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INTRODUCTION

Macromolecules extended in one, two, and three dimensions, of
biological/natural or synthetic origin, fill the world around us. Metals,
alloys, and composites, be they copper or bronze or ceramic, have played a
pivotal and a shaping role in our culture. Mineral structures form the base of
the paint that colors our walls and the glass through which we look at the
outside world. Organic polymers, natural or synthetic, clothe us. New
materials—inorganic superconductors, conducting organic polymers—ex-
hibiting unusual electric and magnetic properties, promise to shape the
technology of the future. Solid state chemistry is important, alive, and
growing. '

So is surface science. A surface—be it of metal, an ionic or covalent
solid, a semiconductor—is a form of matter with its own chemistry. In its
structure and reactivity, it will bear resemblance to other forms of matter:
bulk, discrete molecules in the gas phase and various aggregated states in
solution. And it will have differences. Just as it is important to find the
similarities, it is also important to note the differences. The similarities
connect the chemistry of surfaces to the rest of chemistry, but the differences
make life interesting (and make surfaces economically useful).

Experimental surface science is a meeting ground of chemistry,
physics, and engineering.? New spectroscopies have given us a wealth of
information, be it sometimes fragmentary, on the ways that atoms and
molecules interact with surfaces. The tools may come from physics, but the
questions that are asked are very chemical, e.g., what is the structure and
reactivity of surfaces by themselves, and of surfaces with molecules on them?

The special economic role of metal and oxide surfaces in heteroge-
neous catalysis has provided a lot of the driving force behind current surface
chemistry and physics. We always knew that the chemistry took place at the
surface. But it is only today that we are discovering the basic mechanistic
steps in heterogeneous catalysis. It’s an exciting time; how wonderful to
learn precisely how Débereiner’s lamp and the Haber process work!

What is most interesting about many of the new solid state materials
are their electrical and magnetic properties. Chemists have to learn to
measure these properties, not only to make the new materials and determine
their structures. The history of the compounds that are at the center of
today’s exciting developments in high-temperature superconductivity makes
this point very well. Chemists must be able to reason intelligently about the
electronic structure of the compounds they make in order to understand how
these properties and structures may be tuned. In a similar way, the study of
surfaces must perforce involve a knowledge of the electronic structure of
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2 Introduction

these extended forms of matter. This leads to the problem that learning the
language necessary for addressing these problems, the language of solid state
physics and band theory, is generally not part of the chemist’s education. It
should be, and the primary goal of this book is to teach chemists that
language. I will show that it is not only easy, but that in many ways it
includes concepts from molecular orbital theory that are very familiar to
chemists.

I suspect that physicists don’t think that chemists have much to tell
them about bonding in the solid state. I would disagree. Chemists have
built up a great deal of understanding, in the intuitive language of simple
covalent or ionic bonding, of the structure of solids and surfaces. The
chemist’s viewpoint is often local. Chemists are especially good at seeing
bonds or clusters, and their literature and memory are particularly well
developed, so that one can immediately think of a hundred structures ot
molecules related to the compound under study. From empirical experience
and some simple theory, chemists have gained much intuitive knowledge of
the what, how, and why of molecules holding together. To put it as
provocatively as I can, our physicist friends sometimes know better than we
how to calculate the electronic structure of a molecule or solid, but often
they do not understand it as well as we do, with all the epistemological
complexity of meaning that ‘‘understanding’’ can involve.

Chemists need not enter into a dialogue with physicists with any
inferiority feelings at all; the experience of molecular chemistry is tremen-
dously useful in interpreting complex electronic structure. (Another reason
not to feel inferior: until you synthesize that molecule, no one can study its
properties! The synthetic chemist is very much in control.) This is not to say
that it will not take some effort to overcome the skepticism of physicists
regarding the likelihood that chemists can teach them something about
bonding. I do want to mention here the work of several individuals in the
physics community who have shown an unusual sensitivity to chemistry and
chemical ways of thinking: Jacques Friedel, Walter A. Harrison, Volker
Heine, James C. Phillips, Ole Krogh Andersen, and David Bullett. Their
papers ate always worth reading because of their attempt to build bridges
between chemistry and physics.

I have one further comment before we begin. Another important
interface is that between solid state chemistry, often inorganic, and
molecular chemistry, both organic and inotganic. With one exception, the
theoretical concepts that have served solid state chemists well have not been
““molecular.”” At the risk of oversimplification, the most important of these
concepts has been the idea that there are ions (electrostatic forces, Madelung
energies) and that these ions have a certain size (ionic radii, packing
considerations). This simple notion has been applied by solid state chemists
even in cases of substantial covalency. What can be wrong with an idea that

Orbitals and Bands in One Dimension 3

works, and that explains structure and properties? What is wrong, or can be
wrong, is that application of such concepts may draw that field, that group
of scientists, away from the heart of chemistry. The heart of chemistry, let
there be no doubt, is the molecule! My personal feeling is that if there is a
choice among explanations in solid state chemistry, one must select the
explanation which permits a connection between the structure at hand and
some discrete molecule, organic or inorganic. Making connections has
inherent scientific value. It also makes ‘‘political’” sense. Again, to state it
provocatively, many solid state chemists have isolated themselves (no
wonder that their organic or even inorganic colleagues aren’t interested in
what they do) by choosing not to see bonds in their materials.

