Phase State and Physical Properties of Ambient and Laboratory Generated Secondary Organic Aerosol

Rachel E. O'Brien, ${ }^{1,2^{*}}$ Alexander Neu, ${ }^{1}$ Scott A. Epstein, ${ }^{3}$ Amanda C. MacMillan, ${ }^{3}$ Bingbing Wang, ${ }^{4}$ Steve T. Kelly, ${ }^{1}$ Sergey A. Nizkorodov, ${ }^{3}$ Alexander Laskin, ${ }^{4}$ Ryan C. Moffet, ${ }^{2}$ Mary K. Gilles, ${ }^{1}$
[1] Lawrence Berkeley National Laboratory, Berkeley, California, 94720-8198, USA
[2] Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
[3] Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
[4] William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
*Address correspondence to the following author
Email: resellon@lbl.gov

Supplemental Information

Laboratory generated samples

Experimental conditions for chamber experiments are given in Table S 3 (the tables and figures are numbered in the order of appearance in the main manuscript). For the flow tube experiments, the flow tube was operated at low $\mathrm{RH}(<2 \%)$, ambient temperature $\left(\sim 25^{\circ} \mathrm{C}\right)$, with the lights turned off. The oxidant was ozone ($30-50 \mathrm{ppm}$) produced by flowing oxygen gas through a commercial ozone generator. The residence time was $\sim 5 \mathrm{~min}$. In both cases (chamber and flow tube) samples were collected on stages 7 and 8 of a 10 stage rotating cascade impactor (MOUDI 110-R, MSP) using $\mathrm{Si}_{3} \mathrm{~N}_{4}$ windows taped to aluminum substrates. Collection times were $\sim 30-45 \mathrm{~min}$ for chamber experiments and $\sim 1 \mathrm{~min}$ for flow tube experiments.

Data Collection/Analysis

Because of the weak signal to noise ratio, particles with average OD_{320} values <0.03 were excluded from analysis. For I_{0} values of $\sim 7,000$ counts $/ \mathrm{ms}$, this cutoff corresponds to about 200 photons/ms. Since stray light in the STXM leads to approximately 100-200 photons/ms noise, the particles with the lowest average OD have the largest relative amount of noise.

Since some particles and particle components were non-spherical, the sizes reported are the area equivalent diameters (AED), defined as a diameter of a hemisphere required to cover the same area as the projection of the particles on the surface:

$$
\mathrm{AED}=2 \sqrt{\left(\frac{\text { length }_{x} \times \text { length }_{y}}{\pi}\right)}
$$

where length ${ }_{x}$ and length ${ }_{y}$ are the effective sizes of the particle in the x and y dimensions.

Absorption Coefficients

Organic material mass absorption coefficients $\mu\left(\mathrm{cm}^{2} / \mathrm{g}\right)$ were obtained from the sum of the absorption cross sections of the constituent atoms by:

$$
\mu=\frac{N_{A}}{M W} \sum_{i} x_{i} \sigma_{a i}
$$

Equation S2
where $M W$ is the molecular weight of the compound containing x_{i} atoms of type i, σ_{a} is the total atomic absorption cross section ($\mathrm{cm}^{2} /$ atom) for this type of atom, and N_{A} is the Avogadro's number. This approximation neglects interactions between the atoms in the material and is applicable at photon energies sufficiently far from absorption edges [Henke et al., 1993; Thomson et al., 2009]. Using the list of chemical formulas from negative mode high resolution mass spectrometry analysis of ambient particles (O'Brien el al., manuscript in preparation, 2014), the mass absorption coefficient was calculated and plotted as a function of the O / C value (Figure S3). An estimate for the average O / C value of 0.44 [Setyan et al., 2012] leads to $\mu_{320} \cong$ $22,500 \mathrm{~cm}^{2} / \mathrm{g}$ and $\mu_{278} \cong 1102 \mathrm{~cm}^{2} / \mathrm{g}$.

Inorganic Contributions

The particles used in this analysis were identified as organic using algorithm detailed in [Moffet et al., 2010b]. However, aerosol particles that are primarily organic can also have
inorganic components. To estimate the fraction of other elements in these particles we examined the OD at the carbon pre-edge $(278 \mathrm{eV})$ and the post edge $(320 \mathrm{eV})$ of a particle with inorganic and organic components via equations S3 and S4:

$$
\begin{aligned}
& O D_{278}=\mu_{\text {org }, 278} \rho_{\text {org }} d_{\text {org }}+\mu_{\text {in, } 278} \rho_{\text {in }} d_{\text {in }} \\
& O D_{320}=\mu_{\text {org }, 320} \rho_{\text {org }} d_{\text {org }}+\mu_{i n, 320} \rho_{\text {in }} d_{\text {in }}
\end{aligned}
$$

