Contact
 

Resources
 

Publications
 

People
 

Research
 

Home
 
Publications 
 
 
 

2010+ (Irvine)

46.

45. An inversion layer at the surface of n-type iron pyrite.
     Limpinsel, M., Farhi, N., Berry, N., Lindemuth, J., Perkins, C. L., Lin, Q., Law, M. Energy & Environ. Sci., Advance Article. (2014). pdf

44. Phonons do not assist carrier multiplication in PbSe quantum dot solids.
     Cate, S., Liu, Y., Schins, J. M., Law, M., Siebbeles, L. D. A. J. Phys. Chem. Lett., 4, 3257-3262 (2013). pdf

43. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition.
     Cate, S., Liu, Y., Sandeep, C. S. S., Kinge, S., Houtepen, A. J., Savenije, T. J., Schins, J. M., Law, M., Siebbeles, L. D. A. J. Phys. Chem. Lett., 4, 1766-1770
     (2013). pdf

42. High charge carrier mobility enables exploitation of carrier multiplication in quantum dot films.
     Sandeep, C. S. S., Cate, S., Schins, J. M., Savenije, T. J., Liu, Y., Law, M., Kinge, S., Houtepen, A. J., Siebbeles, L. D. A. Nature Comm., 4, Article 2360 (2013). pdf

41. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors.
     Otto, T., Miller, C., Tolentino, J., Liu, Y., Law, M., Yu, D. Nano Letters, 13, 3463-3469 (2013). pdf

40. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1.
     Liu, Y., Tolentino, J., Gibbs, M., Ihly, R., Perkins, C. L., Liu, Y., Crawford, N., Hemminger, J. C., Law, M. Nano Letters, 13, 1578-1587 (2013). pdf

39. Iron pyrite thin films synthesized from an Fe(acac)3 ink.
     Seefeld, S., Limpinsel, M., Liu, Y., Farhi, N., Zhang, Y. N., Berry, N., Kwon, Y. J., Perkins, C. L., Hemminger, J. C., Wu, R. Q., Law, M. JACS, 135, 4412-4424 (2013). pdf

38. Pseudodielectric function and critical point energies of iron pyrite.
     Choi, S. G., Hu, J., Abdallah, L. S., Limpinsel, M., Zhang, Y. N., Zollner, S., Wu, R. Q., Law, M. Physical Review B, 86, 115207 (2012). pdf

37. Increasing the band gap of iron pyrite by alloying with oxygen.
     Hu, J., Zhang, Y. N., Law, M., Wu, R. Q. JACS, 134, 13216-13219 (2012). pdf

36. Atmospheric-pressure chemical vapor deposition of iron pyrite thin films.
     Berry, N., Cheng, M., Perkins, C. L., Limpinsel, M., Hemminger, J. C., Law, M. Advanced Energy Materials, 2, 1124-1135 (2012). pdf

35. First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite.
     Hu, J., Zhang, Y. N., Law, M., Wu, R. Q. Physical Review B, 85, 085203 (2012). pdf

34. The effect of surface stoichiometry on the band gap of the pyrite FeS2(100) surface.
     Zhang, Y. N., Hu, J., Law, M., Wu, R. Q. Physical Review B, 85, 085314 (2012). pdf

33. The photothermal stability of PbS quantum dot solids.
     Ihly, R., Tolentino, J., Liu, Y., Gibbs, M., Law, M. ACS Nano, 5, 8175-8186 (2011). pdf

32. Robust, functional nanocrystal solids by infilling with atomic layer deposition.
     Liu, Y., Gibbs, M., Perkins, C. L., Zarghami, M. H., Bustamante, Jr., J., Law, M. Nano Letters, 11, 5349-5355 (2011). pdf

31. Colloidal iron pyrite (FeS2) nanocrystal inks for thin film photovoltaics.
     Puthussery, J., Seefeld, S., Berry, N., Gibbs, M., Law, M. JACS, 133, 716-719 (2011). pdf

30. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells.
     Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., Johnson, J. C. Chemical Reviews, 110, 6873-6890 (2010). pdf

29. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids.
     Liu, Y., Gibbs, M., Puthussery, J., Gaik, S., Ihly, R., Hillhouse, H. W., Law, M. Nano Letters, 10, 1960-1969 (2010). pdf

28. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
     Zarghami, M. H., Liu, Y., Gibbs, M., Gebremichael, E., Webster, C., Law, M. ACS Nano, 4, 2475-2485 (2010). pdf


2008-2009 (NREL)

27. Variations in the quantum efficiency of multiple exciton generation for a series of chemically-treated PbSe nanocrystal films.
     Beard, M. C., Midgett, A. G., Law, M., Semonin, O. E., Ellingson, R. J., Nozik, A. J. Nano Letters 9, 836-845 (2009).
pdf

26. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model.
     Law, M., Beard, M. C.,Choi, S., Luther, J. M., Hanna, M. C., Nozik, A. J. Nano Letters 8, 3904-3910 (2008). pdf

