Chemistry of the Main Group Elements: Chalcogens through Noble Gases

Sections 8.7-8.10

Monday, November 9, 2015

Oxygen

- Forms compounds with every element except He, Ne, and Ar
- Two naturally occurring allotropes: O₂ and O₃
- O₂ has two unpaired electrons and a triplet ground state that moderates its reactivity

Oxygen

Both O₂ and O₃ are powerful oxidants

remember
$$\Delta G = -nFE^{\circ}$$

$$O_2 + 4H^+ + 4e^- \xrightarrow{E^\circ = +1.23V} 2H_2O$$

$$O_3 + 2H^+ + 2e^- \xrightarrow{E^\circ = +2.08V} H_2O + O_2$$

Partial reduction of O₂ gives hydrogen peroxide

$$O_2 + 2H^+ + 2e^- \xrightarrow{E^\circ = +0.70V} H_2O_2$$

$$H_2O_2 + 2H^+ + 2e^- = E^{\circ = +1.76V} 2H_2O$$

Hydrogen peroxide synthesis is achieved with anthraquinone

Oxides

An oxide is any compound with an oxygen in the 2– oxidation state; there are three types,

 basic oxides are formed with metals and give basic solutions when dissolved in water

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

$$MgO + 2H^+ \longrightarrow Mg^{2+} + H_2O$$

 acidic oxides are formed with p-block elements and give acid solutions when dissolved in water

$$N_2O_5 + H_2O \longrightarrow 2HNO_3$$

$$Sb_2O_5 + 2OH^- + 5H_2O \longrightarrow 2Sb(OH)_6^-$$

amphoteric oxides can act as either acids or bases

$$ZnO + 2H^+ \longrightarrow Zn^{2+} + H_2O$$

$$ZnO + 2OH^- + H_2O \longrightarrow Zn(OH)_4^{2-}$$

Sulfur

Sulfur has many allotropes

• S_2 , S_3 , S_6 , S_7 , α - S_8 , β - S_8 , γ - S_8 , ..., S_{20}

Considered 'soft' compared to oxygen, it bonds strongly to most transition metals

Sulfur Halides

There are seven different sulfur fluorides...

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F = \begin{cases} F & F \\ F & F \end{cases}$$

$$F =$$

...but for the other halogens only S₂X₂ and SX₂ complexes are known

$$S_8 + xsCl_2 \longrightarrow S_2Cl_2 \xrightarrow{xsCl_2} SCl_2$$

Halogens

Chemistry of the halogens is dominated by the drive to complete the octet.

- one allotrope for the elemental forms X₂
- HF is extremely toxic it will leach Ca²⁺ from tissue and bone

Fluorine is the most reactive non-metal and most powerful oxidant

- discovered in 1886 during HF electrolysis
- first chemical synthesis in 1986 by Karl Christie at USC

$$K_2MnF_6 + 2SbF_5 \xrightarrow{150^{\circ}C} 2KSbF_6 + [MnF_4] \longrightarrow MnF_3 + \frac{1}{2}F_2$$

Commercial uses

- preparation of aluminum and steel
- synthesis of Teflon

CFC-22
$$CHClF_2 \xrightarrow{600-800^{\circ}C} HCl + CF_2 \longrightarrow F_2CCF_2 \longrightarrow PTFE$$

- water fluorination (as NaF)
- toothpaste (as NaF, SnF₆⁻, or other salt)

Interhalogens

Halogen-halogen bonding occurs readily

- Diatomics: CIF, ICI, IBr
- Higher species follow the formula XY_n where X is the heavier halogen, Y is the lighter (i.e., more electronegative) halogen and n = 3, 5, or 7

• same combinations for BrF_n and IF_n , but for iodine n = 7 is also accessible

- all interhalogens are strong oxidants and fluorinating agents
- interhalogens can cause O₂ evolution from metal oxides

$$2Co_2O_4(s) + 6ClF_3(g) \longrightarrow 6CoF_3(s) + 3Cl_2(g) + 4O_2(g)$$

fluoride abstraction gives interhalogen cations

$$ClF_3 + SbF_5 \longrightarrow [ClF_2]^+ + [SbF_6]^-$$

Halogen Oxo-Anions

Known for all halogens except fluorine, with halogen oxidation states of +1, +3, +5, and +7

acidity increases with increasing number of oxygens

Acid	pΚa
HOCI	7.53
HOCIO	2.0
HOCIO ₂	-1.2
HOClO₃	–10

 all oxo-anions are thermodynamically strong oxidants, but they are kinetically stabilized:

$$\begin{array}{c} ClO_4^- < ClO_3^- < ClO_2^- \cong ClO^- \cong Cl_2 \\ \hline BrO_4^- < BrO_3^- \cong BrO^- \cong Br_2 \\ IO_4^- < IO_3^- < I_2 \\ \hline ClO_4^- < BrO_4^- < IO_4^- \end{array}$$

some oxo-anions do not exist because they disproportionate

$$2HBrO_2 \longrightarrow BrO_3^- + HOBr + H^+$$

Noble Gases

Naturally-occurring, closed valence shell gases

- elements exist as monomeric gases with low boiling points
- inert to reduction, but heavier members can be oxidized

$$Xe \xrightarrow{1atmF_2} XeF_2$$

$$Xe \xrightarrow{600^{\circ}C} XeF_4$$

$$Xe \xrightarrow{60atmF_2} XeF_6$$

$$Xe \xrightarrow{60atmF_2} XeF_6$$

once made, the xenon fluorides will do further chemistry

$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$

$$2XeF_6 + 3SiO_2 \longrightarrow 2XeO_3 + 3SiF_4$$

- XeO₃ is explosive but others are stable (XeO₄, XeO₃F₂, [XeO₆]⁴⁻)
- VSEPR predicts the correct geometries for the nobel gas fluorides and oxides