Which, of course, brings me to the exception—the marvelous and
useful Zintl concept.?> The simple notion, introduced by Zintl and
popularized by Klemm, Busmann, Herbert Schifer, and others, is that in
some compounds A,B,, where A is very electropositive relative to a main
group element B, one could just think, that’s all, think that the A atoms
transfer their electrons to the B atoms, which then use them to form bonds.
This very simple idea, in my opinion, is the single most important
theoretical concept (and how not very theoretical it is!) in solid state
chemistry of this century. And it is important not just because it explains so
much chemistry, but because it forges a link between solid state chemistry
and organic, or main group, chemistry.

In this book I will teach chemists some of the language of bond theory.
As many connections as possible will be drawn to traditional ways of
thinking about chemical bonding. In particular we will find and describe
the tools—densities of states, their decompositions, crystal orbital overlap
populations—for moving back from the highly delocalized molecular
orbitals of the solid to local, chemical actions. The approach will be simple;
indeed, oversimplified in parts. Where detailed computational results are
displayed, they will be of the extended Hiickel type? or of its solid state
analogue, the tight-binding method with overlap. I will try to show how a
frontier orbital and interaction diagram picture may be applied to the solid
state or to surface bonding. There will be many effects similar to what we
know happens for molecules. And there will be some differences.

ORBITALS AND BANDS IN ONE
DIMENSION

It's usually easier to work with small, simple things, and one-
dimensional infinite systems are particularly easy to visualize.>-® Much of the
physics of two- and three-dimensional solids is present in one dimension.
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4 Orbitals and Bands in One Dimension

Let's begin with a chain of equally spaced H atoms, 1, or the isomorphic 7
system of a non-bond-alternating, delocalized polyene 2, stretched out for
the moment. And we will progress to a stack of Pt(Il) square planar
complexes, 3, P(CN),>~ or a model PtH,*~.

A digression here: every chemist would have an intuitive feeling for
what that model chain of hydrogen atoms would do if released from the
prison of its theoretical construction. At ambient pressure, it would form a
chain of hydrogen molecules, 4. This simple bond-forming process would be
analyzed by the physicist (we will do it soon) by calculating a band for the
equally spaced polymer, then seeing that it's subject to an instability, called
a Peierls distortion. Other words around that characterization would be
strong electron-phonon coupling, pairing distortion, or a 2ky instability.
And the physicist would come to the conclusion that the initially equally
spaced H polymer would form a chain of hydrogen molecules. I mention
this thought process here to make the point, which I will do repeatedly
throughout this book, that the chemist's intuition is really excellent. But we
must bring the languages of our sister sciences into correspondence.
Incidentally, whether distortion 4 will take place at 2 megabars is not
obvious and temains an open question.

Let's return to our chain of equally spaced H atoms. It turns out to be
computationally convenient to think of that chain as an imperceptible bent
segment of large ring (this is called applying cyclic boundary conditions).

Bloch Functions, k, Band Structures 5

The orbitals of medium-sized rings on the way to that very large one are
quite well known. They are shown in 5. For a hydrogen molecule (or
ethylene) there is bonding o,(7) below an antibonding o,*(7*). For cyclic
H; or cyclopropenyl we have one orbital below two degenerate ones; for
cyclobutadiene the familiar one below two below one, and so on. Except for
the lowest (and occasionally the highest) level, the orbitals come in
degenerate pairs. The number of nodes increases as one rises in energy.
We'd expect the same for an infinite polymer—the lowest level nodeless,
the highest with the maximum number of nodes. In between the levels
should come in pairs, with a growing number of nodes. The chemist’s
representation of the band for the polymer is given at right in 5.
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BLOCH FUNCTIONS, k, BAND
STRUCTURES

There is a better way to write out all these orbitals by making use of
the translational symmetry. If we have a lactice whose points are labeled by
anindex n = 0, 1, 2, 3, 4 -+ - as shown in 6, and if on each lattice point




6 Bloch Functions, k, Band Structures

there is a basis function (a H 1s orbital), xo, X1, X2, etc., then the appropriate
symmetry-adapted linear combinations (remember that translation is as
good a symmetry operation as any other we know) are given in 6. Here 2 is
the lattice spacing, the unit cell in one dimension, and k is an index that
labels which irreducible representation of the translation group ¥ trans-
forms as. We will see in 2 moment that k is much more, but for now k is just
an index for an irreducible representation, just as a, e;, e, in Cs are labels.

a4
n=0 1 g 3 ﬂ
Xo Xy Xz Xz X4
qlk=zelknn Xn
n
6

In the solid state physics trade, the process of symmetry adaptation is
called ““forming Bloch functions.””¢8-!! To reassure chemists that one is
getting what one expects from 6, let’s see what combinations are generated
for two specific values of k: 0 and w/a. This is carried out in 7.

0 U T X=X,
= Xot Xg+ Xog# Xz + -

-2—2—20—2—
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} 'H"H]”I l Referring back to 5, we see that the wave function cotresponding to k
= 0 is the most bonding one, the one for k = w/a the top of the band. For
other values of k we get a neat description of the other levels in the band. So
k counts nodes as well. The larger the absolute value of k, the more nodes
one has in the wave function. But one has to be careful—there is a range of k
| and if one goes outside of it, one doesn’t get a new wave function, but
NI rather repeats an old one. The unique values of k are in the interval —7/a
l"' ' ’ ' ‘ < k< w/aor| k| < w/a. This is called the first Brillouin zone, the range of
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Band Width 7

How many values of k are there? As many as the number of
translations in the crystal or, alternatively, as many as there are microscopic
unit cells in the macroscopic crystal. So let us say Avogadro’s number, give
or take a few. There is an energy level for each value of k (actually a
degenerate pair of levels for each pair of positive and negative k values.
There is an easily proved theorem that E(k) = E(— k). Most representations
of E(k) do not give the redundant E(— k), but plot E(| k|) and label it as
E(k)). Also the allowed values of k are equally spaced in the space of k,
which is called reciprocal or momentum space. The relationship between k
= 2m/\ and momentum derives from the de Broglie relationship N = h/p.
Remarkably, & is not only a symmetry label and a node counter, but it is also
a wave vector, and so measures momentum.

