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Symmetry in Molecules: Staggered Ethane
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So far we can say staggered ethane has three operations: E, Cs, and C3?
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So we add three more operations: C2, C2', and C>"
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Now we’ve added three reflections: o4, 0d’, and 04"
Note that there is no on for staggered ethane!
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Ethane also has an inversion center that lies at the midpoint
of the C-C bond (the center of the molecule).
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Finally, staggered ethane also has an improper rotation axis.
It is an Se (S2n) axis that is coincident with the Cs axis.
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Finally, staggered ethane also has an improper rotation axis.
It is an Se (S2n) axis that is coincident with the Cs axis.
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It turns out that there are several redundancies
when counting up the unique improper rotations:
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So the improper rotations add only two unique operations.
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Let’s sum up the symmetry operations for staggered ethane:

Operation type Number
H, Hd |dentity 1
\ ,"/He Rotations 5 (2C; + 3C,)
oG Reflections 3 (30,)
H;H/ \H Inversion 1
b f Improper Rotations 2 (Sy + Sg°)
Total 12

- These 12 symmetry operations describe completely and without
redundancy the symmetry properties of the staggered ethane molecule.

- The complete set of symmetry operations possessed by an object defines
its point group. For example, the point group of staggered ethane is D,

- The total number of operations is called the order (h) of a point group. The

order is always an integer multiple of n of the principal axis. For staggered
ethane, h=4n (4 x 3 =12).



Summary

Symmetry Elements and Operations

- elements are imaginary points, lines, or planes within the object.

- operations are movements that take an object between equivalent
configurations — indistinguishable from the original configuration,
although not necessarily identical to it.

- for molecules we use “point” symmetry operations, which include
rotations, reflections, inversion, improper rotations, and the
identity. At least one point remains stationary in a point operation.

- some symmetry operations are redundant (e.g., Se¢? = C3); in these
cases, the convention is to list the simpler operation.



Low-Symmetry Point Groups

These point groups only contain one or two symmetry operations
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High-Symmetry Point Groups

These point groups are high-symmetry groups derived from Platonic solids
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The five regular Platonic solids are the tetrahedron (T,), octahedron (O,),
cube (O,), dodecahedron (/,), and icosahedron (/,)



High-Symmetry Point Groups

In addition to T, O,, and /,, there are corresponding point groups that
lack the mirror planes (T, O, and /).

Adding an inversion center to the T point group gives the T, point group.

TABLE 4.5 Symmetry Operations for High-Symmetry Point Groups and Their Rotational Subgroups

Point Group Symmetry Operations

I, E 12C;s 12Cs>  20C;  15C, i 12S,, 12§, 208, 150
I E 12C; 12Cs>  20C;  15C,
0, E 8C, 6C, 6C, 3C(=Co i 6S, 8Ss 30 60,
0 E 8C, 6C, 6C, 3C(=C
T, E 8C, 3G, 65, 60,
T E "ac, 4c? 3G
7, E 4 ;s  ic i 45, 45 3,

- 2
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Linear Point Groups

These point groups have a C_ axis as the principal rotation axis
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D Point Groups

These point groups have nC2 axes perpendicular to a principal axis (Cn)
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C Point Groups

These point groups have a principal axis (Cn) but no LC>2 axes
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S Point Groups

If an object has a principal axis (Cn) and an Sz, axis but no LC2 axes
and no mirror planes, it falls into an San group
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