Supporting Information Section

Absorption Spectra and Aqueous Photochemistry of β -Hydroxyalkyl Nitrates of Atmospheric Interest

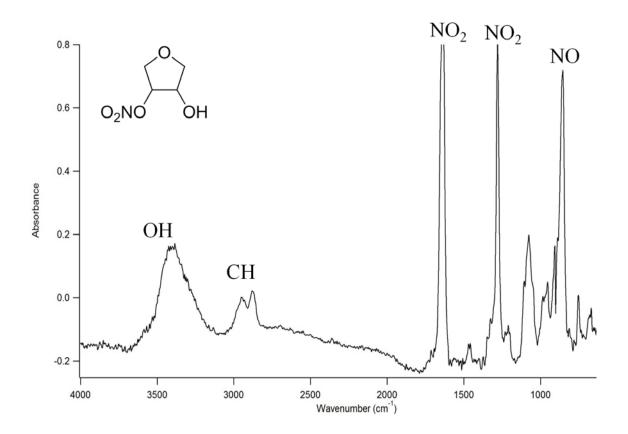
Dian E. Romonosky,¹ Lucas Q. Nguyen,¹ Dorit Shemesh,² Tran B. Nguyen,¹ Scott A. Epstein,¹ David B.C. Martin,¹ Christopher D. Vanderwal,¹ R. Benny Gerber,^{1,2,*} Sergey A. Nizkorodov^{1,*}

¹ Department of Chemistry, University of California, Irvine, California 92697, USA ² Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel

*Send correspondence to: S.A. Nizkorodov (<u>nizkorod@uci.edu</u>), 1-949-824-1262 R.B. Gerber (<u>bgerber@uci.edu</u>), 1-949- 824-6758 **Table S1.** The lowest electronic excited states of conformer 3 of ethyl nitrate. All parameters are calculated at CC2 level, but the OM2 energies are also provided for comparison. A similar table for conformer 1 is provided in the main text (Table 4).

Electronic	CC2	OM2	Transitions involved	Oscillator	Dipole
State	energy	energy		strength	moment
	[eV]	[eV]			[Debye]
Ground	0	0	-	-	2.75
1	5.05	4.41	HOMO-3 → LUMO 65%	3×10 ⁻⁶	2.19
			HOMO-2 \rightarrow LUMO 32%		
2	6.08	4.69	HOMO-4 → LUMO 26%	0.0016	3.31
			HOMO-2 → LUMO 24%		
			HOMO-1 → LUMO 24 %		
			HOMO-3 \rightarrow LUMO 12 %		
3	6.49	5.17	HOMO-1 → LUMO 44%	0.076	6.98
4	7.64	5.38	HOMO \rightarrow LUMO 58%	0.10	1.75
5	8.20	5.78	HOMO-3 → LUMO+5 20%	0.13	1.10
			HOMO \rightarrow LUMO 14%		

Table S2. Cross-comparison of orbitals of ethyl nitrate and β -hydroxyethyl nitrate.


β-hydroxyethyl nitrate	ethyl nitrate
HOMO-5	HOMO-6
HOMO-4	НОМО-3
HOMO-3	HOMO-1
HOMO-2	HOMO-2
HOMO-1	НОМО
НОМО	
LUMO	LUMO