Equation S3

Equation S4

Where $\mu_{\text {org }}, \rho_{\text {org }}$ is the linear absorption coefficient of the organic species, $\mu_{i n,} \rho_{i n}$ is the linear absorption coefficient for the inorganic species, and $d_{i n}$ and $d_{\text {org }}$ are the average sample thicknesses of the inorganic and organic, respectively. The thickness ratio [Moffet et al., 2010b] can then be calculated by combining equations S3 and S4:

$$
\frac{d_{\text {org }}}{d_{\text {in }}}=\frac{O D_{320} \mu_{\text {in }, 278} \rho_{\text {in }}-O D_{278} \mu_{\text {in }, 320} \rho_{\text {in }}}{O D_{278} \mu_{\text {org }, 320} \rho_{\text {org }}-O D_{320} \mu_{\text {org }, 278} \rho_{\text {org }}}
$$

Equation S5

To calculate the linear absorption coefficients for the organic terms, the μ_{320} and μ_{278} estimates from above and a density of $1.3 \mathrm{~g} / \mathrm{cm}^{3}$ [Setyan et al., 2012] were used. For the inorganic terms, three cases were considered. In the first case, the linear absorption coefficients were calculated for elements with atomic numbers between 6 (carbon) and 26 (Iron) that have been observed in atmospheric aerosols [Moffet et al., 2010a]. Elements with higher linear absorption coefficients will absorb more photons and at $278 \mathrm{eV} \mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Cr}, \mathrm{Mg}$, and Fe all have higher linear absorption coefficients in the range of $7-13 \mu^{-1}$ (Figure S4a). At 320 eV the elements $\mathrm{Si}, \mathrm{P}, \mathrm{S}$, $\mathrm{Cl}, \mathrm{Cr}, \mathrm{Mn}$, and Fe all have coefficients between $5.6-10 \mu \mathrm{~m}^{-1}$ (Figure S4b). Given these ranges, values of $10 \mu \mathrm{~m}^{-1}$ at 278 eV and $8 \mu \mathrm{~m}^{-1}$ at 320 eV were used. In the second case, the linear
absorption coefficients for NaCl were used $\left(8.1 \mu \mathrm{~m}^{-1}\right.$ at 278 eV and $6.3 \mu \mathrm{~m}^{-1}$ at 320 eV$)$. In the last case, values for ammonium sulfate were used ($3.2 \mu \mathrm{~m}^{-1}$ at 278 eV and $2.4 \mu^{-1}$ at 320 eV). Using these estimates and the measured OD_{278} and OD_{320} values, the average thickness ratio for each data set was calculated and is shown in Table S4. All of the data sets range from $\sim 10-30 \%$ inorganic with higher percentages when all of the inorganic is assumed to be ammonium sulfate as the inorganic. Thus, for these campaigns, approximately 11-30\% of the thickness for the organic particles is likely due to the absorption cross section contribution from non-organic molecules or atoms.

References

Henke, B. L., et al. (1993), X-Ray Interactions - Photoabsorption, Scattering, Transmission And Reflection at E=50-30,000 EV, Z=1-92 (VOL 54, PG 181, 1993). Atom. Data Nucl. Data Tables 55(2): 349-349.

Moffet, R. C., et al. (2010a), Microscopic characterization of carbonaceous aerosol particle aging in the outflow from Mexico City, Atmospheric Chemistry and Physics 10(3): 961-976.

Moffet, R. C., et al. (2010b), Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge, Anal Chem 82(19): 79067914.

Setyan, A., et al. (2012), Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES, Atmospheric Chemistry and Physics 12(17): 8131-8156.

Thomson, A., et al. (2009). Center for X-Ray Optics and Advanced Light Source X-Ray Data Booklet. Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.

Figure S1. Optical thickness of carbon (total carbon absorption $=\mathrm{OD}_{320}-\mathrm{OD}_{278}$) as a function of size of impacted organic particles for each ambient data set. Solid lines are best fit lines for each data set and dashed lines are $\pm 95 \%$ confidence intervals. The thick fitted lines are reproduced in Figure 2 of the main text, and the slopes, intercepts, and confidence intervals are listed in Table 1.

Figure S2. Optical thickness of carbon (total carbon absorption $=\mathrm{OD}_{320}-\mathrm{OD}_{278}$) as a function of size of impacted organic particles for each laboratory data set. Solid lines are best fit lines for each data set; the same lines are reproduced in Figure 2 of the main text. The slopes are listed in Table 1.

Figure S3. Calculated mass absorption coefficients as a function of O / C at a) 320 eV and b) 278 eV for chemical formulas from organic molecules found in atmospheric aerosols.

Figure S4. Linear absorption coefficients at (a) 278 eV and (b) 320 eV for elements found in atmospheric aerosols [Henke et al., 1993].

