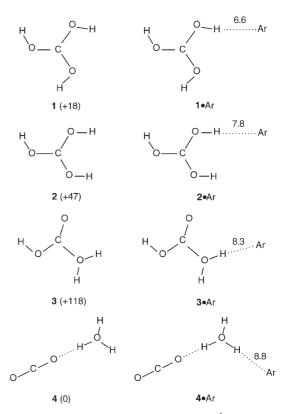
Carbenium Ions

DOI: 10.1002/ange.200700750

IR Spectra of Protonated Carbonic Acid and Its Isomeric H₃O⁺·CO₂ Complex**

Horia-Sorin Andrei, Sergey A. Nizkorodov, and Otto Dopfer*


Carbonic acid, H_2CO_3 , and its isomeric weakly bound $H_2O\cdot CO_2$ complex are short-lived intermediates in the hydrolysis of CO_2 , a process of fundamental importance in geochemistry and biology. Whereas $H_2O\cdot CO_2$ has been characterized by spectroscopy, there is only indirect experimental evidence for the existence of H_2CO_3 in the gas phase. Theoretical calculations predict that isolated H_2CO_3 should be stable but that it decomposes into H_2O and CO_2 in the presence of water. There have been several unsuccessful attempts to generate and characterize gas-phase H_2CO_3 by heating solid $H_2CO_3^{[3]}$ or NH_4HCO_3 . Herein we describe the properties of gas-phase protonated H_2CO_3 and report the first spectroscopic identification of the fundamental $C(OH)_3^+$ carbocation and its $H_3O^+\cdot CO_2$ isomer by argon-tagging photodissociation spectroscopy.

Quantum chemical calculations demonstrate that there are several isomers on the $[C,H_3,O_3]^+$ potential-energy surface (1–4, Figure 1). The most stable structure corresponds to the hydrogen-bonded $H_3O^+\cdot CO_2$ complex (4, $E_{rel}=0$). The attraction is dominated by charge-induced dipole and charge–quadrupole interaction leading to nearly linear hydrogen bonding. The predicted dissociation energy of 62 kJ mol⁻¹ is in good agreement with the binding enthalpy of 64 kJ mol⁻¹ measured by high-pressure mass spectrometry. The prediction of the

Protonation of H_2CO_3 at the carbonyl group results in two planar isomers of the trihydroxycarbenium ion, *anti*- and *syn*- $C(OH)_3^+$. The *anti* structure (**1**, C_{3h} , $E_{rel} = 18 \text{ kJ mol}^{-1}$) is separated by a barrier of 50 kJ mol⁻¹ from the less stable *syn* structure (**2**, C_s , $E_{rel} = 47 \text{ kJ mol}^{-1}$). Conversion between the $C(OH)_3^+$ isomers and **4** is suppressed by a high isomerization barrier (214 kJ mol⁻¹). In the NMR, IR, Raman, and X-ray crystallography spectra of $C(OH)_3^+$ in superacid solutions or corresponding salts only the *anti* isomer was observed. [18,19] Finally, a fourth nonplanar $[C,H_3,O_3]^+$ isomer can be generated by protonation of H_2CO_3 at a hydroxyl group (**3**, C_1 ,

 [*] Dipl.-Phys. H.-S. Andrei, Prof. Dr. O. Dopfer Institut für Optik und Atomare Physik Technische Universität Berlin Hardenbergstrasse 36, 10623 Berlin (Germany)
Fax: (+49) 30-3142-3018
E-mail: dopfer@physik.tu-berlin.de
Homepage: http://www.physik.tu-berlin.de/~dopfer/
Prof. Dr. S. A. Nizkorodov
Department of Chemistry
University of California
Irvine, CA 92697 (USA)

[**] This study was supported by the Deutsche Forschungsgemeinschaft (DO 729/2), the Fonds der Chemischen Industrie, and the Bavaria–California Technology Center (BaCaTeC).

