Effect of Alkyl Chain Length on Hygroscopicity of Nanoparticles and Thin Films of Imidazolium-Based Ionic Liquids

Amanda C. MacMillan, Theresa M. McIntire, Scott A. Epstein, and Sergey A. Nizkorodov*

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA

*Corresponding author: Sergey Nizkorodov (nizkorod@uci.edu), Tel: +1-949-824-1262

Supplementary Information:

Figure S1. (a) Full particle mobility size distribution of the dry $[C_4MIM][Cl]$ particles measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution after size selection for 26.9 ± 0.01 nm $[C_4MIM][Cl]$ particles measured by the second nano-DMA. The red, dotted line indicates where the dry size-selected particle distribution was located in the full particle distribution.

Figure S2. (a) Full particle mobility size distribution of the dry $[C_6MIM][Cl]$ particles measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution after size selection for 26.9 ± 0.01 nm $[C_6MIM][Cl]$ particles measured by the second nano-DMA. The red, dotted line indicates where the dry size-selected particle distribution was located in the full particle distribution.

Figure S3. (a) Full particle mobility size distribution of the dry $[C_4MIM][BF_4]$ particles measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution after size selection for 26.9 ± 0.01 nm $[C_4MIM][BF_4]$ particles measured by the second nano-DMA. The red, dotted line indicates where the dry size-selected particle distribution was located in the full particle distribution.

Figure S4. (a) Full particle mobility size distribution of the dry $[C_6MIM][BF_4]$ particles measured by the first nano-differential mobility analyzer (nano-DMA); (b) the mobility size distribution after size selection for 26.9 ± 0.01 nm $[C_6MIM][BF_4]$ particles measured by the second nano-DMA. The red, dotted line indicates where the dry size-selected particle distribution was located in the full particle distribution.

Figure S5. Water activity (RH/100) as a function of the molar fraction of water (χ_w), calculated from the growth factor values using eq 2 (actual densities) and eq 3 (ideal solution approximation). The χ_w data from our previous study,³ [C₂MIM][Cl] (black circles) and [C₂MIM][BF₄] (red triangles), are included for comparison. Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S6. The water activity vs. molar faction of water (χ'_w) plot for the ionic liquids (ILs) discussed in this study. The other plots of this type (Figures 8 and S5) used the molar fraction of water (χ_w) calculated by treating each IL molecule as a single entity. In this plot, the cation and anion of the IL were treated as separate particles, which effectively reduces the molar fraction of water. χ'_w can be straightforwardly calculated from χ_w as shown in the text (eq 4). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S7. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₄MIM][Cl] ionic liquid nanoparticle growth factor values using eq 2 (actual densities). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S8. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₄MIM][Cl] ionic liquid nanoparticle growth factor values using eq 3 (ideal solution approximation). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S9. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₆MIM][Cl] ionic liquid nanoparticle growth factor values using eq 2 (actual densities). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S10. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₆MIM][Cl] ionic liquid nanoparticle growth factor values using eq 3 (ideal solution approximation). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S11. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₂MIM][BF₄] ionic liquid nanoparticle GF values using eq 2 (actual densities).³ The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S12. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₂MIM][BF₄] ionic liquid nanoparticle GF values using eq 3 (ideal solution approximation).³ The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S13. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₄MIM][BF₄] ionic liquid nanoparticle GF values using eq 2 (actual densities). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line for the Wilson model indicates that the least-squares optimization did not converge. Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S14. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₄MIM][BF₄] ionic liquid nanoparticle GF values using eq 3 (ideal solution approximation). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S15. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₆MIM][BF₄] ionic liquid nanoparticle GF values using eq 2 (actual densities). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line for the Wilson model indicates that the least-squares optimization did not converge. Raoult's law for an ideal solution is represented by the dark grey, solid line.

Figure S16. One- and two-parameter correlative liquid activity coefficient models used to fit the equilibrium molar fractions of water (χ_w) calculated from the [C₆MIM][BF₄] ionic liquid nanoparticle GF values using eq 3 (ideal solution approximation). The two-parameter equations (i.e., two-constant Margules, van Larr, and Wilson models) performed better than the one-parameter equations (i.e., one-constant Margules and Flory-Huggins models). The dashed line for the Wilson model indicates that the least-squares optimization did not converge. Raoult's law for an ideal solution is represented by the dark grey, solid line.

