
♦ General facts about alkenes

- Alkenes contain a carbon–carbon double bond consisting of a stronger σ bond and a weaker π bond. Each carbon is sp^2 hybridized and trigonal planar (10.1).
- Alkenes are named using the suffix *-ene* (10.3).
- Alkenes with different groups on each end of the double bond exist as a pair of diastereomers, identified by the prefixes E and Z (10.3B).

• Alkenes have weak intermolecular forces, giving them low mp's and bp's, and making them water insoluble. A cis alkene is more polar than a trans alkene, giving it a slightly higher boiling point (10.4).

- Since a π bond is electron rich and much weaker than a σ bond, alkenes undergo addition reactions with electrophiles (10.8).
- ♦ Stereochemistry of alkene addition reactions (10.8)

A reagent XY adds to a double bond in one of three different ways:

• **Syn addition**—X and Y add from the same side.

$$C = C \longrightarrow H - BH_2 \longrightarrow C - C \longrightarrow Syn addition occurs in hydroboration.$$

• Anti addition—X and Y add from opposite sides.

Both syn and anti addition occur when carbocations are intermediates.

Syn and anti addition occur in
$$H_2O, H^+$$
 and H_2O, H^+ and H_2O, H^+ H

♦ Addition reactions of alkenes

[1] **Hydrohalogenation**—Addition of HX (X = Cl, Br, I) (10.9–10.11)

- The mechanism has two steps.
- Carbocations are formed as intermediates.
- Carbocation rearrangements are possible.
- Markovnikov's rule is followed. H bonds to the less substituted C to form the more stable carbocation.
- Syn and anti addition occur.

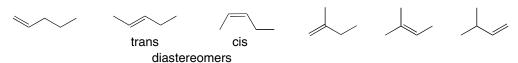
[2] **Hydration** and related reactions—Addition of H₂O or ROH (10.12)

For both reactions:

- The mechanism has three steps.
- Carbocations are formed as intermediates.
- Carbocation rearrangements are possible.
- Markovnikov's rule is followed. H bonds to the less substituted C to form the more stable carbocation.
- Syn and anti addition occur.

[3] **Halogenation**—Addition of X_2 (X = Cl or Br) (10.13–10.14)

- The mechanism has two steps.
- Bridged halonium ions are formed as intermediates.
- No rearrangements occur.
- Anti addition occurs.


[4] **Halohydrin formation**—Addition of OH and X (X = Cl, Br) (10.15)

- The mechanism has three steps.
- Bridged halonium ions are formed as intermediates.
- No rearrangements occur.
- X bonds to the less substituted C.
- Anti addition occurs.
- NBS in DMSO and H₂O adds Br and OH in the same fashion.

[5] **Hydroboration—oxidation**—Addition of H₂O (10.16)

- Hydroboration has a one-step mechanism.
- No rearrangements occur.
- OH bonds to the less substituted C.
- Syn addition of H₂O results.

Six alkenes of molecular formula C₅H₁₀:

10.2 To determine the number of degrees of unsaturation:

- [1] Calculate the maximum number of H's (2n + 2).
- [2] Subtract the actual number of H's from the maximum number.
- [3] Divide by two.

a. C_2H_2

- [1] maximum number of H's = 2n + 2 = 2(2) + 2 = 6
- [2] subtract actual from maximum = 6 2 = 4
- [3] divide by two = 4/2 = 2 degrees of unsaturation

b. C_6H_6

- [1] maximum number of H's = 2n + 2 = 2(6) + 2 = 14
- [2] subtract actual from maximum = 14 6 = 8
- [3] divide by two = 8/2 = 4 degrees of unsaturation

c. C₈H₁₈

- [1] maximum number of H's = 2n + 2 = 2(8) + 2 = 18
- [2] subtract actual from maximum = 18 18 = 0
- [3] divide by two = 0/2 = 0 degrees of unsaturation

d. C₇H₈O

Ignore the O.

- [1] maximum number of H's = 2n + 2 = 2(7) + 2 = 16
- [2] subtract actual from maximum = 16 8 = 8
- [3] divide by two = 8/2 = 4 degrees of unsaturation

e. C₇H₁₁Br

Because of Br, add one more H (11 + 1 H = 12 H's).

- [1] maximum number of H's = 2n + 2 = 2(7) + 2 = 16
- [2] subtract actual from maximum = 16 12 = 4
- [3] divide by two = 4/2 = 2 degrees of unsaturation

f. C₅H₉N

Because of N, subtract one H (9 - 1 H = 8 H's).

- [1] maximum number of H's = 2n + 2 = 2(5) + 2 = 12
- [2] subtract actual from maximum = 12 8 = 4
- [3] divide by two = 4/2 = 2 degrees of unsaturation

10.3

One possibility for C₆H₁₀:

a. a compound that has 2 π bonds

c. a compound with 2 rings

b. a compound that has 1 ring and 1 π bond

d. a compound with 1 triple bond

10.4 To name an alkene:

- [1] Find the longest chain that contains the double bond. Change the ending from -ane to -ene.
- [2] Number the chain to give the double bond the lower number. The alkene is named by the first number.
- [3] Apply all other rules of nomenclature.