So what a chemist draws as a band in 5, repeated at left in 8 (and the
chemist tires and draws ~ 35 lines or just a block instead of Avogadro’s
number), the physicist will alternatively draw as an E(k) vs. k diagram at
right. Recall that k is quantized, and there is a finite but large number of
levels in the diagram at right. The reason it looks continuous is that this is a
fine dot matrix printer; there are Avogadro’s number of points jammed in
there, and so it's no wonder we see a line.
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Graphs of E(k) vs. k are called band structures. You can be sure that
they can be much more complicated than this simple one. However, no
matter how complicated they are, they can still be understood.

BAND WIDTH

One very important feature of a band is its dispersion, or bandwidth,
the difference in energy between the highest and lowest levels in the band.
What determines the width of bands? The same thing that determines the
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8 Band Width
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Figure 1 The band structure of a chain of hydrogen atoms spaced 3, 2, and 1 A
apart. The energy of an isolated H atom is —13.6 ¢V.

splitting of levels in a dimer (ethylene or H?), namely, the overlap between
the interacting orbitals (in the polymer the overlap is that between
neighboring unit cells). The greater the overlap between neighbors, the
greater the band width. Figure 1 illustrates this in detail for a chain pf H
atoms spaced 3, 2, and 1 A apart. That the bands extend unsymmetrically
around their “‘origin,’’ the energy of a free H atom at —13.6 ¢V, is a
consequence of the inclusion of overlap in the calculations. For two levels, a
dimer

HM +Hup
1+ SAB

+=

The bonding E, combination is less stabilized than the antibonding one E_
is destabilized. There are nontrivial consequences in chemistry, for this is the

See How They Run 9

source of four-electron repulsions and steric effects in one-electron theo-
ries. ! A similar effect is responsible for the bands ‘‘spreading up’’ in Fig. 1.

SEE HOW THEY RUN

Another interesting feature of bands is how they ‘‘run.”” The lovely
mathematical algorithm 6 applies in general; it does not say anything about
the energy of the orbitals at the center of the zone (k = 0) relative to those
at the edge (kK = w/a). For a chain of H atoms it is clear that E(k = 0) <
E(k = w/a). But consider a chain of p functions, 9. The same combinations
as for the H case are given to us by the translational symmetry, but now it is
clearly k = 0 chat is high energy, the most antibonding way to put together
a chain of p orbitals.

Yo = Xot Xy* Xpt Xz+
o e e Yo
!
Vr = Xo~ Xy+ Xp=Xz+ - E

] £ (k)
Ca @O C @O

0} w/a

K——

The band of s functions for the hydrogen chain “‘runs up,’’ the band
of p orbitals “‘runs down’’ (from zone center to zone edge). In general, it is
the topology of orbital interactions that determines which way bands run.

Let me mention here an organic analogue to make us feel comfortable
with this idea. Consider the through-space interaction of the three 7 bonds
in 10 and 11. The threefold symmetry of each molecule says that there must
be an 2 and an e combination of the = bonds. And the theory of group
representations gives us the symmetry-adapted linear combinations: for a, x,
+ X2 + x3; for e (one choice of an infinity), x; — 2x2 + X3, X1 — X3, where
xi is the 7 orbital of double bond 1, etc. But there is nothing in the group
theory that tells us whether a is lower than e in energy. For that one needs
chemistry or physics. It is easy to conclude from an evaluation of the orbital
topologies that a is below ¢ in 10, but the reverse is true in 11.
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10 An Eclipsed Stack of Pt(II) Square Planar Complexes

1

To summarize: band width is set by inter-unit-cell overlap, and the
way bands run is determined by the topology of that overlap.

AN ECLIPSED STACK OF Pt(Il) SQUARE
PLANAR COMPLEXES

Let us test the knowledge we have acquired on an example slightly
more complicated than a chain of hydrogen atoms. This is an eclipsed stack
of square planar d® Ptl4 complexes, 12. The normal platinocyanides [e.g.,
K,Pt(CN),] indeed show such stacking in the solid state, at the relatively
uninteresting Pt - - Pt separation of ~3.3 A . More exciting are the partially
oxidized materials, such as K,Pt(CN)Cly ; and K,Pt(CN)4(FHF), 5. These
ate also stacked, but staggered, 13, with a much shorter Pt- - - Pt contact of
2.7 = 3.0 A. The Pt—Pt distance had been shown to be inversely related to
the degree of oxidation of the material. '*
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The real test of understanding is prediction. So let’s try to predict the
approximate band structure of 12 and 13 without a calculation, just using
the general principles at hand. Let’s not worry about the nature of the
ligand; it is usually CN—, but since it is only the square planar feature that is
likely to be essential, let’s imagine a theoretician's generic ligand H-. We'll
begin with 12 because its unit cell is the chemical PtL; unit, whereas the unit
cell of 13 is doubled, (PtLy),.

One always begins with the monomer. What are its frontier levels?
The classical crystal field or molecular orbital picture of a square planar
complex (Fig. 2) leads to a 4 below 1 splitting of the d block.!! For 16
electrons we have z2, xz, yz, and xy occupied and x?>-y? empty. Competing
with the ligand field-destabilized x*-y? orbital for being the lowest
unoccupied molecular orbital (LUMO) of the molecule is the metal z. These
two orbitals can be manipulated in understandable ways: 7 acceptors push z
down, 7 donors push it up. Better o donors push x*-y? up.