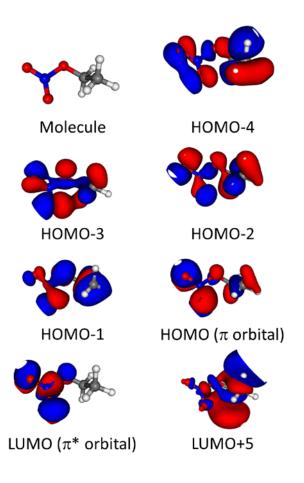
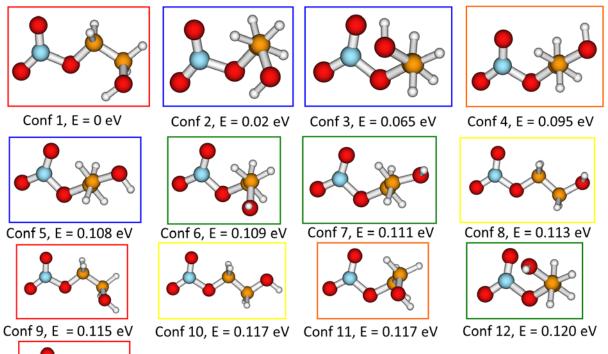
		Н	н	
NAME	SMILES	[atm×m ³ /mol]	[M/atm]	Method
2-hydroxycyclohexyl				
nitrate (A)	C1(0)C(ON(=0)=0)CCCC1	1.32E-08	7.58E+04	Bond
3-hydroxy-3-				
methylbutan-2-yl				
nitrate (B)	C(C)(C)(O)C(C)ON(=O)=O	2.25E-08	4.44E+04	Bond
2-hydroxyhexyl				
nitrate (C)	C(O)(CCCC)CON(=O)=O	2.99E-08	3.34E+04	Bond
2-hydroxy-2-methyl-				
5-(prop_1-en-2-				
yl)cyclohexyl nitrate		2 625 02	0 705 04	
(D)	C(=C)(C)C1CC(ON(=O)=O)C(C)(O)CC1	3.60E-08	2.78E+04	Bond
2-hydroxy-2,6,6- trimethylbicyclo[3.1.1				
]heptan-2-yl nitrate				
(E)	C1(C)(C)C2C(C)(O)C(ON(=O)=O)CC1C2	1.81E-08	5.52E+04	Bond
4-		1.011-00	J.J2L104	Dona
hydroxytetrahydrofur				
an-3-yl nitrate (F)	C1(O)C(ON(=O)=O)COC1	8.31E-12	1.20E+08	Bond
1-hydroxybut-3-en-2-				
yl nitrate (G)	C(=C)C(CO)ON(=O)=O	1.26E-08	7.94E+04	Bond
2-hydroxy-1-				
phenylethyl nitrate				
(H)	c1(C(CO)ON(=O)=O)ccccc1	7.77E-10	1.29E+06	Bond
2-hydroxy-3-				
(nitrooxy)propyl				
methacrylate (I)	C(=O)(C(=C)C)OCC(O)CON(=O)=O	2.52E-11	3.97E+07	Bond
2-ethylhelxyl nitrate				
(J)	O(N(=O)=O)CC(CCCC)CC	1.44E-03	6.94E-01	Bond
				Hauff, K
		4 645 00	6 245 64	et al.
isopropyl nitrate (K)	O=N(=O)OC(C)C	1.61E-03	6.21E-01	(1998)

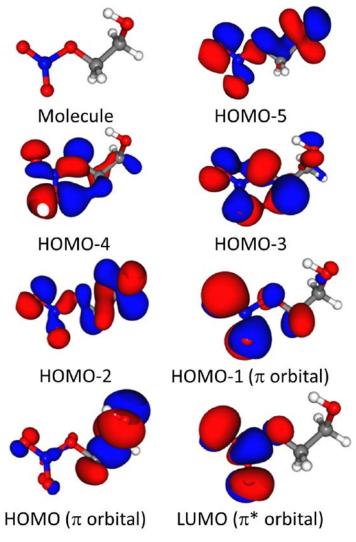
Table S3. Henry's law constants used for predicting aqueous partitioning of nitrates examined in this work.

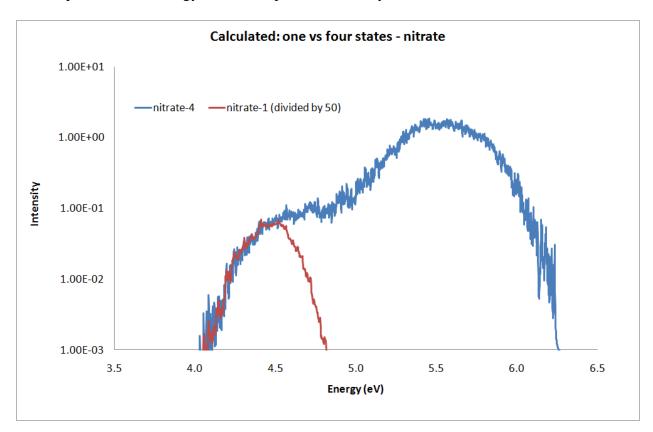
Hauff, K., R. G. Fischer, and K. Ballschmiter (1998), Determination of C1-C5 alkyl nitrates in rain, snow, white frost, lake, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space GC, Chemosphere, 37(13), 2599-2615.

Figure S1. Sample FTIR spectrum of compound F (4-hydroxytetrahydrofuran-3-yl nitrate) with bands attributable to the $-ONO_2$ and -OH groups labeled.

Figure S2. Molecular orbitals (obtained by MP2) involved in electronic transitions of conformer 3 of ethyl nitrate listed in Table S1. A similar figure for conformer 1 is provided in the main text (Figure 3).


Figure S3. Structures of the conformers of β -hydroxyethyl nitrate as calculated by MP2 listed in Table 5. Same colors around the frame correspond to different rotamers around one bond.



Conf 13, E = 0.126 eV

Figure S4. Molecular orbitals as obtained by MP2 involved in electronic transitions of the lowest energy conformer of β -hydroxyethyl nitrate listed in Table 6.

Figure S5. Predicted absorption spectrum of ethyl nitrate calculated by inclusion of one (red trace – labeled nitrate-1) and four (blue trace – labeled nitrate-4) states in the MD simulations. The one-state calculation was scaled down by 50 (to account for the difference in sampling). The shape of the low-energy tail of the spectrum is nearly identical in both cases.

