Supporting Information for Manuscript es-2008-01226w

The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

Adam P. Bateman¹, Maggie L. Walser^{1,†}, Yury Desyaterik², Julia Laskin³, Alexander Laskin², and Sergey A. Nizkorodov^{1,*}

¹Department of Chemistry, University of California, Irvine, Irvine, California 92617-2025

²Environmental Molecular Sciences Laboratory and ³Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352

* Corresponding author: 949-824-1262; nizkorod@uci.edu

[†]Current address: National Council for Science and the Environment, Washington, DC 20036

1. Sources and purity of chemicals used in this work	S2
2. Supporting figures	S2
3. Supporting tables	S4
4. Mass spectra of SOA extracted in d ₄ -methanol	S6
5. Assignment of ¹³ C peaks in mass spectra	S6

1. Sources and purity of chemicals used in this work

The following chemicals were acquired and used without further purification.

- *d*-limonene (98%, Acros Organics, Inc.)
- methanol (HPLC grade, Fisher Scientific, Inc.)
- d₃-methanol (99.8 atom% D, Sigma-Aldrich, Inc.)
- d₄-methanol (99.8 atom% D, Sigma-Aldrich, Inc.)
- acetonitrile (HPLC grade, Fisher Scientific, Inc.)
- d₃-acetonitrile (99.8 atom% D, Sigma-Aldrich, Inc.)
- cis-pinonic acid (98 %, Sigma-Aldrich, Inc.)
- succinic semialdehyde (4-oxobutanoic acid, 15% solution in water, Thermo-Fisher, Inc.)
- 2,5-dioxobicyclo[2.2.2]octane-1,4-dicarboxylic acid (>90 %, Maybridge Scientific, Inc.)

2. Supporting figures

Figure S1. Structures, acronyms (used throughout this paper), IUPAC names, and common names of test organic compounds used to investigate the rate and extent of solvent-analyte reactions.

Figure S2. Frequency of occurrence of selected $\Delta(m/z)$ differences between peak positions in *d*-limonene SOA positive ion mode mass spectra recorded in acetonitrile, methanol and d₃-methanol in m/z range of 150-500.

<u>Note</u>: As expected, $\Delta(m/z)$ values corresponding to the CH₃OH reactions (32.0262 and 46.0419 m/z) occur more frequently in methanol, and those corresponding to the CD₃OH reactions (17.0345, 35.0450, and 52.0794 m/z) are dominant in d₃-methanol spectra. All $\Delta(m/z)$ frequencies increase in methanol and d₃-methanol mass spectra because they contain more peaks than the acetonitrile mass spectrum. This explains why the observed frequencies for $\Delta(m/z) = 14.0156$ (CH₂ group) in methanol and d₃-methanol are somewhat higher than in acetonitrile. The presence of odd $\Delta(m/z)$ values that correspond to CD₃OH reactions in the acetonitrile and methanol based spectra can be explained by the interference from ¹³C peaks in all mass spectra, allowing for odd $\Delta(m/z)$ values from all spectra. In addition, this can result in double counting of peaks corresponding to compounds capable of solvent-analyte reactions.

3. Supporting tables

Table S1: Relative abundance of ESI MS peaks after 24 hours of storage in methanol in the presence of variable amounts of acetic acid (AA) normalized to the corresponding precursor peaks (e.g., $[M+Na]^+$ and $[M-H]^-$ the positive and negative ion modes, respectively).

	Acetal	Acetal	Hemiacetal	Hemiacetal	Ester
	Positive	Negative	Positive	Negative	Positive
	Mode	Mode	Mode	Mode	Mode
PA / No AA added	1.27×10^{-4}	3.40×10^{-4}	1.03×10^{-4}	5.65×10^{-5}	3.45×10^{-4}
PA / 16 µM AA	5.54×10^{-5}	3.38×10^{-4}	5.51×10^{-5}	1.57×10^{-5}	2.84×10^{-4}
PA / 1.6 mM AA	1.53×10^{-4}	2.26×10^{-3}	1.72×10^{-5}	2.31×10^{-5}	1.27×10^{-3}
PA / 16 mM AA	1.37×10^{-4}	2.03×10^{-3}	5.82×10^{-5}	3.66×10^{-5}	2.08×10^{-3}
DDA / No AA added	2.55×10^{-3}	6.89×10^{-5}	7.31×10^{-1}	1.24×10^{-3}	1.95×10^{-2}
DDA / 16 µM AA	3.00×10^{-3}	6.47×10^{-5}	7.12×10^{-1}	1.11×10^{-3}	1.77×10^{-2}
DDA / 1.6 mM AA	2.71×10^{-3}	6.32×10^{-5}	6.62×10^{-1}	1.19×10^{-3}	1.94×10^{-2}
DDA / 16 mM AA	2.65×10^{-3}	5.54×10^{-5}	6.81×10^{-1}	6.71×10^{-4}	1.89×10^{-2}
SS / No AA added	2.70×10^{-2}	9.80×10^{-5}	9.79	1.34×10^{-2}	5.55
SS / 16 µM AA	2.41×10^{-2}	1.31×10^{-4}	7.55	1.38×10^{-2}	5.71
SS / 1.6 mM AA	4.01×10^{-2}	4.68×10^{-4}	6.43	1.26×10^{-2}	5.51
SS / 16 mM AA	7.45×10^{-2}	9.76×10^{-4}	4.89	6.27×10^{-3}	4.94