We form the polymer. Each MO of the monomer generates a band.
There may (will) be some further symmetry-conditioned mixing between
orbitals of the same symmetry in the polymer (e.g., s and z and z? are of
different symmetry in the monomer, but certain of their polymer molecular
orbitals (MOs) are of the same symmetry). However, ignoring that secondary
mixing and just developing a band from each monomer level independently
represents a good start.

First, here is a chemist’s judgment of the band widths that will
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develop: the bands that will arise from z2 and z will be wide, those from xz,
yz of medium width, those from x2-y?, xy narrow, as shown in 14. This
characterization follows from the realization that the first set of interactions
(z, z?) is o type, and thus has a large overlap between unit cells. The xz, yz
set has a medium 7 overlap, and the xy and x*-y? orbitals (of course, the
latter has a ligand admixture, but that doesn't change its symmetry) are d.

It is also easy to sce how the bands run. Let’s write out the Bloch
functions at the zone center (k = 0) and zone edge (k = w/a). Only one of
the 7 and & functions is represented in 15. The moment one writes these
down, one sees that the z? and xy bands will run up from the zone center
(the k = 0 combination is the most bonding) whereas the z and xz bands
will run down (the k = 0 combination is the most antibonding).

The predicted band structure, merging considerations of band width
and orbital topology, is that of 16. To make a real estimate, one would need
an actual calculation of the various overlaps, and these in turn would
depend on the Pt - - Pt separation.

The actual band structure, as it emerges from an extended Hiickel
calculation at PPt = 3.0 A, is shown in Fig. 3. It matches our
expectations very precisely. There are, of coutse, bands below and above the
frontier orbitals discussed; these are Pt-H o and ¢* orbitals.

Here we can make a connection with molecular chemistry. The
construction of 16, an approximate band structure for a platinocyanide
stack, involves no new physics, no new chemistry, no new mathematics
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Figure 3 Computed band structure
of an eclipsed PtH;?~ stack, spaced
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beyond what every chemist already knows for one of the most beautiful ideas
of modern chemistry: Cotton’s construct of the metal-metal quadruple
bond. 3 If we are asked to explain quadruple bonding, e.g., in Re,Clg*~,
what we do is to draw 17. We form bonding and antibonding combinations
from the z%(0), xz, yz(w), and x?-y*(8) frontier orbitals of each ReCls~
fragment. And we split o from o* by more than 7 from 7*, which in turn is
split more than & and §*. What goes on in the infinite solid is preciscly the
same thing. True, there are a few more levels, but the translational
symmetry helps us out with that. It's really easy to write down the
symmetry-adapted linear combinations, the Bloch functions.

The Fermi Level 15

THE FERMI LEVEL

It's important to know how many electrons one has in one’s molecule.
Fe(I) has a different chemistry from Fe(Ill), and CR;* carbocations are
different from CR; radicals and CR;~ anions. In the case of Re,Clg?~, the
archetypical quadruple bond, we have formally Re(IIT), d4, i.e., a total of
eight electrons to put into the frontier orbitals of the dimer level scheme,
17. They fill the o, two =, and the 8 level for the explicit quadruple bond.
What about the [PtHs? |- polymer 12? Each monomer is d®. If there are
Avogadro’s number of unit cells, there will be Avogadto’s number of levels
in each bond. And each level has a place for two electrons. So the first four
bands are filled, the xy, xz, yz, z? bands. The Fermi level, the highest
occupied molecular orbital (HOMO), is at the very top of the z? band.
(Strictly speaking, there is another thermodynamic definition of the Fermi
level, appropriate both to metals and semiconductors,? but here we will use
the simple equivalence of the Fermi level with the HOMO.)

Is there a bond between platinums in this [PtH4? |e polymer? We
haven’t yet introduced a formal description of the bonding properties of an
orbital or a band, but a glance at 15 and 16 will show that the bottom of
each band, be it made up of z2, xz, yz, or xy, is bonding, and the top
antibonding. Filling a band completely, just like filling bonding and
antibonding orbitals in a dimer (think of He,, and think of the sequence N,,
0,, F;, Ne;), provides no net bonding. In fact, it gives net antibonding. So
why does the unoxidized Ptl; chain stack? It could be van der Waals
attractions, not in our quantum chemistry at this primitive level. I think
there is also a contribution of orbital interaction, i.e., real bonding,
involving the mixing of the z? and z bands. ' We will return to this soon.

The band structure gives a ready explanation for why the
Pt- - - Pt separation decreases on oxidation. A typical degree of oxidation is
0.3 electron per Pt.!? These electrons must come from the top of the z*
band. The degree of oxidation specifies that 15% of that band is empty.
The states vacated are not innocent of bonding. They are strongly Pt-Pt o
antibonding. So it's no wonder that removing these electrons results in the
formation of a partial Pt-Pt bond.

The oxidized material also has its Fermi level in a band, i.e., there isa
zero band gap between filled and empty levels. The unoxidized platino-
cyanides have a substantial gap—they are semiconductots or insulatots. The
oxidized materials are good low-dimensional conductors, which is a
substantial part of what makes them interesting to physicists. "4

In general, conductivity is not a simple phenomenon to explain, and
there may be several mechanisms impeding the motion of electrons in a
material.” A prerequisite for having a good electronic conductor is to have




:

16 More Dimensions, At Least Two

the Fermi level cut one or more bands (soon we will use the language of
density of states to say this more precisely). One must beware, however, of
(1) distortions that open up gaps at the Fermi level and (2) very narrow
bands cut by the Fermi level because these will lead to localized states, not to
good conductivity.’

