Supporting Information

Efficient formation of light-absorbing polymeric nanoparticles from the reaction of soluble Fe(III) with C4 and C6 dicarboxylic acids

Ashley Tran,[†] Geoffrey Williams,[†] Shagufta Younus,[†] Nujhat N. Ali,[‡] Sandra L.

Blair,[‡] Sergey A. Nizkorodov,[‡] and Hind A. Al-Abadleh[†]*

[†]Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada [‡]Department of Chemistry, University of California, Irvine, California 92697, United States

Journal: Environmental Science and Technology

Prepared: July 19, 2017

Supplementary Data (12 pages)

Additional Experimental Details	S2
Figure S1	S3
Figure S2	S4
Figure S3	S5
Figure S4	
Figure S5	S7
Figure S6	S8
Table S1	S8
Figure S7	S9
Figure S8	S10
Figure S9	S11
References	S12

Additional Experimental Details

For ATR-FTIR measurements, the particles were deposited onto a ZnSe crystal from a water/ethanol slurry followed by drying overnight. Absorption spectra of these particles were obtained by referencing to the clean and dry ZnSe crystal.

The TGA analysis was completed on a TGA Q50 V20.8 Build 34 instrument while flowing nitrogen gas at 40 and 60 mL/min for balance and samples, respectively. The sample was thermally equilibrated at 40°C, followed by a temperature ramp at a rate of 10°C min⁻¹ up to 800°C.

The TEM, SEM-EDS and EELS measurements were done at the Canadian Centre for Electron Microscopy, McMaster University. The samples were ground using a mortar and pestle. The powder was mixed with a solution of 50%/50% ethanol/DI water and sonicated for 10 min. TEM analysis was performed in a JEOL 2010F TEM/STEM operated at 200 kV. The electron microscope was equipped with a Gatan imaging filtering (GIF) system for the acquisition of the electron energy loss spectra (EELS).

The oxidation state composition of iron was analyzed by XPS in a Thermo-VG Scientific ESCALab 250 microprobe with a monochromatic Al K α X-ray source (1486.6 eV), operated with a typical energy resolution of 0.4 - 0.5 eV full width at half-maximum. To correct for extra charging, the binding energy curve in the Fe 2p region for each compound was calibrated against the C 1s peak in the survey spectrum, which has a value of 284.8 eV per reference¹.

Figure S1. Difference spectra obtained by subtracting the absorbance of FeCl_3 reactant standard solution (after accounting for dilution) from that collected for the unfiltered reaction solution after 120 min of reaction, as shown in Figure 2 in the main manuscript. The subtraction factor, *s*, was 1.1 for (a) and 1.2 for (b) according to this formula: Δ Absorbance = Absorbance of mixture $-s \cdot$ Absorbance of control FeCl3 solution shown in Figure 2.

Figure S2: Reported structures for polymers formed from (a) the reaction of aqueous phase FA with FeCl₃ as patented by Apblett,² (b) the reaction of aqueous phase FA with FeCl₃ at 85°C forming MOF MIL-88A,³ (c) the reaction of *cis,cis*-muconic acid with excess dialcohol in the presence of Ti(IV) butoxide,⁴ (this structure shows an example of metal-catalyzed polymerization of muconic acid),⁴ and (d) Fe(II) fumarate reported in references.^{5,6}

Figure S3. Digital images of unfiltered solutions following 1 h and 24 h reaction times between maleic and succinic acids with $FeCl_3$ at pH 2.4, followed by filtration.

(a) Fe-polyfumarate

Figure S4. Proposed chemical structure of (a) Fe-polyfumarate and (b) polymuconate formed in our studies based on the results of dry particle characterization detailed in the main text.

(a) Fe-polyfumarate

Figure S5. Representative STEM-EDS images and elemental mapping (C, O, Cl, and Fe) of (a) Fe-polyfumarate, and (b) Fe-polymuconate particles.

Figure S6. TGA curves showing % weight loss due to thermal decomposition of standard reactant compounds (FA, MA, and $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$) and Fe(II) fumarate in relation to Fepolyfumarate and Fe-polymuconate.