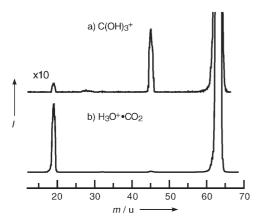


Figure 1. Structures, relative energies (left, in kJ mol $^{-1}$), and intermolecular binding energies (right, in kJ mol $^{-1}$) of various isomers of $[C,H_3,O_3]^+$ and $[C,H_3,O_3]^+$.Ar calculated at the B3LYP/6-311G** level. The positive charge has been omitted in each structure for clarity.

 $E_{\rm rel} = 118 \text{ kJ mol}^{-1}$), leading to a hitherto undetected complex of H₂O and OCOH^{+[14]} with a binding energy of 105 kJ mol⁻¹.

Electron ionization (EI) of diethyl carbonate is known to selectively produce $C(OH)_3^+$ ions through consecutive elimination of a vinyl radical and ethene. They could be distinguished from $H_3O^+\cdot CO_2$ complexes made by EI of a H_2O/CO_2 mixture by their different fragmentation patterns in metastable decay (MD) and high-energy (8 keV) collision-induced dissociation (CID). This work takes advantage of low-energy (8 eV) CID spectra for the assignments of isomers. Specifically, the major collision fragments of $C(OH)_3^+$ and $H_3O^+\cdot CO_2$ correspond to $OCOH^+$ and H_3O^+ , respectively (Figure 2). Experimental conditions can be optimized to favor exclusive production of either $C(OH)_3^+$ or $H_3O^+\cdot CO_2$ isomers.

Although mass spectrometry experiments can distinguish between different isomers, they do not provide direct structural information. Therefore, the highly sensitive

Figure 2. CID spectra of mass-selected $[C,H_3,O_3]^+$ ions (63 u) prepared by EI of diethyl carbonate (a) and by EI of a H_2O/CO_2 mixture (b). Major fragment ions correspond to H_3O^+ (19 u) and OCOH $^+$ (45 u). Both spectra are normalized with respect to the parent-ion intensity. Spectrum (a) is vertically expanded by a factor of 10.

method of single-photon IR photodissociation (IRPD) spectroscopy of mass-selected ions^[15] was employed here to determine the structures of the [C,H₃,O₃]⁺ ions and to directly probe the acidities of their O–H bonds. IRPD spectra of cold ions can be recorded with this approach only if the IR photon energy ($E=42~\rm kJ\,mol^{-1}~for~\nu_{IR}=3500~cm^{-1}$) surpasses the lowest dissociation energy of the ion. As the calculated dissociation energies of all four [C,H₃,O₃]⁺ isomers exceed typical IR photon energies, Ar atoms are attached to the ions to facilitate resonant single-photon fragmentation [Eq. (1); Ar tagging]. ^[20,21]

$$[C,H_3,O_3]^+ \cdot Ar + h\nu_{IR} \rightarrow [C,H_3,O_3]^+ + Ar$$
 (1)

To investigate the effect of Ar on the spectroscopic properties of [C,H₃,O₃]⁺, the minimum-energy structures and IR spectra of the relevant [C,H₃,O₃]⁺·Ar isomers were calculated. For all of them, Ar forms a nearly linear hydrogen bond to one of the available acidic OH protons (Figure 1) with comparable binding energies (6.6–8.8 kJ mol⁻¹). The major effects of the complexation on the $[C,H_3,O_3]^+$ ions are an elongation of the O-H donor bond, a reduction in the wavenumber and an enhancement in the IR intensity of the corresponding OH stretch vibration, and shifts and splittings arising from reducing the symmetry. Figure 3 compares computed IR spectra of 1–4 with those of their Ar complexes in the OH stretch range. The IR spectra of 1-4 show pronounced differences in the positions and intensities of the OH stretch bands, and these differences are amplified by Ar complexation, thus making IRPD spectroscopy a suitable tool for identifying the [C,H₃,O₃]⁺ isomers through their Ar complexes.