MORE DIMENSIONS, AT LEAST TWO

Most materials are two- or three-dimensional, and while one dimen-
sion is fun, we must eventually leave it for higher dimensionality. Nothing
much new happens, except that we must treat k as a vector, with
components in reciprocal space, and the Brillouin zone is now a two- or
three-dimensional area or volume. "

To introduce some of these ideas, let’s begin with a square lattice, 18,
defined by the translation vectors 7, and 7,. Suppose there is an H 1s orbital
on each lattice site. It turns out that the Schrodinger equation in the crystal
factors into separate wave equations along the x and y axes, each of them
identical to the one-dimensional equation for a linear chain. There is a k,
and a k,, the range of each is 0 < | k|, | k,| < w/a(a = |7,| = |Z,|). Some
typical solutions are shown in 19.

The construction of these is obvious. What the construction also

thx

-
s,y

18

shows, very clearly, is the vector nature of k. Consider the (k,, k,) = (7/2a,
w/2a) and (w/a, w/a) solutions. A look at them reveals that they are waves
running along a direction that is the vector sum of k, and k,, i.c., on a
diagonal. The wavelength is inversely proportional to the magnitude of that
vector.

The space of k here is defined by two vectors B, and b,, and the range
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ky=m/(2a).ky=0 ky, ky = 7 /(2a) kx =0, ky=m/(2a)

of allowed k, the Brillouin zone, is a square. Certain special values of k are
given names: I' = (0, 0) is the zone center, X = (w/a, 0) = (0, w/a), M =
(w/a, w/a). These are shown in 20, and the specific solutions for I', X, and
M were so labeled in 19.
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It is difficult to show the energy levels E(E) for all k. So what one
typically does is to illustrate the evolution of E along certain lines in the
Brillouin zone. Some obvious onesareI' = X, T' = M, X = M. From 19 it is
clear that M is the highest energy wave function, and that X is pretty much
nonbonding, since it has as many bonding interactions (along y) as it does
antibonding ones (along x). So we would expect the band structure to look
like 21. A computed band structure for a hydrogen lattice with 2 = 2.0 A
(Fig. 4) confirms our expectations.

The chemist would expect the chessboard of H atoms to distort into
one of H, molecules. (An interesting problem is how many different ways
there are to accomplish this.)

Let's now put some p orbitals on the square lattice, with the direction
perpendicular to the lattice taken as z. The p, orbitals will be separated from
py and p, by their symmetry. Reflection in the plane of the lattice remains a
good symmetry operation at all k. The p,(z) orbitals will give a band
structure similar to that of the s orbital, since the topology of the interaction
of these orbitals is similar. This is why in the one-dimensional case we could
talk at one and the same time about chains of H atoms and polyenes.

The py, py (x, y) orbitals present a somewhar different problem. Shown
below in 22 are the symmetry-adapted combinations of each at T, X, Y, and
M. (Y is by symmetry equivalent to X; the difference is just in the
propagation along x or y.) Each crystal orbital can be characterized by the
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Figure 4 The band structure of a square lattice of H atoms, H-H separation 2.0

p,p o or 7 bonding present. Thus at T' the x and y combinations are ¢
antibonding and 7 bonding; at X they are ¢ and 7 bonding (one of them),
and ¢ and 7 antibonding (the other). At M they are both o bonding, 7
antibonding. It is also clear that the x, y combinations are degenerate at T'
and M (and, it turns out, along the line I' = M, but for that one needs a
little group theory'”) and nondegenerate at X and Y (and everywhere else in
the Brillouin zone).

Putting in the estimate that ¢ bonding is more important than w
bonding, one can order these special symmetry points of the Brillouin zone
in energy and draw a qualitative band structure. This is Fig. 5. The actual
appearance of any real band structure will depend on the lattice spacing.
Band dispersions will increase with short contacts, and complications due to
s, p mixing will arise. Roughly, however, any square lattice—be it the P net
in GdPS, ' a square ovetlayer of S atoms absorbed on Ni(100), "7 the oxygen
and lead nets in litharge,'® or a Si layer in BaPdSi;'*—will have these
orbitals.
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Figure 5 Schematic band structure of a planar square lattice of atoms bearing ns
and np orbitals. The s and p levels have a large enough separation that the s and
p band do not overlap.

SETTING UP A SURFACE PROBLEM

The strong incentive for moving to at least two dimensions is that
obviously one needs this for studying surface-bonding problems. Let’s begin
to set these up. The kind of problems we want to investigate, for example,
are how CO chemisorbs on Ni; how H, dissociates on a metal surface; how
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question, of e, symmetry, is made up of Mo d functions that are of é type
with respect to the Mo-S external axis. Bringing in the neighboring cells will
provide little dispersion for this band. The result is a substantial DOS at the

Fermi level, one of several requirements for superconductivity., %

An interesting variation on the donor-acceptor theme in the solid is
that the donor or acceptor need not be a discrete molecule, as one MogS,
cluster is toward another in the Chevrel phases. Instead, we can have
electron transfer from one sublattice, one component of a structure, to
another. We’ve already seen this in the explanation of the tuning of the
X+ +X contact in the AB,X, ThCr,Si, structure. There the entire transition
metal or B sublattice, made up of square nets, acts as a donor or acceptor, a
reducing or oxidizing agent, for the X sublattice, made up of X- - - X pairs.
A further example is provided by the remarkable CaBe,Ge, structure, 66.¢°
In this structure, one B,X, layer, 68, has B and X components interchanging
places relative to another layer, 67. These layers are not identical, but
isomeric. They will have different Fermi levels. One layer in the crystal will
be a donor relative to the other. Can you reason out which will be the donor,
which the acceptor layer? We will return to these molecules below.
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MORE THAN ONE ELECTRONIC UNIT IN
THE UNIT CELL. FOLDING BANDS

Do you remember the beautiful platinocyanide stack? It has not yet
exhausted its potential as a pedagogic tool. The oxidized platinocyanides ate
not eclipsed, 69a, but staggered, 69b. A polyene is not a simple linear
chain, 70a, but, of course, at least s-trans, zig-zag 70b. Or it could be s—cis,
70c. Obviously, there will be still other feasible arrangements; indeed,
nature always seems to find one we haven't thought of.