Table S1. Ambient sample collection information and fitting results for OD_{320} and OD_{278} vs. area equivalent diameter ${ }^{\text {a }}$

320 eV
278 eV

Campaign	Year	Number of	Slope	Intercept	Slope	Intercept
		particles				
CARES	2010	2428	0.18 ± 0.007	0.041 ± 0.004	0.045 ± 0.002	0.016 ± 0.001
MILAGRO	2006	798	0.19 ± 0.015	0.068 ± 0.006	0.057 ± 0.005	0.019 ± 0.002
NAOPEX	2001	123	0.22 ± 0.022	0.036 ± 0.018	0.069 ± 0.007	0.008 ± 0.006
VOCALS	2008	125	0.30 ± 0.056	0.065 ± 0.027	0.098 ± 0.02	0.023 ± 0.01
YACS	2002	56	0.17 ± 0.028	0.056 ± 0.015	0.027 ± 0.01	0.025 ± 0.006

${ }^{\mathrm{a}}$ The $\pm 95 \%$ confidence intervals for the slope and intercept are given.

Table S2. Laboratory sample fitting results for OD_{320} and OD_{287} vs. area equivalent diameter ${ }^{\text {a }}$

Sample	MOUDI stage	Number of particles	320 eV		278 eV	
			Slope	Intercept	Slope	Intercept
Isoprene-l-NO NO_{x}	7	137	0.048 ± 0.004	0.054 ± 0.002	0.0083 ± 0.002	0.014 ± 0.001
Isoprene-h- NO_{x}	7	16	0.018 ± 0.010	0.044 ± 0.004	0.015 ± 0.007	0.011 ± 0.003
α-pinene-flow tube	7	51	0.044 ± 0.009	0.079 ± 0.010	0.0042 ± 0.001	0.015 ± 0.001
Limonene-flow tube	7	87	0.045 ± 0.009	0.051 ± 0.005	0.0027 ± 0.002	0.014 ± 0.001
Limonene-chamber	8	122	0.052 ± 0.007	0.057 ± 0.006	0.0049 ± 0.002	0.015 ± 0.001

${ }^{\mathrm{a}}$ The $\pm 95 \%$ confidence intervals for the slope and intercept are given. $l-\mathrm{NO}_{\mathrm{x}}$ and $h-\mathrm{NO}_{\mathrm{x}}$ refer to low- NO_{x} and high- NO_{x} oxidation by OH ; ozone is used as the oxidant for the remaining samples.

Table S3. Summary of experimental conditions for the chamber experiments ${ }^{\mathrm{a}}$

Sample	$[\mathbf{H C}]$	Oxidant	$[\mathbf{N O}]$	$\left[\mathbf{N O}_{\mathbf{y}}\right]$	$\left[\mathrm{O}_{3}\right]$	\mathbf{T}	Concentratio	Average
	$\mathbf{p p m}$	precursor	$\mathbf{p p b}$	$\mathbf{p p b}$	$\mathbf{p p b}$	$\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{n}\left(\mu \mathrm{g} / \mathbf{m}^{\mathbf{3}}\right)$	Size (nm)
Isoprene-l $-\mathrm{NO}_{\mathrm{x}}$	1.0	$\mathrm{H}_{2} \mathrm{O}_{2}$	<1	5	3	25	40.8	326
Isoprene- $h-\mathrm{NO}_{\mathrm{x}}$	1.1	$\mathrm{H}_{2} \mathrm{O}_{2}$	430	530	4	24	192	174
Limonene ${ }^{\mathrm{b}}$	0.30	Ozone	<1	6	590	24	1251	177

${ }^{\mathrm{a}}$ The [HC] are the initial mixing ratios after injection of the liquid precursor, the remaining values were measured at the start of the sample collection.
${ }^{\mathrm{b}}$ The Limonene chamber experiment was done in the dark.

Campaign	$\mathbf{d}_{\text {org }} / \mathbf{d}_{\text {in }}(\%$ of thickness that is inorganic)		
	$\mathbf{I n}=\mathbf{S}$, metals, etc.	$\mathbf{I n}=\mathbf{N a C l}$	$\mathbf{I n = (\mathbf { N H } _ { \mathbf { 4 } }) _ { \mathbf { 2 } } \mathbf { S O } _ { \mathbf { 4 } }}$
CARES	$12(10 \%)$	$9.4(12 \%)$	$3.2(28 \%)$
MILAGRO	$9.7(9 \%)$	$7.9(11 \%)$	$2.7(26 \%)$
NAOPEX	$12(9 \%)$	$9.6(10 \%)$	$3.2(25 \%)$
VOCALS	$9.5(11 \%)$	$7.7(13 \%)$	$2.6(30 \%)$
YACS	$12(9 \%)$	$10(10 \%)$	$3.4(25 \%)$

Table S4. Average organic to inorganic thickness ratios for each campaign 202 203 208

