Supplementary Information for

Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization

Peng Lin¹, Lauren T. Fleming², Sergey A. Nizkorodov², Julia Laskin¹, Alexander Laskin^{*,1}

¹Department of Chemistry, Purdue University, West Lafayette, IN, 47906

²Department of Chemistry, University of California, Irvine, CA, 92697-2025

*corresponding author *alaskin@purdue.edu*

Manuscript submitted to Analytical Chemistry

May 15, 2018

Figure S1. UV-Vis spectra of the BBOA sample extracted with three different solvents. The Absorption Ångström exponent (*AAE*) values were calculated by a linear regression fit of log(abs) vs log(λ) in the wavelength range of 300–600 nm. The *AAE* values for water, acetonitrile, and orgmix extracts are 5.3, 7.1 and 5.6, respectively.

Table S1. For each BrC compound LC retention times (RT), PDA spectra, assigned elemental formulas, probable structures of the major BrC chromophores, measured m/z and detection mode are noted. For clarity, all detected compounds are reported as neutral species, unless stated otherwise.

Peak #; RT range (min- min)	UV-Vis spectrum	Elemental formula	Tentative structures	Detection mode & measured <i>m/z</i>
1; (9.4- 9.9)	100 80 60 40 20 0 300 400 500 wavelength (nm)	C ₈ H ₈ O ₃ , C ₉ H ₆ O ₄ ,	он стран	ESI-, 151.0403, 177.0196,
2; (10.3- 10.8)	100 80 60 40 20 0 	$C_6 H_5 N O_5 C_8 H_{10} O_5 S$		ESI-, 170.0097, 217.0178,
3; (14.0- 14.5)	100 80 60 40 20 0 	$\begin{array}{c} C_{10} \ H_8 \ O_4 \\ C_9 \ H_{10} \ O_3 \\ C_{12} \ H_{12} \ O_4 \end{array}$	но	ESI-, 191.0352, 165.0559, 219.0664,
4; (15.9- 16.4)	100 80 60 40 20 0 	C ₆ H ₅ N O ₄	HO HO NO ₂ 4-nitrocatechol based on the UV-vis spectrum and previous report of <i>Lin et al.</i> ⁴⁴	ESI-, 154.0147

5; (17.9- 18.6)		$\begin{array}{c} C_{10} \; H_{10} \; O_{3} \\ C_{11} \; H_{12} \; O_{4} \end{array}$	HO	ESI-, 177.0559, 207.0665.
6; (20.0- 20.5)	nm 100 80 60 40 20	C ₈ H ₇ N O ₄ C ₇ H ₇ N O ₄	$\begin{array}{c} OH \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ NO_2 \end{array}$ methyl-nitrocatechol (C ₇ H ₇ N	ESI-, 180.0305, 168.0304,
	0 [⊣] ++++++++++++++++++++++++++++++++++++		O ₄) based on the UV-vis spectrum and previous report of <i>Claeys et al.</i> ⁶⁰	
7; (22.0- 22.3)	100 80 60 40 20 0 300 400 500 nm	C ₈ H ₉ N O ₅	4-nitrosyringol based on the UV-vis spectrum and previous report of <i>Lin et al.</i> ³³	ESI-, 198.0410,
8; (23.1- 23.6)	100 80 60 40 20 	C ₇ H ₇ N O ₄	4-nitroguaiacol based on the UV-vis spectrum and previous report of <i>Kitanovski et al.</i> ⁶²	ESI-, 168.0304,
9; (25.5- 26.0)	100 80 60 40 20 0 	C ₈ H ₉ N O ₄ C ₁₀ H ₁₁ N O ₅		ESI-, 182.0460, 224.0567,

10; (28.5- 29.2)	100 80 60 40 20 0 	C ₁₁ H ₁₃ N O ₅ C ₁₈ H ₁₆ O ₈	OH HO OH HO OH	ESI- , 238.0724, 359.0779,
11; (32.4- 32.9)	100 80 60 40 20 0 	C ₁₀ H ₇ N O ₃ C ₉ H ₁₁ N O ₄	OH O ₂ N 2-Nitro-1-naphthol based on the UV-vis spectrum and previous report of <i>Xie et al</i> . ⁶³	ESI-, 188.0355, 196.0617,
12; (33.5- 33.9)	100 80 60 40 20 0 	C ₁₀ H ₁₃ N O ₄ C ₁₃ H ₁₃ N O ₄ C ₁₁ H ₁₃ N O ₄		ESI-, 210.0775, 246.0777, 222.0776,
13; (38.8- 39.5)	100 80 60 40 20 0 	C ₁₇ H ₁₄ O ₄ C ₁₅ H ₁₄ O ₄		ESI+, 283.0979, 259.0981,
14; (41.5- 41.9)	100 80 60 40 20 0 	C ₁₇ H ₁₀ O C ₁₆ H ₁₀ O		ESI+, 231.0804, 219.0809,

15; (43.6- 44.1)	100 80 60 40 20 0 	C ₁₉ H ₁₀ O	ESI+, 271.0752,
16; (47.8- 48.2)	100 80 60 40 20 0 	C ₂₁ H ₁₂ O C ₁₇ H ₁₁ N	ESI+, 281.0959, 230.0964,
17; (51.3- 51.9)	100 80 60 40 20 0 	$\begin{array}{c} C_{21} H_{11} N \\ C_{21} H_{10} O_2 \end{array}$	ESI+, 278.0968, 295.0753,
18; (55.2- 55.7)	100 80 60 40 20 0 	C ₁₈ H ₁₀ C ₁₈ H ₁₂	APPI+ , 226.0765, 228.0922,
19; (58.8- 59.6)	100 80 40 20 0 	$\begin{array}{c} C_{20} \; H_{12} \\ C_{20} \; H_{14} \\ C_{20} \; H_{10} \end{array}$	APPI+ , 252.0920, 254.1074, 250.0765,

