SUPPORTING INFORMATION

Applications of high-resolution electrospray ionization mass spectrometry to measurements of average oxygen to carbon ratios in secondary organic aerosols

Adam P. Bateman,^a Julia Laskin,^b and Alexander Laskin,^c Sergey A. Nizkorodov^{a*} ^a Department of Chemistry, University of California, Irvine, Irvine, California 92617, USA. ^b Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

^c Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

* Corresponding author: Sergey Nizkorodov (<u>nizkorod@uci.edu</u>), Tel: +1-949-824-1262

Table S1. Number of ESI mass spectra collected for each sample for each ESI mode. The same number of ESI mass spectra were collected at each dilution for Mixtures A – F.

Mix A	2	
Mix B	2	
Mix C	2	
Mix D	2	
Mix E	2	
Mix F	2	
1 ppm Limonene SOA	2	
0.5 ppm Limonene SOA	2	
0.1 ppm Limonene SOA	6	
0.05 ppm Limonene SOA	5	
1 ppm Isoprene SOA	3	

Table S2. Adjusted parameters used for the determination of O/C ratio in the Analytical Procedure for Elemental Separation (APES) from HR-AMS-ToF data.¹ The ratios of ions were obtained from single runs, rather than an average over the entire sampling time, and verified at various times throughout the reaction period. A relative ionization efficiency (R.I.E.) for the HR-AMS-ToF data of 1.0 was used for water and R.I.E. of 1.4 was used for organics.

	$[(CO^+)_{org}:(CO_2^+)_{org}]_{frag}$	$(H_2O^+)_{org}:(CO_2^+)_{org}$	$(H_2O^+)_{org}:(OH^+)_{org}:(O^+)_{org}$
Mix A	0.95	0.46	100:25:4
Mix B	1.12	0.16	100:25:4
Mix C	0.73	0.17	100:25:4
Mix D	1.32	0.38	100:25:4
Mix E	1.66	0.50	100:25:4
Mix F	1.28	0.84	100:25:4
50 ppb Limonene SOA	2.70	0.49	100:25:4
25 ppb Limonene SOA	2.38	1.00	100:25:4
1 ppm Isoprene SOA	1.24	0.467	100:25:4
Aiken et al. ²	1.00	0.225	100:25:4

Table S3. The relative ESI sensitivity of each standard for each dilution averaged across all mixtures for each ionization mode. Each compound's ESI sensitivity has been scaled relative to (+) mode cispinonic acid. The ratios of (+) mode sensitivities to (-) mode sensitivities are also listed. Table S1 provides evidence for significant matrix effects. For example, in the (+) mode, succinic acid and DL-malic acid are only observed at the lowest concentration level, while citric acid only appears in the mass spectra corresponding to the highest concentration. All compounds are detectable in the (-) mode at all dilution levels.

	10	⁻⁸ M diluti	on	10 ⁻⁶ M dilution		No Dilution (10 ⁻⁴ M)			
Standard Compound	(+) ESI Sens.	(-) ESI Sens.	(+)/(-) Ratio	(+) ESI Sens.	(-) ESI Sens.	(+)/(-) Ratio	(+) ESI Sens.	(-) ESI Sens.	(+)/(-) Ratio
succinic acid	0.05 ±0.05	3.0 ±5.0	0.02 ±0.04	-	0.5 ±0.6	-	-	20 ±20	-
DL-malic acid	0.03 ±0.04	10 ±20	0.003 ±0.006	-	2.0 ±1.0	-	-	100 ±100	-
6-methyl-2,4-	0.1	0.02	9.0 ±	0.2	0.02	10	0.5	2.0	0.3
heptanedione	±0.4	±0.02	30.0	±0.3	±0.03	±20	±0.7	±2.0	±0.5
7-oxooctanoic	$4.0 \pm$	1.0	$4.0 \pm$	$7.0 \pm$	1.0	5.0	70	40	2.0
acid	6.0	± 2.0	8.0	6.0	± 1.0	±6.0	± 70	± 40	±3.0
cis-pinonic	$1.0 \pm$	2.0	0.4	1.0	2.0	0.4	1.0	80	0.01
acid	2.0	± 4.0	± 1.0	±1.0	± 2.0	±0.6	±1.0	± 80	±0.02
aia minia aaid	0.05	0.9	0.05	0.02	3.0	0.008		100	
cis-pilic acid	±0.06	± 1.0	± 0.1	±0.02	± 2.0	± 0.01	-	± 200	-
azalaia aaid	2.0	2.0	1.0	2.0	4.0	0.6	20	300	0.05
azelaic acid	±4.0	± 4.0	±3.0	±3.0	± 4.0	± 1.0	±30	± 400	± 0.1
citric acid		5.0			20		2.0	3000	0.0007
	-	± 6.0	-	-	± 20	-	± 1.0	± 3000	± 0.0009
camphoric	0.2	1.0	0.2	0.08	3.0	0.03	20	300	0.07
acid	±0.3	± 1.0	±0.4	±0.08	± 2.0	± 0.04	± 20	±300	± 0.1
5-oxoazelaic	1.0	1.0	1.0	5.0	4.0	1.0	200	400	0.4
acid	±2.0	±2.0	±3.0	±5.0	± 4.0	± 2.0	±300	±600	± 0.8

Table S4. Compounds used in analysis of solution O/C using ESI-MS are tabulated with corresponding structures, molecular formulas, o/c ratios, and calculated log P values, experimental log P values are listed in parentheses were available. Prediction of log P was performed using ACD/ChemSketch Freeware version 12.01 (Advanced Chemical Development Inc., Toronto, Canada). Experimentally measured values of log P where used if they were available, and they agreed well with the predicted values.

