◆ A comparison of Brønsted-Lowry and Lewis acids and bases

Type	Definition	Structural feature	Examples
Brønsted–Lowry acid (2.1)	proton donor	a proton	HCl, H ₂ SO ₄ , H ₂ O, CH ₃ COOH, TsOH
Brønsted–Lowry base (2.1)	proton acceptor	a lone pair or a π bond	[−] OH, [−] OCH ₃ , H [−] , [−] NH ₂ , CH ₂ =CH ₂
Lewis acid (2.8)	electron pair acceptor	a proton, or an unfilled valence shell, or a partial (+) charge	BF ₃ , AlCl ₃ , HCl, CH ₃ COOH, H ₂ O
Lewis base (2.8)	electron pair donor	a lone pair or a π bond	¯ОН, ¯ОСН ₃ , H¯, ¬NH ₂ , СН ₂ =СН ₂

♦ Acid-base reactions

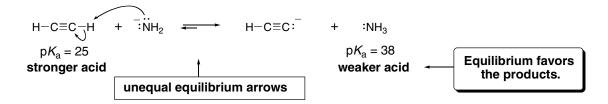
[1] A Brønsted–Lowry acid donates a proton to a Brønsted–Lowry base (2.2).

[2] A Lewis base donates an electron pair to a Lewis acid (2.8).

- Electron-rich species react with electron-poor ones.
- Nucleophiles react with electrophiles.

♦ Important facts

• Definition: $pK_a = -\log K_a$. The lower the pK_a , the stronger the acid (2.3).

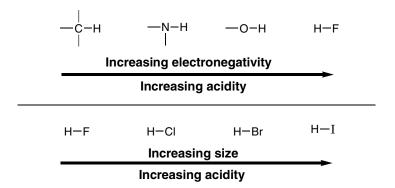

$$\begin{array}{ccc} \text{NH}_3 & \text{versus} & \text{H}_2\text{O} \\ \text{p}\textit{K}_a = 38 & \text{p}\textit{K}_a = 15.7 \\ & \text{lower p}\textit{K}_a = \text{stronger acid} \end{array}$$

Chapter 2–2

• The stronger the acid, the weaker the conjugate base (2.3).

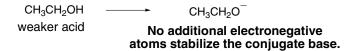
Increasing p <i>K</i> _a			Increasing pK_a of the conjugate acid		
$CH_2 = CH_2$ $pK_a = 44$	СН ₃ СООН р <i>К</i> _а = 4.8	HCl p <i>K</i> _a = −7	CI ⁻	CH ₃ COO ⁻	CH ₂ =CH
	Increasing acidity			Increasing basicity	y

• In proton transfer reactions, equilibrium favors the weaker acid and weaker base (2.4).


• An acid can be deprotonated by the conjugate base of any acid having a higher pK_a (2.4).

Acid	р <i>К</i> а	Conjugate base	_
CH₃COO−H	4.8	CH ₃ COO-	-
CH ₃ CH ₂ O-H	16	CH₃CH₂O [—]	These bases
HC≡CH	25	HC≡C [—]	can deprotonate
H–H	35	H	CH₃COO–H.
	higher p <i>K</i> a than CH ₃ COO–H		

♦ Factors that determine acidity (2.5)


[1] Element effects (2.5A)

The acidity of H–A increases both across a row and down a column of the periodic table.

[2] Inductive effects (2.5B)

The acidity of H–A increases with the presence of electron-withdrawing groups in A.

CF₃ withdraws electron density, stabilizing the conjugate base.

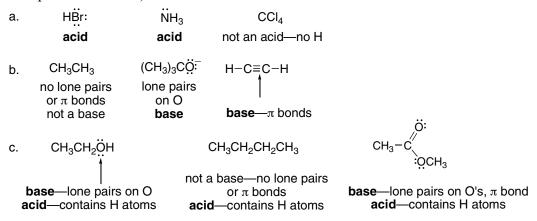
[3] Resonance effects (2.5C)

The acidity of H–A increases when the conjugate base A: is resonance stabilized.

more acidic

[4] **Hybridization effects** (2.5D)

The acidity of H–A increases as the percent *s*-character of the A: increases.


two resonance structures

CH ₃ CH ₃	CH ₂ =CH ₂	H-C≡C-H
ethane	ethylene	acetylene
p <i>K</i> _a = 50	p <i>K</i> _a = 44	pK _a = 25

Increasing acidity

Chapter 2: Answers to Problems

2.1 Brønsted–Lowry acids are **proton donors** and must contain a hydrogen atom. **Brønsted–Lowry bases** are **proton acceptors** and must have an available electron pair (either a lone pair or a π bond).