Reaction for thermal decomposition	% mass residual, (c1)	% Fe calculated from c1, (c2)	Calculated molar weight (g mol ⁻¹) from c2	Molar weight based on chemical formula (g mol ⁻¹)
$\text{FeCl}_3 \cdot 6\text{H}_2\text{O}(s) \rightarrow 0.5 \text{ Fe}_2\text{O}_3(s) +$	29.7	20.7	270.5	270.5
$4.5H_2O(g) + 3HCl(g)$ (see ref. ⁷)				
$Fe(II)C_4H_2O_4 \rightarrow 0.5 Fe_2O_3 (s) + C_2H_2$	46.9	32.8	170.7	169.9
$(g) + 2 CO(g) + 0.25 O_2(g) (see ref.8)$				
Fe-fumarate (FeC _x O _y H _z) \rightarrow 0.5x Fe ₂ O ₃ +	38.2	26.7	209.7	n.a.
gases				
Fe-muconate (FeC _x O _y H _z) \rightarrow 0.5x Fe ₂ O ₃	35.4	24.8	225.8	n.a.
+ gases				

Table S1: Analysis of the TGA data (n.a. = not available)

Figure S7. XPS spectra of the Fe 2p region for Fe-polyfumarate and Fe-polymuconate particles in relation to the standard compound, Fe(II) fumarate. Each binding energy curve was calibrated against the C 1s peak which has a fixed value of 284.8 eV per Ref.¹ to correct for charging. Spectra are offset for clarity.

Figure S8. Representative EELS spectra (Background subtracted) for the oxygen K-edge of (a) standard Fe(II) fumarate, Fe-polyfumarate and Fe-polymuconate particles, and (b) standard fumaric and muconic acids particles.

Figure S9: Mass-normalized absorption coefficient (MAC) plot for the reaction of 0.1 mM of (a) fumaric acid (FA), and (b) muconic acid (MA) with FeCl₃ after 1, 60 and 120 min dark reaction at pH 3 (unfiltered solution). The final reaction mixture contain 1:2 molar ratio organic reactant:Fe. MAC values were calculated from Eq. (1) and were not corrected for the contribution from scattering by particles in solution.

References:

- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. *Surf. Interface Anal.* 2004, *36*, 1564-1574.
- (2) Apblett, A.W., Iron coordination polymers for adsorption of arsenate and phosphate. The Board of Regents for Oklahoma State University, Patent, US 2013/0292338 A1, 2013; pp. 1-8
- (3) Lin, K.-Y.A.; Chang, H.-A.; Hus, C.-J., Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine b in water. *RSC Adv.* **2015**, *5*, 32520-32530.
- Rorrer, N.A.; Dorgan, J.R.; Vardon, D.R.; Martinez, C.R.; Yang, Y.; Beckham, G.T., Renewable unsaturated polyesters from muconic acid. *ACS Sustainable Chem. Eng.* 2016, 4, 6867-6876.
- (5) Kapor, A.J.; Nikolic, L.B.; Nikolic, V.D.; Stankovic, M.Z.; Cakic, M.D.; Ilic, D.P.; Mladenovic-Ranisavljevic, I.I.; Ristic, I.S., The synthesis and characterization of iron(II) fumarate and its inclusion complexes with cyclodextrins. *Adv. Technol.* **2012**, *1*, 7-15.
- (6) Skuban, S.; Dzomic, T.; Kapor, A.; Cvejic, Z.; Rakic, S., Dielectric and structural properties of iron- and sodium-fumarates. *J. Res. Phys.* **2012**, *36*, 21-29.
- (7) Kanungo, S.B.; Mishra, S.K., Thermal dehydration and decomposition of FeCl₃.xH₂O. *J. Thermal Anal.* **1996**, *46*, 1487-1500.
- (8) Nikumbh, A.K.; Phadke, M.M.; Date, S.K.; Bakare, P.P., Missbauer spectroscopic and D.C. electrical conductivity study of the thermal decomposition of some iron(II) dicarboxylates. *Thermochimica Acta* **1994**, *239*, 253-268.