The IRPD spectrum of $[C,H_3,O_3]^+$ ·Ar generated by EI of the H_2O/CO_2 /Ar mixture is shown in Figure 3 a. Comparison with the calculated stick spectra of the $[C,H_3,O_3]^+$ ·Ar isomers immediately suggests that **4**·Ar is the dominant carrier for these bands. Bands A and B observed at 3566 and 3343 cm⁻¹ can be assigned to the free and Ar-bound OH stretch vibrations predicted at 3545 and 3319 cm⁻¹, respectively.

Figure 3. IR absorption stick spectra of $[C,H_3,O_3]^+$ and $[C,H_3,O_3]^+$ ·Ar isomers calculated at the B3LYP/6-311G** level (c–j; scaling factor of 0.95) compared to experimental IRPD spectra of $[C,H_3,O_3]^+$ ·Ar complexes prepared from the Ar/H₂O/CO₂ mixture (a) and the Ar/diethyl carbonate mixture (b).

The nearly symmetric shape of band A and blue shading of band B are consistent with the assignments to free and hydrogen-bonded OH stretch modes. The CO₂-bonded OH stretch mode of 4·Ar is predicted to occur outside the scanned range (at 2869 cm⁻¹). The two much weaker bands D and C near 3237 and 3493 cm⁻¹ in the IRPD spectrum may tentatively be attributed to the Ar-bound and free OH stretch modes of 3·Ar, which are predicted to be near 3279 and 3511 cm⁻¹, respectively. It is conceivable that a small amount of 3 may be produced in the ion source, because both H₂O and OCOH⁺ are present in the H₂O/CO₂/Ar ion-source plasma.

Comparison of the IRPD spectrum of $[C,H_3,O_3]^+\cdot Ar$ generated by EI of the diethyl carbonate/Ar mixture shown in Figure 3b with the simulated spectra clearly demonstrates that $\mathbf{1}\cdot Ar$ is the primary absorber. The bands F and E at 3343 and 3519 cm⁻¹ are attributed to the Ar-bound and free OH stretch modes of $\mathbf{1}\cdot Ar$, which are predicted to be at 3352 and 3508 cm⁻¹, respectively. The spectrum lacks any noticeable contributions from other $[C,H_3,O_3]^+\cdot Ar$ isomers, in particular from $\mathbf{2}\cdot Ar$. On the basis of the similar Ar binding energies and calculated IR intensities, $\mathbf{2}$ must be less abundant than $\mathbf{1}$ by at least one order of magnitude, in agreement with the predicted lower stability of the *syn* versus the *anti* structure of $C(OH)_3^+$. No features attributable to $\mathbf{3}\cdot Ar$ were observed in the experimental spectra, in agreement with the much higher energy of isomer $\mathbf{3}$.

The $v_{\rm OH}$ wavenumber in isolated *anti*-C(OH)₃⁺ can be estimated from the **1**·Ar spectrum to be about 3520 cm⁻¹ (band E, 3519 cm⁻¹) because the shifts and splittings induced by Ar complexation are predicted to be small for the free OH modes. In contrast, the $v_{\rm OH}$ absorptions of **1** in its salts with $[{\rm SbF_6}]^-$ (3457 and 3390 cm⁻¹) or $[{\rm AsF_6}]^-$ (3409 cm⁻¹)^[13] are

