Coordination Chemistry lli:
Tanabe-Sugano Diagrams
and Charge Transfer

Chapter 11

extra material (to finish Chapter 11)



Symmetry Labels for Configurations

Free ion terms split into states in the ligand field, according to symmetry:

TABLE 11.6 Splitting of Free-lon Terms in Octahedral Symmetry

Term Irreducible Representations
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The state labels also indicate the degeneracy of the electron configuration:
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erate asymmetrically
occupied state. s

Designates a doubly
degenerate asymmetri-

cally occupied state. e
Designate a nondegen-
erate state. Each set of
levels in an A or B state is
[ ] L ] [ ]

symmetrically occupied.




d’ Tanabe-Sugano Diagram

Complexes with d*-d’ 120
electron counts are
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Sample Problem, [Co(NH,)]**

[Co(NH;)¢]** has A, =10,100 cm~" and B = 920 cm~'. How many
electronic absorptions do you expect for the complex and at what
energies?

To solve this problem we first need to determine the d-electron count for the [Co(NH3)s]?*
complex.
2t _6NH; =
[CO(NH3)6] >[CoT

So we have cobalt(ll). Since cobalt is in the ninth column of the Periodic Table, it must be
a d’” complex so we can use the d’ Tanabe-Sugano diagram from the last slide.

Next we need to find A /B:

A, 10,100-cm™ .
B 920-cm™




Sample Problem, [Co(NH,)]**

We have d7 [Co(NH.) 2+ 120
with A /B =11
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Sample Problem, [Co(NH,)]**

We have d7 [Co(NH,)g2+ 120
with A/B =11
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Sample Problem, [Co(NH,)]**

We have d7 [Co(NH,)g2+ 120
with A/B =11

105
So we expect three 00
absorptions in the UV-vis
spectrum.
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Simplified Tanabe-Sugano Diagrams
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Spectra of First-Row HS [M(H,0).]"* Complexes
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Jahn-Teller Effect in Spectroscopy

Frontier MO diagram
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There should only be one d—d
transition, why is there a split in the
absorption band at 900 nm?

- Jahn-Teller Theorem: complexes with unequal occupation of
degenerate orbitals will distort to lower their energy

degenerate electronic states occur when a degenerate orbital set (t,, or e) is partially filled with
electrons (not half-filled)

partially occupied e, orbitals (M—L 0*) lead to more pronounced distortions than partially-occupied t,,
orbitals (non-bonding)

the most common distortion is tetragonal, but trigonal distortions are also possible



Jahn-Teller Effect in Spectroscopy
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Tetrahedral Complexes

No inversion center = Laporte selection rule does not apply - more
intense absorptions than in octahedral complexes

Hole Formalism: since the splitting of the d-orbitals is opposite in
tetrahedral and octahedral complexes, tetrahedral configurations with
n empty orbitals (n “holes”) have the same symmetry as d" octahedral
configurations:

P Hole
Pyt Tf,ﬁ

4 T,

Octahedral Tetrahedral

As a result, we can use octahedral d'%-" T-S diagrams to describe d"
tetrahedral complexes. For example, d8 looks like d? octahedral, d”’
looks like d3, etc.



Charge Transfer Transitions

In addition to transitions between d-orbitals, transitions between
ligand-based orbitals and metal d-orbitals are possible.

- called charge transfer transitions since an electron is transferred
from the metal to the ligand or vice versa

- very intense transitions since they are Laporte and spin allowed
(€ ~50,000 compared to <20 L mol-' cm-! for d-d transitions)

- energies often depends strongly on solvent (solvatochromic) since
the charge transfer changes the dipole moment of the complex

 this can be used to distinguish between charge transfer bands
and d-d transitions

permanganate is intensely T) ) »
purple due to CT from O 2p ‘V,Mh:-;r.:o
to Mn”* d-orbital O "\-0 |




Charge Transfer Transitions

1. metal to ligand CT (MLCT)

—\____ - higher energy

ligand ©* orbitals

Metal to Ligand Charge Transfer L I i g a n d red u ce d

O A S o (MLCT)
d® uncoordinated metal
 metal oxidized
ﬂ L 12g

octahedral complex

2. ligand to metal CT (LMCT)
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3. intraligand CT: involves electron transfer within a ligand or between
ligands; any energy.



Application of CT: Dye-Sensitized Solar Cells

A dye-sensitized solar cell uses an MLCT dye
adsorbed on a high surface area TiO,

nanoparticle film to absorb sunlight and
produce electricity.

Dye-Sensitized Solar Cells
- Forward Processes
- Reverse Processes
© The Photochemistry Portal
photochemistry.wordpress.com




Application of CT: Dye-Sensitized Solar Cells

Sensitizing Dye

Titania Nanoparticles

Chemical Structure of N3 Dye

20 nm Titania nanoparticles

Electrolyte
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Application of CT: Dye-Sensitized Solar Cells
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Application of CT: Dye-Sensitized Solar Cells
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Incident Photon to Current Efficiency

tri(cyanato)-2.22-terpyridyl-4,44-tricarboxylate)Ru(ll)

M.K. Nazeeruddin et al., J. Am. Chem.Soc. 123, 1613, (2001)
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L= 44-COOH-2.2-bipyridine
L'=44'4"-CO0OH-22"6"2"-terpyridine



Application of CT: Dye-Sensitized Solar Cells

HOMO LUMO S B -
TiO, surface TiO, surface AN W
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A. Hagfeldt, M. Gritzel, Acc. Chem. Res. 2000, 33, 2679-27

HOMO localized on electrolyte side, far from TiO, surface.
LUMO localized on anchoring ligands, next to TiO, surface.
- rapid electron transfer into TiO,



Fin

Good luck on the final, have a great break,
and see you around campus!