	one-constant Margules		two-constant Margules			van Laar			Wilson			Flory-Huggins	
	A/RT	\mathbf{R}^2	α/RT	β/RT	\mathbf{R}^2	α	β	\mathbf{R}^2	Λ_{12}	Λ_{21}	\mathbf{R}^2	φ _w	R ²
[C2MIM][Cl] Ideal	-11035 ± 205	0.990	-14900 ± 376	11125 ± 976	0.996	-2.36 ± 0.12	-4.02 ± 0.05	0.995	4.17 ± 0.10	3.75 ± 0.75	0.994	$\begin{array}{c} 0.00201 \\ \pm \ 0.01967 \end{array}$	0.956
[C4MIM][Cl] Exact	-7690 ± 310	0.982	-11944 ± 597	10256 ± 1264	0.992	-1.50 ± 0.11	-3.06 ± 0.08	0.992	3.87 ± 0.19	1.34 ± 0.23	0.991	0.299 ± 0.017	0.981
[C4MIM][Cl] Ideal	-6453 ± 282	0.982	-11275 ± 531	$\begin{array}{r} 10678 \\ \pm 1058 \end{array}$	0.993	-1.26 ± 0.09	-2.68 ± 0.07	0.992	3.69 ± 0.20	$\begin{array}{c} 1.05 \\ \pm \ 0.18 \end{array}$	0.992	0.357 ± 0.014	0.987 4
[C ₆ MIM][Cl] Exact	-5300 ± 269	0.970	-7354 ± 823	4720 ± 1741	0.971	-1.49 ± 0.28	-2.09 ± 0.10	0.971	$\begin{array}{c} 2.67 \\ \pm \ 0.30 \end{array}$	$\begin{array}{c} 1.61 \\ \pm \ 0.50 \end{array}$	0.968	$0.601 \\ \pm 0.017$	0.969
[C ₆ MIM][Cl] Ideal	-4768 ± 255	0.971	-6857 ± 767	4731 ± 1570	0.972	-1.300 ± 0.24	-1.89 ± 0.10	0.971	2.59 ± 0.31	$\begin{array}{c} 1.40 \\ \pm \ 0.42 \end{array}$	0.970	0.631 ± 0.016	0.974
[C ₂ MIM][BF ₄] Exact	2254 ± 172	0.907	3484 ± 790	-1891 ± 1190	0.922	0.528 ± 0.095	1.36 ± 0.26	0.934	1.31 ± 0.25	$\begin{array}{c} 0.176 \\ \pm \ 0.094 \end{array}$	0.934	1.27 ± 0.04	0.898
[C2MIM][BF4] Ideal	1981 ± 167	0.922	3153 ± 729	-1851 ±1120	0.934	$0.397 \\ \pm 0.073$	1.36 ± 0.29	0.949	1.54 ± 0.24	$\begin{array}{c} 0.148 \\ \pm \ 0.078 \end{array}$	0.948	1.19 ± 0.04	0.915
[C ₄ MIM][BF ₄] Exact	4260 ± 175	0.823	4325 ± 1106	-81 ± 1357	0.824	1.71 ± 0.13	$\begin{array}{c} 1.73 \\ \pm \ 0.18 \end{array}$	0.825	0.314 ± 0.068	$\begin{array}{c} 0.284 \\ \pm \ 0.084 \end{array}$	0.834	1.68 ± 0.10	0.601
[C4MIM][BF4] Ideal	3999 ± 147	0.841	4958 ± 906	-1205 ±1125	0.863	$\begin{array}{c} 1.50 \\ \pm \ 0.10 \end{array}$	1.80 ± 0.17	0.867	$\begin{array}{c} 0.431 \\ \pm \ 0.070 \end{array}$	$\begin{array}{c} 0.231 \\ \pm \ 0.068 \end{array}$	0.874	1.62 ± 0.09	0.645
[C ₆ MIM][BF ₄] Exact	$5030 \\ \pm 279$	0.624	4490 ± 2109	679 ± 2600	0.616	2.10 ± 0.25	1.94 ± 0.31	0.615	$\begin{array}{c} 0.181 \\ \pm \ 0.088 \end{array}$	$\begin{array}{c} 0.220 \\ \pm \ 0.124 \end{array}$	0.624	2.17 ± 0.11	0.360
[C ₆ MIM][BF ₄] Ideal	$\begin{array}{c} 4900 \\ \pm 279 \end{array}$	0.625	$\begin{array}{c} 4880 \\ \pm 2082 \end{array}$	27 ± 2596	0.625	1.98 ± 0.24	1.98 ± 0.33	0.626	$\begin{array}{c} 0.233 \\ \pm \ 0.105 \end{array}$	$\begin{array}{c} 0.191 \\ \pm \ 0.126 \end{array}$	0.634	2.14 ± 0.11	0.395
Average R ²		0.876			0.883			0.885			0.888		0.789
R ² of [C _n MIM][Cl]		0.979			0.985			0.984			0.983		0.974
R ² of [C _n MIM][BF ₄]		0.790			0.797			0.802			0.808		0.636

Table S1.	Liquid	Activity	Coefficient	Models	Fitting	Parameters.
		•/				