Zuschriften

strongly red-shifted, reflective of the large impact of the counterions on the O–H bonds. The $\nu_{\rm OH}$ wavenumber and its complexation shifts provide an indirect measure of the OH bond strength and the acidity of the OH protons, respectively. Comparison of the $\nu_{\rm OH}$ value of 1 (ca. 3520 cm⁻¹) with the $\nu_{\rm OH}$ value of H_3O^+ (av. 3499 cm⁻¹)^[22] demonstrates that the O-H bonds in 1 are slightly stronger and shorter than those in H₃O⁺ (d(O-H) = 0.9757 vs. 0.9797 Å). On the other hand, the O-H bonds in H_3O^+ are significantly more acidic than those in 1, leading to stronger and shorter hydrogen bonds with Ar (D_0 = 13.2 vs. 6.6 kJ mol^{-1} , d(H-Ar) = 2.086 vs. 2.275 Å) and correspondingly larger $\nu_{\rm OH}$ red shifts upon complexation. The latter observation is consistent with a proton affinity value for H₂CO₃ (predicted as 769 kJ mol⁻¹)^[14] that is larger than that for H₂O (691 kJ mol⁻¹).^[23] As expected, the O-H bonds in the cation 1 are much weaker than those in the isoelectronic neutral compound B(OH)₃ ($\nu_{OH} \approx 3520$ vs. 3705 cm⁻¹).^[24]

It is instructive to contrast the binding of Ar to **1** and to the simplest carbenium ion, CH_3^+ . IR spectra and calculations demonstrate that the positive charge in the CH_3^+ ion is localized on the C atom, and as a result, Ar binds to the vacant electrophilic $2p_z$ orbital of CH_3^+ , leading to a $C_{3\nu}$ -symmetrical structure of CH_3^+ ·Ar with a strong charge-transfer bond (binding energy 56.8 kJ mol⁻¹).^[25-28] The hydrogen-bonded CH_3^+ ·Ar structure has a far lower binding energy $(3.6 \text{ kJ mol}^{-1})$. In contrast, the IR spectra and calculations for $C(OH)_3^+$ ·Ar confirm previous conclusions^[18,19] that the charge in $C(OH)_3^+$ is largely delocalized, and as a result, the hydrogen-bonded complex is more stable $(6.6 \text{ kJ mol}^{-1})$ than the C-bound one $(0.8 \text{ kJ mol}^{-1})$.

The results presented herein characterize isomers of protonated carbonic acid and provide a glimpse of the properties of carbonic acid itself. Future research in this area will focus on studying protonated carbonic acid with variable degrees of solvation by Ar, CO₂, N₂, and most importantly, H₂O. Characterization of protonated carbonic acid with different degrees of solvation will improve our understanding of processes occurring during CO₂ hydrolysis and chemical reactions involving simple carbocations.

Experimental and Theoretical Methods

IRPD spectra of $[C,H_3,O_3]^+\cdot Ar$ complexes were recorded in a tandem quadrupole mass spectrometer (QMS1+2) coupled to an ion source and an octopole ion trap.^[25] The ion source combines a pulsed supersonic beam expansion with EI. For Ar complexes of $C(OH)_3^+$, the gas mixture was obtained by passing Ar at a pressure of p=7 bar through a reservoir filled with diethyl carbonate (T=300 K). For Ar complexes of $H_3O^+\cdot CO_2$, the gas mixture was Ar and CO_2 (ratio > 20:1) at p=3 bar passing over ice (T=260 K). The $[C,H_3,O_3]^+\cdot Ar$ ions were mass selected by QMS1 and irradiated in the octopole ion guide with a tunable IR laser pulse (ν_{IR}) generated by an optical parametric oscillator laser. Vibrational excitation led to the loss of Ar from $[C,H_3,O_3]^+\cdot Ar$ [Eq. (1)]. The resulting $[C,H_3,O_3]^+$ fragment ions were selected by QMS2 and monitored as a function of ν_{IR} to obtain

the IRPD spectrum. CID spectra of mass-selected $[C,H_3,O_3]^+$ ions with a laboratory kinetic energy of 8 eV were obtained by introducing air into the octopole region $(p=10^{-5}\,\mathrm{mbar})$. Quantum chemical calculations were carried out at the B3LYP/6-311G** level of theory. Minima were located on the potential-energy surface corrected for basis-set superposition error. Harmonic vibrational wavenumbers were scaled by a factor of 0.95 and all energies were corrected for harmonic zero-point energies.