In 69a and 70a, the unit cell contains one basic electronic unit,
PtH,;*~, a CH group. In 69b and 70b, the unit is doubled, approximately so
in unit cell dimension, exactly so in chemical composition. In 70c, we have
four CH units per unit cell. A physicist might say that each is a case unto
itself. A chemist is likely to say that probably not much has changed on
doubling or quadrupling or multiplying by 17 the contents of a unit cell. If
the geometric distortions of the basic electronic unit that is being repeated
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are not large, it is likely that any electronic characteristics of that unit are
preserved.

. .
o SR - a o
a | - . |\\\‘ e I‘\\‘ l\o‘ I\o‘

T/ 7

69

70

The number of bands in a band structure is equal to the number of
molecular orbitals in the unit cell. So if the unit cell contains 17 rimes as
many atoms as the basic unit, it will contain 17 times as many bands. The
band structure may look messy. The chemist’s feeling that the 17-mer is a
small perturbation on the basic electronic unit can be used to simplify a
complex calculation. Let’s see how this goes, first for the polyene chain, then
for the PtHy?*~ polymer.

Conformation 70a, b, ¢ differ from each other not just in the number
of CH entities in the unit cell but also in their geometry. Let’s take these one
at a time. First prepare for the distortion from 70a to 70b by doubling the
unit cell. Then, subsequently, distort. This sequence of actions is indicated
in 71.

Suppose we construct the orbitals of 71b, the doubled unit cell
polymer, by the standard prescription: (1) get MOs in unit cell, (2) form
Bloch functions from them. Within the unit cell the MOs of the dimer are 7
and 7*, 72. Each of these spreads out into a band, that of the 7 “‘running
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up,’’ that of the 7* “‘running down,’”” 73. The orbitals are written out
explicitly at the zone boundaries. This allows one to see that the top of the 7
band and the bottom of the 7* band, both at k = w/2a, are precisely
degenerate. There is no bond alternation in this polyene (yet), and the two
orbitals may have been constructed in a different way, but they obviously
have the same nodal structure—one node every two centers.

-]

o] k—e  w/(2a)
73

If we now detach ourselves from this viewpoint and go back and
construct the orbitals of the one CH per unit cell linear chain 71a, we get 74.
The Brillouin zone in 71b (73) is half as long as it is here because the unit
cell is twice as long.
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At this point, we are hit by the realization that, of course, the orbitals
of these polymers are the same. The polymers are identical; it is only some
peculiar quirk that made us choose one CH unit as the unit cell in one case,
two CH units in the other. I have presented the two constructions
independently to make explicit the identity of the orbitals.

What we have is two ways of presenting the same orbitals. Band
structure 73, with two bands, is identical to 74, with one band. All that has
happened is that the band of the minimal polymer, one CH per unit cell,
has been “‘folded back’’ in 74. The process is shown in 75.56
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The process can be continued. If the unit cell is tripled, the band will
fold as in 76a. If it is quadrupled, we get 76b, and so on. However, the
point of all this is not just redundancy, seeing the same thing in different
ways. There are two important consequences or utilizations of this folding.
First, if a unit cell contains more than one electronic unit (and this happens
often), then a realization of that fact, and the attendant multiplication of
bands (remember 74 — 73 — 76a — 76b), allows a chemist to simplify the
analysis in his or her mind. The multiplicity of bands is a consequence of an
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enlargement of the unit cell. By reversing, in our minds in a model
calculation, the folding process by unfolding, we can go back to the most
fundamental electronic act—the true monomer.

e

0 k— w/a’

0O k—= w/a'
a' = 3a a'= 4a

76

To illustrate this point, let me show the band structure of the
staggered PtH;*~ chain, 69b. This is done in Fig. 35, left. There are twice as
many bands in this region as there are in the case of the eclipsed monomer
(the xy band is doubly degenerate). This is no surprise; the unit cell of the
staggered polymer is [PtH4?~ |,. But it's possible to understand Fig. 35 as a
small perturbation on the eclipsed polymer. Imagine the thought process
77a — b = ¢, i.c., doubling the unit cell in an eclipsed polymer and then
rotating every other unit by 45° around the z axis.

77
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Figure 35 The band structure of a staggered PtH;?~ stack (left), compared with
the folded-back band structure of an eclipsed stack, two PtH4?~ in a unit cell
(right).

To go from 77a to b is trivial, a simple folding back. The result is
shown at the right of Fig. 35. The two sides of the figure are nearly identical.
There is a small difference in the xy band, which is doubled, nondegenerate,
in the folded-back eclipsed polymer (right-hand side of Fig. 35), but
degenerate in the staggered polymer. What happened here could be stated
in two ways, both the consequence of the fact that a real rotation intervenes
between 77b and ¢. From a group theoretical point of view, the staggered
polymer has a new, higher symmetry element, an eightfold rotation-
reflection axis. Higher symmetry means more degeneracies. It is easy to see
that the two combinations, 78, are degenerate.