2.2 A Brønsted–Lowry base accepts a proton to form the conjugate acid. A Brønsted–Lowry acid loses a proton to form the conjugate base.

a.
$$NH_3 \longrightarrow NH_4^+$$
 b. $HBr \longrightarrow Br^ Cl^- \longrightarrow HCl \longrightarrow SO_4^{2-}$ $(CH_3)_2C=O \longrightarrow (CH_3)_2C=OH$ $CH_3OH \longrightarrow CH_3O-$

2.3 Use the definitions from Answer 2.2.

2.4 The Brønsted–Lowry base accepts a proton to form the conjugate acid. The Brønsted–Lowry acid loses a proton to form the conjugate base. Use curved arrows to show the movement of electrons (*NOT protons*). Re-draw the starting materials if necessary to clarify the electron movement.

a.
$$H-\ddot{C}I: + H_2\ddot{O}$$
 $\vdots\ddot{C}I^- + H_3\ddot{O}^+$

acid base conjugate base conjugate acid

b. CH_3 CH_2 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_6

- **2.5** To draw the products:
 - [1] Find the acid and base.
 - [2] Transfer a proton from the acid to the base.
 - [3] Check that the charges on each side of the arrows are balanced.

a.
$$Cl_3C - C$$
 $Cl_3C - C$
 $Cl_3C - C$

2.6 Draw the products in each reaction as in Answer 2.5.

a.
$$CH_3OH \xrightarrow{HCI} CH_3OH_2 + CI^-$$
c. $(CH_3)_3N \xrightarrow{HCI} (CH_3)_3NH + CI^-$
b. $(CH_3CH_2)_2O \xrightarrow{HCI} (CH_3CH_2)_2OH + CI^-$
d. $NH \xrightarrow{HCI} NH_2 + CI^-$

2.7 The smaller the pK_a , the stronger the acid. The larger K_a , the stronger the acid.

a.
$$CH_3CH_2CH_3$$
 or CH_3CH_2OH b. OH or CH_3

$$pK_a = 50$$

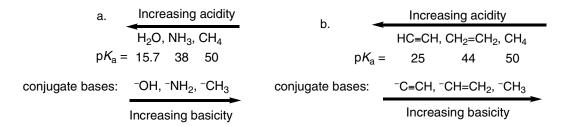
$$pK_a = 16$$

$$smaller pK_a$$

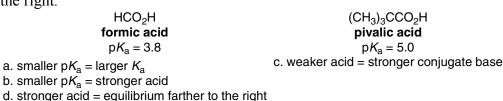
$$stronger acid$$

$$k_a = 10^{-10}$$

$$K_a = 10^{-41}$$


$$larger K_a$$

$$stronger acid$$


2.8 To convert from K_a to pK_a , take (–) the log of the K_a ; $pK_a = -\log K_a$. To convert pK_a to K_a , take the antilog of (–) the pK_a .

a.
$$K_a = 10^{-10}$$
 $K_a = 10^{-21}$ $K_a = 5.2 \times 10^{-5}$ b. $pK_a = 7$ $pK_a = 11$ $pK_a = 3.2$ $pK_a = 10$ $pK_a = 21$ $pK_a = 4.3$ $K_a = 10^{-7}$ $K_a = 10^{-11}$ $K_a = 6.3 \times 10^{-4}$

2.9 Since strong acids form weak conjugate bases, the basicity of conjugate bases increases with increasing pK_a of their acids. Find the pK_a of each acid from Table 2.1 and then rank the acids in order of increasing pK_a . This will also be the order of increasing basicity of their conjugate bases.

2.10 Use the definitions in Answer 2.9 to compare the acids. The smaller the pK_a , the larger the K_a and the stronger the acid. When a stronger acid dissolves in water, the equilibrium lies farther to the right.

2.11 To estimate the pK_a of the indicated bond, find a similar bond in the pK_a table (H bonded to the same atom with the same hybridization).

a.
$$h$$

B. h

C. h

C. h

C. h

C. h

C. h

For h

For h

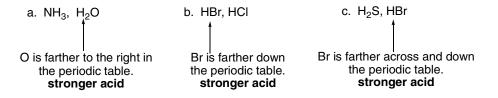
B. h

For h

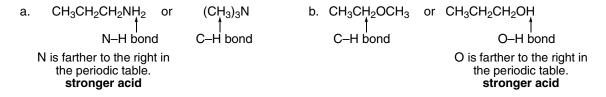
Estimated h

Esti

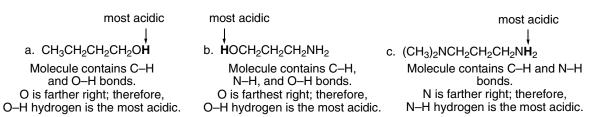
2.12 Label the acid and the base and then transfer a proton from the acid to the base. To determine if the reaction will proceed as written, compare the pK_a of the acid on the left with the conjugate acid on the right. The equilibrium always favors the formation of the weaker acid and the weaker base.


