Coordination Chemistry III: Tanabe-Sugano Diagrams

Chapter 11

Friday, December 4, 2015

Understanding the [V(OH₂)₆]³⁺ Spectrum

We set out to understand the UV-vis-NIR absorbance spectrum of the d^2 ion, $[V(OH_2)_6]^{3+}$

- We started with the V³⁺ free ion no ligands, spherical symmetry
- Considered two electrons in five equal-energy d orbitals to give 45 microstates
- Using L and S we factored these microstates into five atomic states, ¹G, ³F, ¹D, ³P, and ¹S
- Established that ³F is the ground state
 - maximizes spin multiplicity, and then
 - maximizes orbital angular momentum

If we go back to our selection rules for spectroscopy,

- spin-allowed transitions occur between states with the same spin multiplicity
- Laporte-allowed transition occur between orbitals with different parity

The important atomic states for describing the absorption spectrum of $[V(OH_2)_6]^{3+}$ must be the 3F and the 3P electron configurations.

Visualizing the ³F and ³P States (see Table 2.3)

³F is the ground state with 21 microstates

$$\left[\mathcal{L}_{M_L = 0} \right]$$

- One electron into each orbital places them as far apart as possible
- For these seven orbital combinations remember that there will be M_S = +1, 0, -1 microstates

³P is the spin-allowed excited state with 9 microstates

$$\left[\mathcal{S}_{\mathbf{M_L} = 1} \mathcal{S} \right]$$

- These microstates put the electrons in the same plane, resulting in greater repulsion
- Again these three orbital combinations will have microstates with $M_{\rm S}$ = +1, 0, –1

- The different free ion terms for an electron configuration have different energies due to variations in electron-electron repulsion
- The different energies can be expressed using a small number of electrostatic parameters, A, B and C
 - These parameters are integrals related to the extent of electron-electron repulsion. The larger they are, the greater the repulsion is
- A, B and C are called Racah parameters

LFT orbital energies

Energies of d^2 free ion terms

$$E(^{1}S) = A + 14B + 7C$$

$$E(^{1}G) = A + 4B + 2C$$

$$E(^{1}D) = A - 3B + 2C$$

$$E(^{3}P) = A + 7B$$

$$E(^3F) = A - 8B$$

- Note that the difference between any pair of these terms is purely a function of B and C, not A
- If we can measure the energies of two properly chosen spectroscopic transitions between these terms we can calculate B and C
- $B = 400-1400 \text{ cm}^{-1}$ and depends on ion size. The ratio C/B is almost constant and close to 4.

LFT orbital energies

These are the electronic states when all the *d* orbitals are at the same energy.

What happens when we impose an octahedral ligand field?

LFT orbital energies e_{g} 3d V^{3+} t_{2g}

Visualizing the ³F and ³P States

³*F* is the ground state with 21 microstates

$$\begin{bmatrix} e_g & \vdots \\ e_g & e_g \end{bmatrix}$$

$$E = 0 B + 2 \Delta_o$$

All ³F microstates are equivalent in the free ion, but what about in an octahedral field?

³*P* is the spin-allowed excited state with 9 microstates

$$E = 15B + 1 \Delta_{o}$$

Symmetry Labels for Configurations

Free ion terms split into states in the ligand field, according to symmetry:

TABLE 11.6 Splitting of Free-Ion Terms in Octahedral Symmetry

Term	Irreducible Representations
S	A_{1g}
P	T_{1g}
D	$E_g + T_{2g}$
F	$A_{2g} + T_{1g} + T_{2g}$
G	$A_{1g} + E_g + T_{1g} + T_{2g}$
H	$E_g + 2T_{1g} + T_{2g}$
I	$A_{1g} + A_{2g} + E_g + T_{1g} + 2T_{2g}$

The state labels also indicate the degeneracy of the electron configuration:

		Examples
T	Designates a triply degenerate asymmetrically occupied state.	
E	Designates a doubly degenerate asymmetrically occupied state.	· · · · · · · · · · · · · · · · · · ·
A or B	Designate a nondegenerate state. Each set of levels in an <i>A</i> or <i>B</i> state is symmetrically occupied.	

d² Tanabe-Sugano Diagram

d² Tanabe-Sugano Diagram