<u>Note</u>: The relative concentrations cannot be obtained from this data set because of the unknown differences in ionization and detection efficiencies of reactants and products. Indeed, the product/reactant ratios obtained from the mass spectra recorded in the positive and negative mode are quite different (Table 1S). The detection sensitivity is especially affected when a carboxylic group is esterified; this strongly influences the ionization pathways in ESI by reducing the efficiency of deprotonation in the negative ion mode, and changing the affinity of the molecule to Na⁺ in the positive ion mode. As a result of the poor negative ion yield from esters (with the exception of the ester of dicarboxylic acid DDA), Table 1S only reports the positive ion product/reactant ratios for the esterification reactions.

Table S2: The largest peaks observed in the positive ion mode ESI mass spectrum of d-limonene SOA in acetonitrile, methanol, and d_3 -methanol. Relative abundance is given in parentheses next to m/z values in *italic*. Peak labeled "100" has the largest intensity in a given mass spectrum. The table includes hemiacetal peaks resulting from addition of one methanol or d_3 -methanol molecule to the precursor molecule. The corresponding neutrals are classified as aldehydes or ketones based on the relative abundance of the hemiacetal peak.

m/z (abundance) acetonitrile	m/z (abundance) methanol	m/z (abundance) d ₃ -methanol	Non-ionized composition	Likely classification
209.0785 (100)	209.0785 (54)	209.0784 (63)	$C_9H_{14}O_4$	Ketone
-	241.1047 (30)	- 244 1226 (16)		
-	-	244.1230 (10)		
207.0992 (88)	207.0992 (41)	207.0992 (50)	$C_{10}H_{16}O_{3}$	Aldehyde
-	239.1255 (100)	-		
-	-	242.1444 (100)		
222 0042 (04)	222,0042,(57)	222 0042 (64)	C. H. O.	Katana
-	225.0942(57) 255 1203 (10)	-	$C_{10}\Pi_{16}O_{4}$	Ketone
-	-	258.1391 (8)		
193.0835 (30)	193.0835 (29)	193.0835 (35)	$C_9H_{14}O_3$	Aldehyde
-	225.1098 (62)	-		
-	-	228.1286 (49)		
191 1043 (23)	191 1042 (11)	191 1043 (23)	$C_{10}H_{16}O_{2}$	Aldehvde
-	223.1305 (47)	-	01011002	
-	-	226.1494 (52)		
193.0835 (<i>30</i>) - - 191.1043 (<i>23</i>) -	193.0835 (29) 225.1098 (62) - 191.1042 (11) 223.1305 (47)	258.1391 (8) 193.0835 (35) 228.1286 (49) 191.1043 (23) 226.1494 (52)	C ₉ H ₁₄ O ₃ C ₁₀ H ₁₆ O ₂	Aldehyde

<u>Note</u>: All of these molecules definitively contain a carbonyl functional group based on the fact that they all produce hemiacetals. Furthermore, peaks at m/z 207.0992, 193.0835, and 191.1043 are accompanied by the corresponding hemiacetal peaks that are stronger than their precursors suggesting the presence of at least one aldehyde group in these molecules. This is consistent with our previous assignments of 191.1043 m/z peak to limononaldehyde (*Walser et al*, *PCCP*, **2008**, *10*, 1009-1022). On the contrary, peaks at 209.0785 and 223.0942 m/z have much weaker hemiacetal peaks, and likely correspond to ketones. This is consistent with assignments of these peaks to keto-limononic and 7OH-limononic acids, respectively (*Walser et al*, *PCCP*, **2008**, *10*, 1009-1022).

4. Mass spectra of SOA extracted in d₄-methanol

For SOA samples extracted into d_4 -methanol, peaks corresponding to addition of CD₃OD and CD₃OH to precursor ions are both visible. This is expected because of the facile isotopic exchange of the hydroxyl D-atom in CD₃OD with H-atoms from SOA constituents followed by reactions of SOA species with both CD₃OD and CD₃OH. Because mass spectra recorded in d_4 -methanol do not provide additional information compared to methanol- and d_3 -methanol-based mass spectra, their analysis is not presented in this manuscript.

5. Assignment of ¹³C peaks in mass spectra

Peaks with even nominal m/z values observed in acetonitrile and methanol based mass spectra were attributed to compounds containing one ¹³C atom. In d₃-methanol based mass spectra, compounds that reacted with d₃-methanol to form esters or hemiacetals also resulted in even m/z peaks. In most cases, the peaks attributed to formation of d₃-methanol adducts could be distinguished from the ¹³C peaks by their relative intensities, i.e., the relative intensity for ¹³C isotope substitution peaks can be predicted by the number of carbon atoms and the isotopic abundance of ¹³C. Most peaks attributed to d₃-methanol derivatives had relative intensities far greater than those expected for ¹³C peaks.

Figure 2S includes all $\Delta(m/z)$ values, even differences from compounds containing ¹³C atoms. Figure 3 of the manuscript includes all peaks present in acetonitrile-based mass spectra on the upper portion of the graph. The lower portion of the graph includes only peaks attributed to compounds that formed a hemiacetal adduct with either methanol or d₃-methanol.