2.13 An acid can be deprotonated by the conjugate base of any acid with a higher pK_a .

CH ₃ COOH $\mathbf{p}K_{\mathbf{a}} = 4.8$ Any base having a conjugate acid with a $\mathbf{p}K_{\mathbf{a}}$ higher than 4.8 can deprotonate this acid.	Acid HCI HC≡CH H ₂	pK_a -7 25 35	Conjugate base Cl⁻←————————————————————————————————————
HC=CH $pK_a = 25$ All of these acids have a higher pK_a than HC=CH, and a conjugate base that can deprotonate HC=CH.	$\begin{array}{c} \textbf{Acid} \\ \textbf{H}_2 \\ \textbf{NH}_3 \\ \textbf{CH}_2 = \textbf{CH}_2 \\ \textbf{CH}_4 \end{array}$	p <i>K</i> _a 35 38 44 50	Conjugate base $H^ ^-$ NH $_2$ CH_2 =CH $^ CH_3^-$

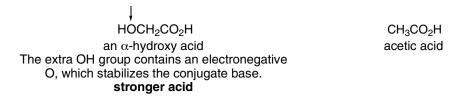

2.14 An acid can be deprotonated by the conjugate base of any acid with a higher pK_a .

CH_3CN $pK_a = 25$ Any base having a conjugate acid with a pK_a higher than 25 can deprotonate this acid.	Base NaH Na ₂ CO ₃ NaOH NaNH ₂ NaHCO ₃	Conjugate acid H ₂ HCO ₃ ⁻ H ₂ O NH ₃ H ₂ CO ₃	pK _a 35 ← 10.2 15.7 38 ← 6.4	Only NaH and NaNH ₂ are strong enough to deprotonate acetonitrile.
---	---	---	--	---


2.15 The acidity of H–Z increases across a row and down a column of the periodic table.

2.16 Compare the most acidic protons in each compound to determine the stronger acid.

2.17 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther right and down the periodic table is more acidic.

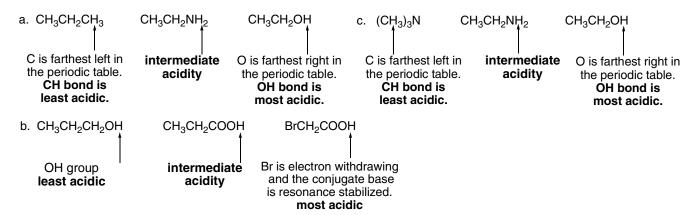

2.18 The acidity of HA increases across the periodic table. Pseudoephedrine contains C–H, N–H, and O–H bonds. The O–H bond is most acidic.

2.19 More electronegative atoms stabilize the conjugate base, making the acid stronger.

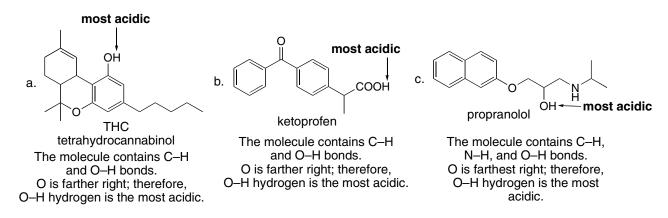
Compare the electron-withdrawing groups on the acids below to decide which is a stronger acid (more electronegative groups = more acidic).

FCH₂COOH CICH₂COOH or CH₃COOH O₂NCH₂COOH a. more acidic more acidic F is more electronegative than CI, making the NO₂ is electron withdrawing, making the O-H bond in the acid on the right more acidic. O-H bond in the acid on the right more acidic. Cl₂CHCH₂OH Cl₂CHCH₂CH₂OH Cl is closer CI is farther from the to the acidic O-H bond. O-H bond. more acidic

2.20 More electronegative groups stabilize the conjugate base, making the acid stronger.


2.21 The acidity of an acid increases when the conjugate base is resonance stabilized. Compare the conjugate bases of acetone and propane to explain why acetone is more acidic.

2.22 The acidity of an acid increases when the conjugate base is resonance stabilized. Acetonitrile has a resonance-stabilized conjugate base, which accounts for its acidity.


2.23 Increasing percent *s***-character makes an acid more acidic.** Compare the percent *s*-character of the carbon atoms in each of the C–H bonds in question. A stronger acid has a weaker conjugate base.

a.
$$CH_3CH_2-C\equiv C-H$$
 or $CH_3CH_2CH_2-H$ b. sp hybridized C sp 3 hybridized C 25% s-character more acidic base sp^3 hybridized sp^3 hybridized

2.24 To compare the acids, first **look for element effects**. Then identify electron-withdrawing groups, resonance, or hybridization differences.