Table S5. Previously identified compounds in limonene SOA using GC-MS³⁻⁴ are tabulated with corresponding structures, molecular formulas, o/c ratios, and calculated log P values. Limononaldehyde $(C_{10}H_{16}O_2)$ was not detected in the negative ion mode, therefore it was not included in Figure 3. Compounds with the same elemental formulae $(C_9H_{14}O_3, C_{10}H_{16}O_3, \text{ and } C_9H_{14}O_4)$ could not be distinguished in the HR ESI-MS, therefore the average log P value was used in Figure 4.

Structure	CH ₃ H ₃ C O		OH H ₃ C CH ₂	H ₃ C OH H ₃ C CH ₂	
Name	keto-limonene	limononaldehyde	limonalic acid	norlimononic acid	keto- limononaldehyde
Formula O/C Log P	C ₉ H ₁₄ O 0.11 2.19	$\begin{array}{c} C_{10}H_{16}O_2\\ 0.20\\ 1.53\end{array}$	C ₉ H ₁₄ O ₃ 0.33 1.31	$\begin{array}{c} C_9H_{14}O_3\\ 0.33\\ 1.18\end{array}$	$\begin{array}{c} C_9 H_{14} O_3 \\ 0.33 \\ 0.05 \end{array}$
Structure	H ₃ C CH ₂	O O O H			H ₃ C OH
Name	7-hydroxy- limononaldehyde	limononic acid	limonic acid	keto-limononic acid	7-hydroxy-keto- limononaldehyde
Formula	$C_{10}H_{16}O_3$	$C_{10}H_{16}O_3$	$C_9H_{14}O_4$	$C_9H_{14}O_4$	$C_9H_{14}O_4$
O/C	0.30	0.30	0.44	0.44	0.44
Structure	O.91				
Name	7-hydroxy- limononic acid	keto-limonalic acid	7-hydroxy-keto- limononic acid	Keto-limonic acid	norlimonic acid
Formula	$C_{10}H_{16}O_4$	$C_8H_{12}O_4$	$C_9H_{14}O_5$	$C_8H_{12}O_5$	$C_7 H_{10} O_5$
Ω/C	0.4				
U/C Log P	0.4	0.50	0.56	0.63	0.71

Table S6. O/C values estimated for HR ESI-MS dataset obtained from the dark ozonolysis of limonene.⁵ The error has been calculated based on multiple samples and ES ionization efficiencies and propagated throughout the calculation of O/C.

(+) ESI Mode	O/C _{weighted}	O/C _{corrected}
1 ppm	0.40 ± 0.01	0.45 ± 0.07
0.5 ppm	0.39 ± 0.03	0.45 ± 0.08
0.1 ppm	0.40 ± 0.02	0.49 ± 0.10
0.05 ppm	0.41 ± 0.05	0.51 ± 0.11
(-) ESI Mode	O/Cweighted	O/C _{corrected}
1 ppm	0.49 ± 0.01	0.47 ± 0.07
0.5 ppm	0.49 ± 0.01	0.46 ± 0.08
0.1 ppm	0.51 ± 0.04	0.47 ± 0.10
0.05 ppm	0.53 ± 0.05	0.49 ± 0.10

Table S7. O/C values estimated for HR ESI-MS dataset obtained from the dark ozonolysis of isoprene. ⁵
Also listed are O/C values measured from online ToF-AMS of the chamber aerosol.

	(+) ESI Mode	(-) ESI Mode	Average ESI
O/Cunweighted	0.56	0.60	0.58
O/Cweighted	0.56	0.57	0.56
O/C _{corrected}	0.57	0.56	0.56
O/C _{AMS}	0.58		

Figure S1. Average relative ionization efficiency factors scaled to (+) mode pinonic acid plotted against each compound's o/c ratio for (+) and (-) mode. As this figure demonstrates, there is no obvious correlation with the o/c ratio.

References

1. Chen, Q.; Liu, Y. J.; Donahue, N. M.; Shilling, J. E.; Martin, S. T., Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints. *Environ. Sci. Technol.* **2011**, *45* (11), 4763-4770.

2. Aiken, A. C.; Decarlo, P. F.; Kroll, J. H.; Worsnop, D. R.; Huffman, J. A.; Docherty, K. S.; Ulbrich, I. M.; Mohr, C.; Kimmel, J. R.; Sueper, D.; Sun, Y.; Zhang, Q.; Trimborn, A.; Northway, M.; Ziemann, P. J.; Canagaratna, M. R.; Onasch, T. B.; Alfarra, M. R.; Prevot, A. S. H.; Dommen, J.; Duplissy, J.; Metzger, A.; Baltensperger, U.; Jimenez, J. L., O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. *Environ. Sci. Technol.* **2008**, *42* (12), 4478-4485.

3. Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N. R.; Hjorth, J.; Kotzias, D.; Larsen, B. R., Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. *Environ. Sci. Technol.* **2000**, *34* (6), 1001-1010.

4. Leungsakul, S.; Jaoui, M.; Kamens, R. M., Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone. *Environ. Sci. Technol.* **2005**, *39* (24), 9583-9594.

5. Nguyen, T. B.; Bateman, A. P.; Bones, D. L.; Nizkorodov, S. A.; Laskin, J.; Laskin, A., High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. *Atmospheric Environment* **2010**, *44* (8), 1032-1042.