Except for this minor wrinkle, the band structures of the folded-back
eclipsed polymer and the staggered one are extremely similar. That allows us
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to reverse the argument, to understand the staggered one in terms of the
cclipsed one plus the here minor perturbation of rotation of every second
unit.

The chemist's intuition is that the eclipsed and staggered polymers
can’t be very different—at least, not until the ligands start bumping into
cach other, and for such steric effects there can be, in turn, much further
intuition. The band structures may look different, since one polymer has
one, the other two basic electronic units in the cell. Chemically, however,
they should be similar, and we can sce this by returning from reciprocal
spacc to real space. Figure 36, which compares the DOS of the staggered and
eclipsed polymers, shows just how alike they are in their distribution of
levels.

There is another reason to feel at home with the folding process. The
folding-back construction may be a prerequisite to understanding a
chemically significant distortion of the polymer. To illustrate this point, we
return to the polyene 71. To go from 71a (the linear chain, one CH per unit
cell) to 71b (lincar chain, two CH's per unit cell) involves no distortion.
However, 71b is a way point, a preparation for a real distortion to the more
realistic “‘kinked’” chain, 71c. It behooves us to analyze the process stepwise,
71a — 71b — 7lc, if we are to understand the levels of 71c.

Of course, nothing much happens to the 7 system of the polymer on
going from 71a, b to ¢. If the nearest-neighbor distances are kept constant,
then the first real change is in the 1, 3 interactions. These are unlikely to be
large in a polyene, since the 7 overlap falls off very quickly past the bonding
region. We can estimate what will happen by writing down some explicit
points in the band, and deciding whether the 1, 3 interaction that is turned
on is stabilizing or destabilizing. This is done in 79. Of course, in a real CH
polymer this kinking distortion is significant, but that has nothing to do
with the 7 system, but rather is a result of strain.

However, there is another distortion that the polyene can and does
undergo. This is double-bond localization, an example of the very
important Peierls distortion, i.e., the solid state analogue of the Jahn-Teller
effect.
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Figure 36 A comparison of the DOS of staggered (left) and eclipsed (right)
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MAKING BONDS IN A CRYSTAL

When a chemist sees a molecular structure that contains several free
radicals, orbitals with unpaired electrons, his or her inclination is to predict
that such a structure will undergo a geometric change in which electrons will
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pair up, forming bonds. It is this reasoning, so obvious as to scem almost
subconscious, that is behind the chemist's intuition that a chain of hydrogen
atoms will collapse into a chain of hydrogen molecules.

If we translate that intuition into a molecular orbital picture, we have
80a, a bunch (here six) of radicals forming bonds. That process of bond
formation follows the H, paradigm, 80b, i.e., in the process of making each
bond a level goes down, a level goes up, and two electrons are stabilized by
occupying the lower, bonding orbital.
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In solid state physics, bond formation has not had center stage, as it
has in chemistry. The reasons for this are obvious: the most interesting
developments in solid state physics have involved metals and alloys, and in
these often close-packed or nearly close-packed substances, for the most part
localized, chemical viewpoints have seemed irrelevant. For another large
group of materials, ionic solids, it has also seemed useless to think of bonds.
My contention is that there is a range of bonding—including what are
usually called metallic, covalent, and ionic solids—and thar there is, in fact,
substantial overlap between seemingly divergent frameworks of bonding in
these three types of crystals. [ will take the view that the covalent approach is
central and look for bonds when others wouldn't expect them. One reason
for tolerating such foolhardiness might be that the other approaches
(metallic, ionic) have had their day—why not give this one a chance? A
second reason, one mentioned earlier, is that in thinking and talking about
bonds in the crystal, one makes a psychologically valuable connection to
molecular chemistry.

To return to our discussion of molecular and solid state bond
formation, let’s pursue the trivial chemical perspective of the beginning of
this section. The guiding principle, implicit in 80, is to maximize bonding.
There may be impediments to bonding. One such impediment might be
electron repulsion, another steric effects, i.e., the impossibility of two
radicals to reach within bonding distance of each other. Obviously, the
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stable state is a compromise; some bonding may have to be weakened to
strengthen some other bonding. But, in general, a system will distort so as to
make bonds out of radical sites. Or, to translate this into the language of
densities of states, maximizing bonding in the solid state is connected to
lowering the DOS at the Fermi level, moving bonding states to lower energy
and antibonding ones to high energy.

THE PEIERLS DISTORTION

In considerations of the solid state, a natural starting point is high
symmetry—a linear chain, a cubic or close-packed three-dimensional lattice.
The orbitals of the highly symmetrical, idealized structures are easy to
obtain, but they do not correspond to situations of maximum bonding.
These are less symmetrical deformations of the simplest, archetype structure.

The chemist’s experience is usually the reverse, beginning from
localized structures. However, there is one piece of experience we have that
matches the thinking of the solid state physicist. This is the Jahn-Teller
effect,” and it’s worthwhile to show how it works by a simple example.

The Hiickel 7 MOs of a square planar cyclobutadiene are well known.
They are the one below two below one set shown in 81. We have a typical
Jahn-Teller situation, i.e., two electrons in a degenerate orbital. (Of course,
we need worry about the various states that arise from this occupation, and
the Jahn-Teller theorem really applies to only one.®’) The Jahn-Teller
theorem says that such a situation necessitates a large interaction of
vibrational and electronic motion. It states that there must be at least one
normal mode of vibration that will break the degeneracy and lower the
energy of the system (and, of course, lower its symmetry). It even specifies
which vibrations would accomplish this.
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In the case at hand, the most effective normal mode is illustrated in
82. It lowers the symmetry from Dy, to Dy, and, to use chemical language,
localizes double bonds.