2.25 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther right and down the periodic table is more acidic.

2.26 Draw the products of proton transfer from the acid to the base.

a.
$$(CH_3)_2CH\overset{\circ}{\bigcirc} - H + Na^+H:^-$$

acid base conjugate base conjugate acid

b. $(CH_3)_2CH\overset{\circ}{\bigcirc} - H + H^-OSO_3H$

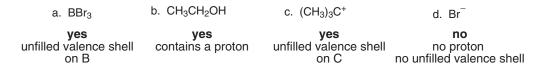
base acid conjugate acid conjugate base

c. $(CH_3)_2CH\overset{\circ}{\bigcirc} - H + Li^+-\overset{\circ}{N}[CH(CH_3)_2]_2$

acid base conjugate base conjugate base

c. $(CH_3)_2CH\overset{\circ}{\bigcirc} - H + H^-OCOCH_3$

base acid conjugate acid conjugate base conjugate base


conjugate base conjugate base conjugate base conjugate base

2.27 To cross a cell membrane, amphetamine must be in its neutral (not ionic) form.

2.28 Lewis bases are electron pair donors: they contain a lone pair or a π bond.

a. NH ₃	b. CH ₃ CH ₂ CH ₃	c. H:	d. H−C≡C−H
yes - has lone pair	\mathbf{no} - no lone pair or π bond	yes - has lone pair	yes - has 2π bonds

2.29 Lewis acids are electron pair acceptors. Most Lewis acids contain a proton or an unfilled valence shell of electrons.

2.30 Label the Lewis acid and Lewis base and then draw the curved arrows.

2.31 A Lewis acid is also called an **electrophile**. When a Lewis base reacts with an electrophile other than a proton, it is called a **nucleophile**. Label the electrophile and nucleophile in the starting materials and then draw the products.

a.
$$CH_3CH_2-\overset{..}{\bigcirc}-CH_2CH_3$$
 + BBr_3 $CH_3CH_2-\overset{..}{\bigcirc}-CH_2CH_3$ b. CH_3 CH_3

2.32 Draw the product of each reaction by using an electron pair of the Lewis base to form a new bond to the Lewis acid.

a.
$$CH_3CH_2-N-CH_2CH_3$$
 + $B(CH_3)_3$ $CH_3CH_2-N-CH_2CH_3$

Lewis base nucleophile lone pair on N

b. $CH_3CH_2-N-CH_2CH_3$ + $CH_3CH_2-N-CH_3CH_2-N-CH_3CH_3$

Lewis base nucleophile lone pair on N

c. $CH_3CH_2-N-CH_2CH_3$ + $CH_3CH_2-N-CH_3CH_3$

Lewis base nucleophile lone pair on N

c. $CH_3CH_2-N-CH_2CH_3$ + $CH_3CH_3-N-CH_3CH_3$

Lewis base nucleophile unfilled valence shell on C

c. $CH_3CH_2-N-CH_2CH_3$ + $CH_3CH_3-N-CH_3CH_3$

Lewis base nucleophile unfilled valence shell on C

c. $CH_3CH_2-N-CH_2CH_3$ + $CH_3CH_3-N-CH_3CH_3$

Lewis base nucleophile unfilled valence shell on N

lewis base nucleophile lone pair on N

nucleophile valence shell on N

Chapter 2–12

2.33 Curved arrows begin at the Lewis base and point towards the Lewis acid.

Lewis base Lewis acid contains a π bond contains a proton

To draw the conjugate acid of a Brønsted-Lowry base, add a proton to the base. 2.34

a.
$$H_2\ddot{O}$$
: $\xrightarrow{H^+}$ $H_3\ddot{O}^+$

a.
$$H_2\ddot{O}$$
: $\xrightarrow{H^+}$ $H_3\ddot{O}^+$ d. $CH_3CH_2NHCH_3$ $\xrightarrow{H^+}$ $CH_3CH_2NH_2CH_3$

b.
$$: NH_2 \xrightarrow{H^+} NH_3$$

b.
$$: NH_2 \xrightarrow{H^+} NH_3$$
 e. $CH_3 \overset{\cdots}{\bigcirc} CH_3 \xrightarrow{H^+} CH_3 - \overset{H}{\overset{1_+}{\bigcirc}} CH_3$

c.
$$HCO_3^- \xrightarrow{H^+} H_2CO_3$$

c.
$$HCO_3^- \xrightarrow{H^+} H_2CO_3$$
 f. $CH_3COO^- \xrightarrow{H^+} CH_3COOH$