25.
Schottky solar cells based on colloidal nanocrystal films.
     Luther, J. M., Law, M., Song, Q., Reese, M. O., Beard, M. C.,Ellingson, R. C., Nozik, A. J. Nano Letters 8, 3488-3492 (2008). pdf

24. Structural, optical and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. 
     Law, M., Luther, J. M., Song, Q., Hughes, B. K., Perkins, C. L., Nozik, A. J. Journal of the American Chemical Society, 130, 5974-5985 (2008). pdf

23. Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. 
     Law, M., Luther, J. M., Song, Q., Beard, M. C., Nozik, A. J. ACS Nano, 2, 271-280 (2008).
pdf

22. Multiple exciton generation in films of electronically coupled PbSe quantum dots.
     Luther, J. M., Beard, M. C., Song, Q., Law, M., Ellingson, R. J., Nozik, A. J. Nano Letters 7, 1779-1784 (2007).
pdf

2002-2007 (Berkeley)

21. ZnO-TiO2 core-shell nanorod/P3HT solar cells.
     Greene, L. E., Law, M., Yuhas, B. D., Yang, P. Journal of Physical Chemistry C 111, 18451-18456 (2007).

20. Multi-functional nanowire evanescent wave optical sensors.
     Sirbuly, D. J., Tao, A., Law, M., Fan, R., Yang, P. Advanced Materials 19, 61-66 (2007). pdf

19. Chemical sensing with nanowires using electrical and optical detection. 
     Law, M., Sirbuly, D. J., Yang, P. International Journal of Nanotechnology 4, 252-262 (2007).

18. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
     Law, M., Radenovic, A., Greene, L. E., Kuykendall, T., Liphardt, J., Yang, P. Journal of Physical Chemistry B 110, 22652-22663 (2006). pdf

17. Solution-grown ZnO nanowires.
     Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D., Yang, P. Inorganic Chemistry 45, 7535-7543 (2006).

16. Semiconductor nanowires for subwavelength photonics integration.
     Sirbuly, D. J., Law, M., Yan, H., Yang, P. Journal of Physical Chemistry B 109, 15190-15213 (2005).

15. General route to vertical ZnO nanowire arrays using textured ZnO seeds.
     Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G., Yang, P. Nano Letters 5, 1231-1236 (2005). pdf

14. Thermally driven interfacial dynamics of metal/oxide bilayer nanoribbons.
      Law, M., Zhang, X.-F., Yu, R., Kuykendall, T., Yang, P. Small 1, 858-865 (2005).

13. Nanowire dye-sensitized solar cells.
     Law, M., Greene, L. E., Johnson, J. C., Saykally, R. J., Yang, P. Nature Materials 4, 455-459 (2005). pdf

12. Optical routing and sensing with nanowire assemblies.
     Law, M., Sirbuly, D. J., Pauzauskie, P., Yan, H., Maslov, A. V., Knutsen, K., Ning, C.-Z., Saykally, R. J., Yang, P. The Proceedings of the National Academy of Sciences,
     USA
102, 7800-7805 (2005). pdf

11. ZnO nanowire transistors. Goldberger, J., Sirbuly, D. J., Law, M., Yang, P. Journal of Physical Chemistry B 109, 89-14 (2005).

10. Nanoribbon waveguides for subwavelength photonics integration.
     Law, M., Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J., Yang, P. Science 305, 1269-1273 (2004). pdf

9. Semiconductor nanowires and nanotubes. Law, M., Goldberger, J., Yang, P. Annual Review of Materials Research 34, 83-122 (2004).

8. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers.
    Johnson, J. C., Knutsen, K. P., Yan, H., Law, M., Zhang, Y., Yang, P., Saykally, R. J.
Nano Letters 4, 197-204 (2004).

7. ZnO nanoribbon microcavity lasers.
    Yan, H., Johnson, J. C., Law, M., He, R., Knutsen, K. P., McKinney, J. R., Pham, J., Saykally, R. J., Yang, P. Advanced Materials 15, 1907-1911 (2003).

6. Low-temperature wafer-scale production of ZnO nanowire arrays.
    Law, M., Greene, L. E., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., Yang, P. Angewandte Chemie, International Edition 42, 3031-3034 (2003). pdf

5. SnO2 nanoribbons as NO2 sensors: insights from first principles calculations.
    Maiti, A., Rodriguez, J. A., Law, M., Kung, P., McKinney, J. R., Yang, P. Nano Letters 3, 1025-1028 (2003).

4. Dendritic nanowire ultraviolet laser array.
    Yan, H., He, R., Johnson, J. C., Law, M., Saykally, R. J., Yang, P. Journal of the American Chemical Society 125, 4728-4729 (2003).

3. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature.
    Law, M., Kind, H., Messer, B., Kim, F., Yang, P. Angewandte Chemie, International Edition 41, 2405-2408 (2002). pdf

2. Functional bimorph composite nanotapes. Law, M., He, R., Messer, B., Law, M., Yang, P. Nano Letters 2, 1109-1112 (2002).

1. Nanowire ultraviolet photodetectors and optical switches. Kind, H., Yan, H., Messer, B., Law, M., Yang, P. Advanced Materials 14, 158-160 (2002).    
copyright 2013 Matt Law