Received: February 19, 2007 Published online: May 8, 2007

Keywords: carbenium ions · carbonic acid · IR spectroscopy · noncovalent interactions · protonation

- [1] R. Ludwig, A. Kornath, Angew. Chem. 2000, 112, 1479; Angew. Chem. Int. Ed. 2000, 39, 1421.
- [2] T. Loerting, C. Tautermann, R. T. Kroemer, I. Kohl, A. Hallbrucker, E. Mayer, K. R. Liedl, Angew. Chem. 2000, 112, 919; Angew. Chem. Int. Ed. 2000, 39, 891.
- [3] W. Hage, K. R. Liedl, A. Hallbrucker, E. Mayer, Science 1998, 279, 1332.
- [4] H. A. Al-Hosney, V. H. Grassian, J. Am. Chem. Soc. 2004, 126, 8068.
- [5] D. N. Silverman, S. Lindskog, Acc. Chem. Res. 1988, 21, 30.
- [6] K. I. Peterson, W. Klemperer, J. Chem. Phys. 1984, 80, 2439.
- [7] P. A. Block, M. D. Marshall, L. G. Pedersen, R. E. Miller, J. Chem. Phys. 1992, 96, 7321.
- [8] C. A. Wight, A. I. Boldyrev, J. Phys. Chem. 1995, 99, 12125.
- [9] M. T. Nguyen, G. Raspoet, L. G. Vanquickenborne, P. T. Van-Duijnen, J. Phys. Chem. A 1997, 101, 7379.
- [10] N. R. Jena, P. C. Mishra, Theor. Chem. Acc. 2005, 114, 189.
- [11] M. Lewis, R. Glaser, J. Phys. Chem. A 2003, 107, 6814.
- [12] J. K. Terlouw, C. B. Lebrilla, H. Schwarz, Angew. Chem. 1987, 99, 352; Angew. Chem. Int. Ed. Engl. 1987, 26, 354.
- [13] H. Egsgaard, L. Carlsen, J. Chem. Soc. Faraday Trans. 1 1989, 85, 3403.
- [14] P. Gerbaux, F. Turecek, J. Phys. Chem. A 2002, 106, 5938.
- [15] E. J. Bieske, O. Dopfer, Chem. Rev. 2000, 100, 3963.
- [16] D. Roth, O. Dopfer, Phys. Chem. Chem. Phys. 2002, 4, 4855.
- [17] K. Hiraoka, T. Shoda, K. Morise, S. Yamabe, E. Kawai, K. Hirao, J. Chem. Phys. 1986, 84, 2091.
- [18] G. A. Olah, A. M. White, J. Am. Chem. Soc. 1968, 90, 1884.
- [19] R. Minkwitz, S. Schneider, Angew. Chem. 1999, 111, 749; Angew. Chem. Int. Ed. 1999, 38, 714.
- [20] M. Okumura, L. I. Yeh, Y. T. Lee, J. Chem. Phys. 1985, 83, 3705.
- [21] N. Solcà, O. Dopfer, Angew. Chem. 2002, 114, 3781; Angew. Chem. Int. Ed. 2002, 41, 3628.
- [22] T. R. Huet, C. J. Pursell, W. C. Ho, B. M. Dinelli, T. Oka, J. Chem. Phys. 1992, 97, 5977.
- [23] E. P. L. Hunter, S. G. Lias, J. Phys. Chem. Ref. Data 1998, 27, 413.
- [24] T. R. Gilson, J. Chem. Soc. Dalton Trans. 1991, 2463.
- [25] O. Dopfer, Int. Rev. Phys. Chem. 2003, 22, 437.
- [26] R. V. Olkhov, S. A. Nizkorodov, O. Dopfer, J. Chem. Phys. 1998, 108, 10046.
- [27] K. Hiraoka, I. Kudaka, S. Yamabe, Chem. Phys. Lett. 1991, 178, 103.
- [28] R. W. Gora, S. Roszak, J. Leszczynski, J. Chem. Phys. 2001, 115, 771.