To draw the conjugate base of a Brønsted-Lowry acid, remove a proton from the acid. 2.35

a. HCN
$$\xrightarrow{-H^+}$$
 -CN

d.
$$HC \equiv CH \xrightarrow{-H^+} HC \equiv C^-$$

b.
$$HCO_3^- \xrightarrow{-H^+} CO_3^{2-}$$

a.
$$HCN \xrightarrow{-H^+} {}^-CN$$
d. $HC\equiv CH \xrightarrow{-H^+} HC\equiv C^-$
b. $HCO_3^- \xrightarrow{-H^+} CO_3^{2^-}$
e. $CH_3CH_2COOH \xrightarrow{-H^+} CH_3CH_2COO^-$

c.
$$(CH_3)_2NH_2 \xrightarrow{-H^+} (CH_3)_2NH$$
 f. $CH_3SO_3H \xrightarrow{-H^+} CH_3SO_3^-$

f.
$$CH_3SO_3H$$
 $\xrightarrow{-H'}$ CH_3SO_3

2.36 To draw the products of an acid-base reaction, transfer a proton from the acid (H₂SO₄ in this case) to the base.

b.
$$NH_2 + HOSO_3H \longrightarrow NH_3 + HSO_4$$

d.
$$N-CH_3 + H-OSO_3H \longrightarrow N-CH_3 + HSO_4$$

To draw the products of an acid-base reaction, transfer a proton from the acid to the base (OH 2.37 in this case).

$$a. \hspace{1cm} \overbrace{\ddot{\bigcirc} \ddot{\neg} \ddot{\vdash} H \hspace{1cm} + \hspace{1cm} K^{+} \hspace{1cm} \vdots \ddot{\bigcirc} H \hspace{1cm} } \hspace{1cm} - \hspace{1cm} \ddot{\bigcirc} \ddot{\vdash} \hspace{1cm} K^{+} \hspace{1cm} + \hspace{1cm} H_{2}O$$

b.
$$\ddot{O}$$
: $+ K^{+} \bar{?} \ddot{O} H$ \ddot{O} : \dot{O} : $+ K^{+} \bar{?} \ddot{O} H$ \ddot{O} : \dot{O}

2.38 Label the Brønsted–Lowry acid and Brønsted–Lowry base in the starting materials and **transfer** a proton from the acid to the base for the products.

a.
$$CH_3\ddot{O}_3 - H + \ddot{\cdot}\ddot{N}H_2$$
 acid base conjugate base conjugate acid

b. $CH_3CH_2 - C$ $CH_3CH_2 - CH_3$ CH_3CH_3 CH_3CH_3 CH_3

2.39 Label the acid and base in the starting materials and then draw the products of proton transfer from acid to base.

Chapter 2-14

2.40 Label the acid and base in the starting materials and then draw the products of proton transfer from acid to base.

2.41 Draw the products of proton transfer from acid to base.

a.
$$CH_3O$$

acid

base

$$CH_3O$$

$$CH_3$$

2.42 Draw the products of proton transfer from acid to base.

$$CF_{3} \qquad CF_{3} \qquad CH_{2}CH(CH_{3})\ddot{N}HCH_{2}CH_{3} + \dot{H}_{OCOCH_{3}} \qquad CH_{2}CH(CH_{3})\ddot{N}HCH_{2}CH_{3} + OCOCH_{3} \qquad \dot{H} \qquad CH_{2}C(CH_{3})\dot{N}H_{2} + \dot{H}_{OCOCH_{3}} \qquad CH_{2}C(CH_{3})\dot{N}H_{3} + OCOCH_{3} \qquad \dot{H} \qquad CH_{2}C(CH_{3})\dot{N}H_{3} + OCOCH_{3} \qquad \dot{H} \qquad$$

2.43 To convert pK_a to K_a , take the antilog of (–) the pK_a .

a.
$$H_2S$$
 b. $CICH_2COOH$ c. HCN $pK_a = 7.0$ $pK_a = 2.8$ $pK_a = 9.1$ $K_a = 10^{-7}$ $K_a = 1.6 \times 10^{-3}$ $K_a = 7.9 \times 10^{-10}$

2.44 To convert from K_a to pK_a , take (-) the log of the K_a ; $pK_a = -\log K_a$.

a.
$$K_a = 4.7 \times 10^{-10}$$
 b. $K_a = 2.3 \times 10^{-5}$ c. $K_a = 5.9 \times 10^{-1}$ p. $K_a = 9.3$ p. $K_a = 4.6$ p. $K_a = 0.23$