The orbital workings of this Jahn-Teller distortion are easy to see. In
83, V¥, is stabilized: the 1-2, 3-4 interactions that were bonding in the
square are increased; the 1-4, 2-3 interactions that were antibonding are
decreased by the deformation. The reverse is true for ¥;—it is destabilized
by the distortion at right. If we follow the opposite phase of the vibration, to
the left in 82 or 83, ¥; is stabilized, ¥, destabilized.
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The essence of the Jahn-Teller theorem is revealed here: a symmetry-
lowering deformation breaks an orbital degeneracy, stabilizing one orbital,
destabilizing another. Note the phenomenological correspondence to 80 in
the previous section.

One doesn't need a real degeneracy to benefit from this effect.
Consider a nondegenerate two-level system, 84, with the two levels of
different symmetry (here labeled A, B) in one geometry. If a vibration
lowers the symmetry so that these two levels transform as the same
irreducible representation, call it C, then they willdnteract, mix, and repel
each other. For two electrons, the system will be stabilized. The technical
name of this effect is a second order Jahn-Teller deformation.

The essence of the first or second order Jahn-Teller effect is that a
high-symmetry geometry generates a real or near degeneracy, which can be
broken with stabilization by a symmetry-lowering deformation. Note a
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further point: the level degeneracy is not enough by itself—one needs the
right electron count. The cyclobutadiene (or any square) situation of 83 will
be stabilized by a Dy, deformation for 3, 4, or 5 electrons, but not for 2 or 6

(54%*).
/
.

We can apply this framework to the solid. There is degeneracy and
near degeneracy for any partially filled band. The degeneracy is that already
mentioned, since E(k) = E(— k) for any k in the zone. The near degeneracy
is, of course, for k's just above or just below the specified Fermi level. For
any such partially filled band there is available, in principle, a deformation
that will lower the energy of the system. In the jargon of the trade, one says
that the partial filling leads to an electron-phonon coupling that opens up a
gap just at the Fermi level. This is the Peierls distortion,®® the solid state
counterpart of the Jahn-Teller effect.

Let's see how this works on a chain of hydrogen atoms (or a polyene).
The original chain has one orbital per unit cell, 85a, and an associated
simple band. We prepare it for deformation by doubling the unit cell, 85b.
The band is typically folded. The Fermi level is halfway up the band; the
band has room for two electrons per orbital, but for H or CH we have one
electron per orbital.
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The phonon or lattice vibration mode that couples most effectively
with the electronic motions is the symmetrical pairing vibration, 86. Let’s
examine what it does to typical orbitals at the bottom, middle (Fermi level),
and top of the band, 87. At the bottom and top of the band nothing
happens. What is gained (lost) in increased 1-2, 34, 5-6, etc., bonding
(antibonding) is lost (gained) in decreased 2-3, 4-5, 6-7 bonding
(antibonding). But in the middle of the band, at the Fermi level, the effects
are dramatic. One of the degenerate levels there is stabilized by the
distortion, the other destabilized. Note the phenomenological similarity to
what happened for cyclobutadiene.
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The action does not just take place at the Fermi level, but in a second
order way the stabilization ‘‘penetrates’’ into the zone. It does fall off with
k, a consequence of the way perturbation theory works. A schematic
representation of what happens is shown in 88. A net stabilization of the
system occurs for any Fermi level, but obviously it is maximal for the half-
filled band, and it is at that € that the band gap is opened up. If we were
to summarize what happens in block form, we'd get 89. Note the
resemblance to 80.
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The polyene case (today it would be called polyacetylene) is especially
interesting, for some years ago it occasioned a great deal of discussion.
Would an infinite polyene localize, 90? Eventually, Salem and Longuet-
Higgins demonstrated that it would. ® Polyacetylenes are an exciting field of
modern research. ™ Pure polyacetylenc is not a conductor. When it is doped,
cither partially filling the upper band in 89 or emptying the lower, it
becomes a supetb conductor.
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There are many beautiful intricacies of the first and second order and
low- or high-spin Peierls distortion, and for these the reader is referred to the
very accessible review by Whangbo. 3

The Peierls distortion plays a crucial role in determining the structure
of solids in general. The one-dimensional pairing distortion is only one
simple example of its workings. Let's move up in dimensionality.

The Peierls Distortion 97

One ubiquirous ternary structure is that of PbFCl (Z:SiS, BiOClI,
Co,Sb, Fe,As). 167 We'll call it MAB here because in the phases of interest
to us the first element is often a transition metal and the other components,
A and B, are often main group elements. Diagram 91 shows one view of this
structure, 92 another.

In the structure we see two associated square nets of M and B atoms,
separated by a square net layer of A’s. The A layer is twice as dense as the
others, hence the MAB stoichiometry. Most interesting, from a Zintl
viewpoint, is a consequence of that A layer density, a short A- -+ A contact,
typically 2.5 A for Si. This is definitely in the range of some bonding. There
are no short B- - *B contacts.

Some compounds in this series in fact retain this structure. Others
distort, and it is easy to see why. Take GdPS. If we assign normal oxidation
states of Gd?* and S?~, we come to a formal charge of P~ on the dense-
packed P~ net. From a Zintl viewpoint, P~ is like S and so should form two
bonds per P. This is exactly what it does. The GdPS structure’® is shown in
93, which is drawn after the beautiful representation of Hulliger et al.’?
Note the P-P cis chains in this elegant structure.




