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Figure S1. (a) Full particle mobility size distribution of the dry [CsMIM][CI] particles measured
by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution
after size selection for 26.9 + 0.01 nm [C4MIM][CI] particles measured by the second nano-
DMA. The red, dotted line indicates where the dry size-selected particle distribution was located

in the full particle distribution.
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Figure S2. (a) Full particle mobility size distribution of the dry [CsMIM][CI] particles measured
by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution
after size selection for 26.9 + 0.01 nm [CsMIM][CI] particles measured by the second nano-
DMA. The red, dotted line indicates where the dry size-selected particle distribution was located

in the full particle distribution.
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Figure S3. (a) Full particle mobility size distribution of the dry [CsMIM][BF4] particles
measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size
distribution after size selection for 26.9 + 0.01 nm [C4MIM][BF4] particles measured by the
second nano-DMA. The red, dotted line indicates where the dry size-selected particle

distribution was located in the full particle distribution.
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Figure S4. (a) Full particle mobility size distribution of the dry [CsMIM][BF4] particles
measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size
distribution after size selection for 26.9 + 0.01 nm [CsMIM][BF4] particles measured by the
second nano-DMA. The red, dotted line indicates where the dry size-selected particle

distribution was located in the full particle distribution.
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Figure S5. Water activity (RH/100) as a function of the molar fraction of water (y,,), calculated
from the growth factor values using eq 2 (actual densities) and eq 3 (ideal solution
approximation). The y,, data from our previous study,’ [C;MIM][CI] (black circles) and
[CoMIM][BFE4] (red triangles), are included for comparison. Raoult's law for an ideal solution is

represented by the dark grey, solid line.
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Figure S6. The water activity vs. molar faction of water (y',,) plot for the ionic liquids (ILs)
discussed in this study. The other plots of this type (Figures 8 and S5) used the molar fraction of
water (y,,) calculated by treating each IL molecule as a single entity. In this plot, the cation and
anion of the IL were treated as separate particles, which effectively reduces the molar fraction of
water. y', can be straightforwardly calculated from y,, as shown in the text (eq 4). Raoult's law

for an ideal solution is represented by the dark grey, solid line.
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Figure S7. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][CI] ionic liquid
nanoparticle growth factor values using eq 2 (actual densities). The two-parameter equations
(i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-
parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for

an ideal solution is represented by the dark grey, solid line.
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Figure S8. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [C4sMIM][CI] ionic liquid
nanoparticle growth factor values using eq 3 (ideal solution approximation). The two-parameter
equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the
one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law

for an ideal solution is represented by the dark grey, solid line.
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Figure S9. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][CI] ionic liquid
nanoparticle growth factor values using eq 2 (actual densities). The two-parameter equations
(i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-
parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for

an ideal solution is represented by the dark grey, solid line.
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Figure S10. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][CI] ionic liquid
nanoparticle growth factor values using eq 3 (ideal solution approximation). The two-parameter
equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the
one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law

for an ideal solution is represented by the dark grey, solid line.
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Figure S11. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [C,MIM][BF,] ionic liquid
nanoparticle GF values using eq 2 (actual densities).” The two-parameter equations (i.e., two-
constant Margules, van Larr, and Wilson models) performed better than the one-parameter
equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal

solution is represented by the dark grey, solid line.
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Figure S12. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (x,,) calculated from the [C,MIM][BF4] ionic liquid
nanoparticle GF values using eq 3 (ideal solution approximation).” The two-parameter equations
(i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-
parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for

an ideal solution is represented by the dark grey, solid line.
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Figure S13. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][BF,] ionic liquid
nanoparticle GF values using eq 2 (actual densities). The two-parameter equations (i.e., two-
constant Margules, van Larr, and Wilson models) performed better than the one-parameter
equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line for the
Wilson model indicates that the least-squares optimization did not converge. Raoult's law for an

ideal solution is represented by the dark grey, solid line.
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Figure S14. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][BF,] ionic liquid
nanoparticle GF values using eq 3 (ideal solution approximation). The two-parameter equations
(i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-
parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for

an ideal solution is represented by the dark grey, solid line.
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Figure S15. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][BF4] ionic liquid
nanoparticle GF values using eq 2 (actual densities). The two-parameter equations (i.e., two-
constant Margules, van Larr, and Wilson models) performed better than the one-parameter
equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line for the
Wilson model indicates that the least-squares optimization did not converge. Raoult's law for an

ideal solution is represented by the dark grey, solid line.
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Figure S16. One- and two-parameter correlative liquid activity coefficient models used to fit the
equilibrium molar fractions of water (y,,) calculated from the [CsMIM][BF4] ionic liquid
nanoparticle GF values using eq 3 (ideal solution approximation). The two-parameter equations
(i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-
parameter equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line
for the Wilson model indicates that the least-squares optimization did not converge. Raoult's law

for an ideal solution is represented by the dark grey, solid line.
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Table S1. Liquid Activity Coefficient Models Fitting Parameters.
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