2.45 An acid can be deprotonated by the conjugate base of any acid with a higher pK_a .

a. H₂O	Acid	р <i>К</i> а	Conjugate base	
р <i>К</i> _а = 15.7	CH ₃ CH ₂ OH	16	CH ₃ CH ₂ O⁻	
Any base with a conjugate acid having a pK_a higher than	HC≡CH	25	HC≡C⁻	Strong
15.7 can deprotonate it.	H_2	35	H-	enough to
	NH_3	38	$^{-}NH_{2}$	deprotonate
	CH ₂ =CH ₂	44	CH ₂ =CH ⁻	H ₂ O.
	CH₄	50	CH ₃ ⁻	

b. $\mathrm{NH_3}$ $\mathrm{p}K_\mathrm{a} = 38$ Any base with a conjugate acid having a $\mathrm{p}K_\mathrm{a}$ higher than 38 can deprotonate it.	Acid CH ₂ =CH ₂ CH ₄	p <i>K</i> _a 44 50	Conjugate base $CH_2=CH^-$ Strong enough to CH_3^- deprotonate NH_3 .	c. $\mathbf{CH_4}$ $\mathbf{p}K_a = 50$ There is no base with a conjugate acid having a $\mathbf{p}K_a$ higher than 50 in the table.
--	---	--------------------------------------	---	--

2.46 An acid can be deprotonated by the conjugate base of any acid with a higher pK_a .

011 011 011 0 011	Base	Conjugate acid	pK _a	
CH ₃ CH ₂ CH ₂ C≡CH	H_2O	H ₃ O ⁺	-1.7	
р <i>К</i> _а = 25	NaŌH	$H_2^{\prime}O$	15.7	
Any base having a conjugate	NaNH ₂	NH_3	38 ≺	¬。
acid with a p K_a higher than	NH_3	NH_4^+	9.4	Only NaNH ₂ , NaH, and
25 can deprotonate this acid.	NaH	H_2	35 ←	CH ₃ Li are strong enough
,	CH ₃ Li	CH₄	50 ←	to deprotonate the acid.

2.47 OH can deprotonate any acid with a p $K_a < 15.7$.

a. HCOOH

b.
$$H_2S$$

c. CH_3
 $DK_a = 3.8$

stronger acid deprotonated

 $DK_a = 7.0$

stronger acid deprotonated

 $DK_a = 41$

weaker acid weaker acid weaker acid weaker acid deprotonated

 $DK_a = 41$

These acids are too weak to be deprotonated by $DH_a = 40$

2.48 Draw the products and then compare the pK_a of the acid on the left and the conjugate acid on the right. The equilibrium lies towards the side having the acid with a higher pK_a (weaker acid).

a.
$$CF_3 - C'$$
 + \vdots CCH_2CH_3 $CF_3 - C'$ + $CF_3 - C'$ + $CF_3 - C'$ + $CF_3 - C'$ products favored $CF_3 - C'$ $CF_3 - C$

c.
$$(CH_3)_3C\overset{\frown}{\bigcirc}H + H_-\overset{\frown}{\bigcirc}SO_3H \longrightarrow (CH_3)_3C\overset{\dagger}{\bigcirc}H_2 + HSO_4^-$$
 products favored $pK_a = -9$ $pK_a = -3$

d.
$$\ddot{O}_{N}^{-H}$$
 + \ddot{O}_{3}^{-H} + \ddot{O}_{3}^{-H} + \ddot{O}_{3}^{-H} + \ddot{O}_{2}^{-H} + \ddot{O}_{3}^{-H} + \ddot{O}_{2}^{-H} + \ddot{O}_{3}^{-H} + \ddot{O}_{3}^{-H}

e.
$$H-C \equiv C-H$$
 + $Li^+ \stackrel{\sim}{C}H_2CH_3$ \longleftrightarrow $H-C \equiv C: Li^+ + CH_3CH_3$ $pK_a = 50$ products favored

f.
$$CH_3NH_2 + H_0SO_3H \longrightarrow CH_3NH_3 + HSO_4$$
 products favored $pK_a = -9$ $pK_a = 10.7$

- **2.49** Compare element effects first and then resonance, hybridization, and electron-withdrawing groups to determine the relative strengths of the acids.
 - a. Acidity increases across a row: $NH_3 < H_2O < HF$
 - b. Acidity increases down a column: $\label{eq:heaviside} \mathsf{HF} < \mathsf{HCI} < \mathsf{HBr}$
 - c. increasing acidity: ${}^{-}OH < H_2O < H_3O {}^{+}$
 - d. increasing acidity: NH₃ < H₂O < H₂S
 Compare NH and OH bonds first: acidity increases across a row.
 OH is more acidic.

Then compare OH and SH bonds: acidity increases down a column. SH is more acidic.

e. Acidity increases across a row: CH₃CH₃ < CH₃NH₂ < CH₃OH

f. increasing acidity: H₂O < H₂S < HCl
 Compare HCl and SH bonds first: acidity increases across a row.
 H–Cl is more acidic.

