e^{-}\longrightarrow F^{-}(g)$$

EA

$$Li^{+}(g)+F^{-}(g)\longrightarrow LiF(s)$$

$$-\Delta H_{lattice} = -\Delta U - \Delta nRT$$

$$Li(s) + \frac{1}{2}F(g) \longrightarrow LiF(s)$$

$$\Delta oldsymbol{H_f}$$

Lattice Energy

Ionic structures are held together by electrostatic forces and, therefore, are arranged so that cations are surrounded by anions, and vice versa

Lattice Energy (U) = energy required to completely separate one mole of a crystal into a gas of its ions.

NaCl (s) \rightarrow Na⁺ (g) + Cl⁻ (g) , $\Delta H_{lattice} \approx U$

 $U_{NaCl} = 778 \text{ kJ/mol}$

Electrostatic potential energy (attraction & repulsion):

$$V = -\frac{Z_{+}Z_{-}e^{2}}{r}$$

Short-range Pauli repulsion:

$$V = \frac{B}{r^n}$$

B: Born constant

n: Born exponent (n = 5-12)

Example: NaCl structure

Start with one Na⁺ cation.

Next neighbors: 6 Cl⁻ at distance *r*.

$$V_1 = -6 Z_+ Z_- e^2 / r$$

Next nearest neighbors:

12 Na⁺ at distance √2*r*.

$$V_2 = +12 Z_+ Z_- e^2 / (\sqrt{2}r)$$

Next next:

8 Cl⁻ at distance $\sqrt{3}r$.

$$V_3 = -8 Z_+ Z_e^2 / (\sqrt{3}r)$$

Net attractive electrostatic energy between one Na⁺ and the rest:

$$V = V_1 + V_2 + V_3 + \dots = -Z_+ Z_- e^2 / r \cdot \{6 - 12 / \sqrt{2} + 8 / \sqrt{3} - 6 / \sqrt{4} + \dots\}$$

Net attractive electrostatic energy:

repeat summation for each ion, i.e. for 2N ions per mole NaCl, then divide by 2!

$$V = -Z_+Z_e^2/r \cdot N \cdot A$$

A: Madelung constant

Madelung Constant

$$V = -\frac{Z_{+}Z_{-}e^{2}}{r} \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \dots\right)$$

Madelung

Madelung Constant (A):

The numerical value of the series summation

 Depends only on the geometrical arrangements of ions (the crystal structure), not the lattice constant

Crystal structure	Madelung constant	Coordination
Rock salt	1.748	6:6
CsCl	1.763	8:8
Zincblende	1.638	4:4
Fluorite	5.039	8:4
Rutile	4.816	6:3

Born-Landé Equation for Lattice Energy

U is the sum of net Coulombic attraction and Pauli repulsion:

$$U = -\frac{Z_{+}Z_{-}e^{2}NA}{r} + \frac{BN}{r^{n}}$$

$$\frac{dU}{dr} = \frac{Z_{+}Z_{-}e^{2}NA}{r_{e}^{2}} - \frac{nBN}{r_{e}^{n+1}} = 0$$

$$B = \frac{Z_{+}Z_{-}e^{2}Ar_{e}^{n-1}}{n}$$

$$Z_{+}Z_{-}e^{2}NA = 1$$
Born repulsive force

Fig. 8.5 Lattice energy (dashed line) of ionic

separation

crystals as

function of internuclear

This is the Born-Landé equation (1918)

Some Lattice Energies

- for a given crystal structure, U depends most strongly on the charge on the ions
- \bullet the internuclear separation r_e has a smaller effect

Table 8.6 Some lattice energies (kJ mol⁻¹). (Data from Ladd and Lee, 1963)

4	1 1 1 1 1 1	4 / /	E 1			
MgO	3938	LiF	1024	NaF	911	
CaO	3566	LiCl	861	KF	815	
SrO	3369	LiBr	803	RbF	777	
BaO	3202	LiI	744	CsF	748	

increasing lattice constant

Melting point: MgO: 2800°C

CaO: 2572°C

BaO: 1923°C

Limits of the Ionic Model

The Born-Landé equation is a poor approximation to the lattice energy for compounds with significant non-ionic character

		UBorn-Lande (calculation)	UBorn-Haber (experiment)	Δυ	
Rock Salt	AgF	920	953	33	
	AgCl	832	903	71	
	AgBr	815	895	80	
CN 4	AgI	777	882	105	
structure					

Increasingly covalent!

From MOs to Band Theory

We've seen before how AOs on atoms are combined to give MOs for molecules.

From MOs to Band Theory

Look at what happens when we move from two hydrogens to four hydrogens in a chain (look familiar?).

From MOs to Band Theory

Eight hydrogens gives eight MOs and an even smaller HOMO-LUMO gap.

Infinite 1D Chain of H Atoms

Interaction of many atoms:

N atomic orbitals always give N molecular orbitals.

when N is enormous, the MOs form continuous *bands* ($\Delta E \ll kT$)

Band Theory of 3D Solids

Now consider what happens in a three-dimensional solid with many, many atoms within bonding distance...

Instead of a discrete MOs, we get a **band** of filled orbitals (**valence band**) and a band of empty orbitals (**conduction band**).