Supporting Information

Photochemical Reactions of Cyclohexanone:

Mechanisms and Dynamics

Dorit Shemesh,^a Sergey A. Nizkorodov,^b R. Benny Gerber^{a,b}*

^a Institute of Chemistry and The Fritz Haber Research Center The Hebrew University, Jerusalem 91904, Israel

^b Department of Chemistry, University of California Irvine, CA 92697, USA

Table S1: relevant experimental studies of gas-phase photochemistry of cyclohexanone. The reaction channels and quoted yields refer to Figure 1.

Reference	Radiation source	Observations and/or quantum yields (Φ)
Bamford and	Broadband radiation	CO + [cyclopentane or 1-pentene] (channels b and c)
Norrish (1938)	from a high-pressure	identified as major products (87%); channel d yielding
	Hg lamp	$C_2H_4+C_3H_6+CO$ found to be less important (13%)
Benson and	Broadband radiation	Channels (b) and (c) dominate (98%) with 3:1 ratio of
Kistiakowsky	from a high-pressure	the cyclopentane:1-pentene; the $C_2H_4+C_3H_6+CO$ channel
(1942)	Hg lamp	d shown to be minor (2%)
Blacet and	253.7 nm, 265.4 nm,	Channels (b) and (c) dominate; yield of 1-pentene higher
Miller (1957)	313 nm	than that of cyclopentane; minor yield of
		$C_2H_4+C_3H_6+CO$ (channel d). The quantum yields
		increase at higher temperature and lower wavelengths.
Srinivasan	313 nm	5-hexenal (channel e) identified for the first time as a
(1959)		significant product with the yield exceeding the yield of
		CO; remains a major product in liquid phase photolysis
Srinivasan and	313 nm	2-methyl-cyclopentanone (channel f) identified in the

Cremer (1965)		liquid phase photolysis of cyclohexanone
Scala and	106.7 nm, 123.6 nm,	A number of additional products found in addition to the
Ballan (1972)	147 nm	ones shown in Figure 1; the ratio C_2H_4/CO and H_2/CO
		increasing and 1-pentene/CO and cyclopentane/CO
		decreasing at lower wavelengths.
Shortridge and	Photosensitization by	Cyclopentane and 1-pentene (channels b and c) form on
Lee (1970)	triplet benzene and	a singlet potential energy surface, while 5-hexenal
	248-313 nm photolysis	(channel e) has a triplet precursor.
Shortridge and	174.5 and 193.1 nm	Evidence found for the occurrence of C_{α} - C_{β} bond
Lee (1973)		cleavage at low pressures.
Baulch et al.	Photosensitization by	Same products observed in photosensitization as in
(1981)	$He(6^{3}P_{1})$ and 253.7 nm	direct photolysis implying that photolysis is occurring on
	photolysis	the triplet surface.
Hoops et al.	Irradiation with $\lambda > 200$	1-hexen-1-one ketene product detected, believed to
(2009)	nm of products of	result from photolysis of cyclohexanone.
	reaction between	
	cyclohexene and ozone	

Table S2: ADC(2) vertical excitation energies for the twist-boat conformer of cyclohexanone. The percentage in the third column refers to the fractional weight of the dominant excited state wavefunction in this transition.

State	Energy (in eV)	Orbital transition	Description	Oscillator strength	Dipole moment (Debye)
1	4.17	HOMO \rightarrow LUMO 62 %	$n(oxygen) \rightarrow \pi^*(C=O)$	0.0000	0.95
2	7.42	HOMO \rightarrow LUMO + 1 62 %		0.0090	4.84
3	8.28	HOMO \rightarrow LUMO + 2 66 %		0.0038	4.82

 Table S3: OM2/MRCI vertical excitation energies for the twist-boat conformer of cyclohexanone.

State	Energy (in eV)	Orbital transition	Description	Oscillator strength	Dipole moment (Debye)
1	3.91	HOMO \rightarrow LUMO 92 %	$n(\text{oxygen}) \rightarrow \pi^*(C=O)$	0.0007	3.44
2	6.37	HOMO \rightarrow LUMO + 1 90 %		0.2880	1.64
3	7.31	HOMO - $2 \rightarrow$ LUMO 98 %		0.0205	11.26

Table S2 summarizes the ADC(2) vertical excitation energy of the twist-boat conformer. Table S3 shows for comparison the OM2/MRCI vertical excitation energy. The vertical excitation energies reported here are very similar to those of the global minimum conformer (chair conformer). The identity of the first excited state predicted by ADC(2) and OM/MRCI is a $n \rightarrow \pi^*$ transition. This transition is localized on the carbonyl group, therefore it does not change much due to geometric changes. The higher transitions can be described by orbital description that are different from those from the chair conformer and seem to be more conformer dependent.

The comparison here has been done for validation purposes of the OM2/MRCI method. The overall agreement between properties predicted by ADC(2) and OM2/MRCI is very well. We therefore believe that the semiempirical potential energy surface is of sufficient accuracy for the photochemical dynamics simulation.

Reaction Channel	Number of trajectories (out of	Percentage (%)
	76 total)	
Ring opening	38	50
H transfer or H detachment	13	17
reactions		
Ring opening and CO	11	15
detachment		
Unreactive trajectories	6	8
Ring opening and recombination	4	5
Other different rare events	4	5

Table S4: Statistics of different reaction channels observed in the dynamics following excitation to the S_1 state