Compare OH and SH bonds: acidity increases down a column. SH is more acidic.

increasing acidity: CH₃CH₂CH₃ < CH₃CH₂OH < CICH₂CH₂OH

h.
$$HC \equiv CCH_2CH_3$$
 $CH_3CH_2CH_2CH_3$ $CH_3C = CCH_3$ H H Sp $C-H$ Sp $C-H$ Sp^2 $C-H$ weakest acid

increasing acidity: CH₃CH₂CH₂CH₃ < CH₃CH=CHCH₃ < HC=CCH₂CH₃

- **2.50** The strongest acid has the weakest conjugate base.
 - a. Draw the conjugate acid.
 Increasing acidity of conjugate acids:
 CH₃CH₃ < CH₃NH₂ < CH₃OH

increasing basicity: CH₃O < CH₃NH < CH₃CH₂

b. Draw the conjugate acid. Increasing acidity of conjugate acids: $CH_4 < H_2O < HBr$

increasing basicity: Br < HO < CH₃

c. Draw the conjugate acid.
Increasing acidity of conjugate acids:
CH₃CH₂OH < CH₃COOH < CICH₂COOH

increasing basicity: CICH₂COO < CH₃COO < CH₃CH₂O

d. Draw the conjugate acid.

Increasing acidity of conjugate acids:

$$\bigcirc$$
 $-CH_2CH_3 < \bigcirc$ $-CH=CH_2 < \bigcirc$ $-C\equiv CH$

increasing basicity:

$$\bigcirc$$
 $-C \equiv C^- < \bigcirc$ $-CH = \overline{C}H < \bigcirc$ $-CH_2 \overline{C}H_2$

2.51 More electronegative atoms stabilize the conjugate base by an electron-withdrawing inductive effect, making the acid stronger. Thus, an O atom increases the acidity of an acid.

$$pK_a = 11.1$$
 The O atom makes this cation the stronger acid. $pK_a = 8.33$

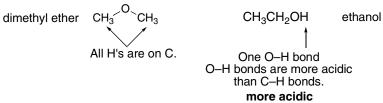
2.52 In both molecules the OH proton is the most acidic H. In addition, compare the percent *s*-character of the carbon atoms in each molecule. Nearby C's with a higher percent *s*-character can help to stabilize the conjugate base.

$$HC \equiv CCO_2H$$
 $CH_3CH_2CO_2H$ $pK_a = 1.8$ $pK_a = 4.9$

The sp hybridized C's of the triple bond have a higher percent s-character than an sp^3 hybridized C, so they pull electron density towards them, stabilizing the conjugate base.

stronger acid

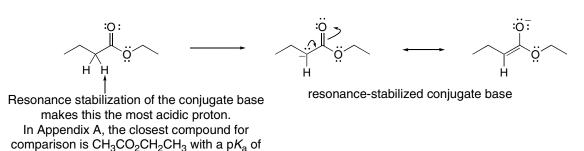
2.53


strongest acid

2.54 To draw the conjugate acid, look for the most basic site and protonate it. To draw the conjugate base, look for the most acidic site and remove a proton.

2.55 Remove the most acidic proton to form the conjugate base. Protonate the most basic electron pair to form the conjugate acid.

2.56 A lower pK_a means a stronger acid. The pK_a is low for the C-H bond in CH₃NO₂ due to resonance stabilization of the conjugate base.

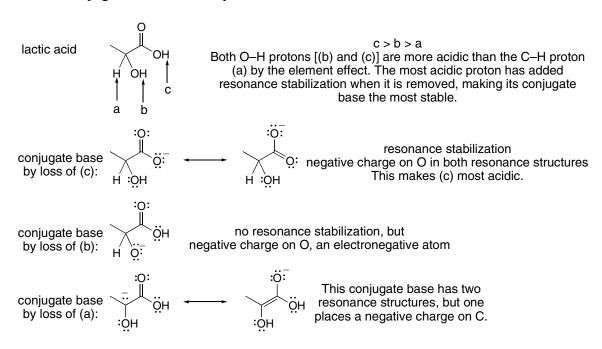

2.57 Compare the isomers.


2.58 Compare the Lewis structures of the conjugate bases when each H is removed. The more stable base makes the proton more acidic.

2.59 Draw the conjugate base to determine the most acidic hydrogen.

24.5; therefore, the estimated pK_a of ethyl butanoate is 25.

2.60 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther right across a row and down a column of the periodic table is more acidic.



The molecule contains C–H and O–H bonds. O is farther right in the periodic table; therefore, the O–H hydrogen is the most acidic.

The molecule contains C–H and N–H bonds. N is farther right in the periodic table; therefore, the N–H hydrogen is the most acidic.

The molecule contains C–H, N–H, and O–H bonds. O is farthest right in the periodic table; therefore, the O–H hydrogen is the most acidic.

2.61 Use element effects, inductive effects, and resonance to determine which protons are the most acidic. The H's of the CH₃ group are least acidic since they are bonded to an sp^3 hybridized C and the conjugate base formed by their removal is not resonance stabilized.

2.62 Lewis bases are electron pair donors: they contain a lone pair or a π bond. Bronsted-Lowry bases are proton acceptors: to accept a proton they need a lone pair or a π bond. This means Lewis bases are also Bronsted-Lowry bases.

b.
$$CH_3-CI:$$
 lone pairs on CI lone pairs or π bonds both

2.63 A *Lewis acid* **is an electron pair acceptor** and usually contains a proton or an unfilled valence shell of electrons. A *Brønsted–Lowry acid* **is a proton donor** and must contain a hydrogen atom. All Brønsted–Lowry acids are Lewis acids, though the reverse may not be true.

2.64 Label the Lewis acid and Lewis base and then draw the products.

a.
$$:CI: + BCI_3 \longrightarrow CI \longrightarrow CI \longrightarrow CH_3 \longrightarrow$$

2.65 A Lewis acid is also called an **electrophile**. When a Lewis base reacts with an electrophile other than a proton, it is called a **nucleophile**. Label the electrophile and nucleophile in the starting materials and then draw the products.

a.
$$CH_3CH_2OH + BF_3$$
 $CH_3CH_2-O_+H$ d. H_2OH_2 nucleophile electrophile $CH_3CH_2-O_+H$ b. $CH_3SCH_3 + AICI_3$ $CH_3-S_+CH_3$ nucleophile electrophile CH_3 $CH_3-S_+CH_3$ CH_3 $CH_$

2.66 Draw the product of each reaction.

a.
$$CH_{2}CH_{3}$$

b. $CH_{2}CH_{3}$
 CH_{2}

a. proton transfer electrophile

electrophile

Chapter 2-22

2.68 Draw the products of each reaction. In part (a), OH pulls off a proton and thus acts as a Brønsted–Lowry base. In part (b), OH attacks a carbon and thus acts as a Lewis base.

a.
$$CH_2 - \overset{+}{C}(CH_3)_2$$
 $H_2 \overset{-}{\text{O}}: + CH_2 = C(CH_3)_2$ $b. \overset{-}{\text{O}}H + (CH_3)_3 C^+ \longrightarrow (CH_3)_3 C \overset{-}{\text{O}}H$

2.69 Answer each question about esmolol.

2.70 Draw the product of protonation of either O or N and compare the conjugate acids. When acetamide reacts with an acid, the O atom is protonated because it results in a resonance-stabilized conjugate acid.

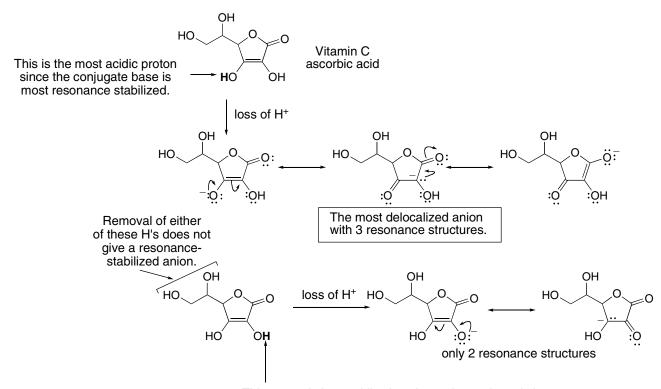
2.71

HO OH
$$pK_a = 2.86$$
 HO δ^+ O $pK_a = 5.70$ This group destabilizes the second negative charge.

 δ^+ stabilizes the (–) charge of the conjugate base.

The nearby COOH group serves as an electron-withdrawing group to stabilize the negative charge. This makes the first proton more acidic than CH₃COOH.

COO⁻ now acts as an electron-**donor** group which destabilizes the conjugate base, making removal of the second proton more difficult and thus it is **less** acidic than CH₃COOH.


2.72 The COOH group of glycine gives up a proton to the basic NH₂ group to form the zwitterion.

a. acts as a base
$$\longrightarrow$$
 NH_2CH_2-C \longrightarrow proton transfer \longrightarrow NH_3CH_2-C \longrightarrow NH_3C \longrightarrow NH_3C

2.73 Use curved arrows to show how the reaction occurs.

Protonate the negative charge on this carbon to form the product.

2.74 Compare the OH bonds in Vitamin C and decide which one is the most acidic.

This proton is less acidic since its conjugate base is less resonance stabilized.