To name a cycloalkene:

- [1] When a double bond is located in a ring, it is always located between C1 and C2. Omit the "1" in the name. Change the ending from *-ane* to *-ene*.
- [2] Number the ring clockwise or counterclockwise to give the first substituent the lower number.
- [3] Apply all other rules of nomenclature.

- a. [1] CH₂=CHCH(CH₃)CH₂CH₃
 5 C chain with double bond pentene
- $\begin{array}{ccc} & & & & & & \\ & & & & \\ I_3)\text{CH}_2\text{CH}_3 & & & & \\ I_2] & & \text{CH}_2 = \text{CHCHCH}_2\text{CH}_3 \\ & & & \text{ble bond} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
- [3] 3-methyl-1-pentene

- b. [1] (CH₃CH₂)₂C=CHCH₂CH₂CH₃
 7 C chain with double bond heptene
- 3
 CH₃CH₂ \

 [2] C=CHCH₂CH₂CH₃
 CH₃CH₂

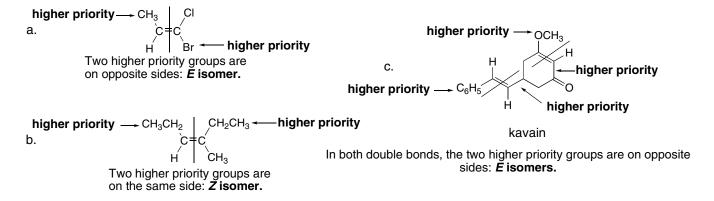
 3-heptene
 3-ethyl

3-methyl

[3] 3-ethyl-3-heptene

- c. [1]
 - 5 C chain with double bond pentene
- [2] 2-ethyl 4-methyl
- [3] 2-ethyl-4-methyl-1-pentene

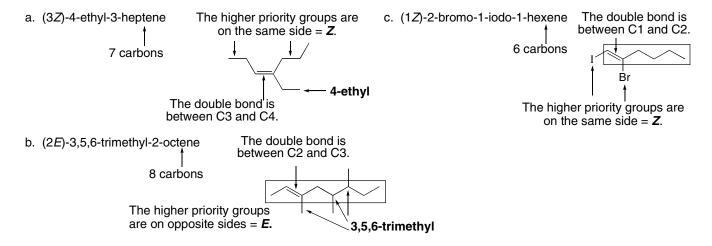
- d. [1]
 - 5 C ring with a double bond cyclopentene
- [2] 4 -3 3,4-dimethyl

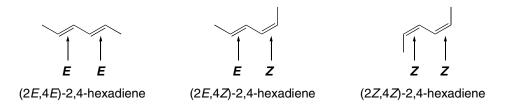

1-pentene

[3] 3,4-dimethylcyclopentene

- e. [1]
 - 6 C ring with a double bond cyclohexene
- 1-methyl
 [2]
 5-tert-butyl
- [3] 5-tert-butyl-1-methylcyclohexene
- **10.5** Use the rules from Answer 10.4 to name the compounds. Enols are named to give the OH the lower number. Compounds with two C=C's are named with the suffix *-adiene*.
- [1] a. OH
 - 6 C chain with double bond hexene
- [1] OH
 - 8 C chain with double bond octene
- c. [1]
 - 7 C chain with two double bonds **heptadiene**

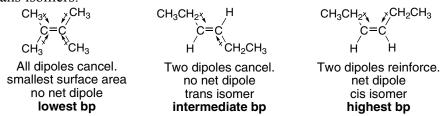
- [2] 3 1 OH
- [2] 4 OH 6-methyl
- [3] 4-ethyl-3-hexen-1-ol
- [3] 5-ethyl-6-methyl-7-octen-4-ol
- [2] **2** [3] **2 2-methyl**
 - [3] 2,6-dimethyl-2,5-heptadiene


- **10.6** To label an alkene as *E* or *Z*:
 - [1] **Assign priorities** to the two substituents *on each end* using the rules for *R*,*S* nomenclature.
 - [2] **Assign** *E* **or Z** depending on the location of the two higher priority groups.
 - The *E* prefix is used when the two higher priority groups are on **opposite sides**.
 - The **Z** prefix is used when the two higher priority groups are on the **same side** of the double bond.

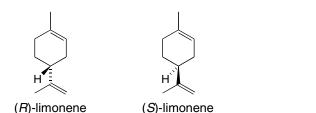

10.7 To name an alkene: First follow the rules from Answer 10.4. Then, when necessary, assign an *E* or *Z* prefix based on priority, as in 10.6.

10.8 To work backwards from a name to a structure:

- [1] Find the parent name and functional group and draw, remembering that the double bond is between C1 and C2 for cycloalkenes.
- [2] Add the substituents to the appropriate carbons.



10.9 Draw all of the stereoisomers and then use the rules from Answer 10.6 to name each diene.



10.10 To rank the isomers by increasing boiling point:

Look for polarity differences: *small net dipoles* make an alkene more polar, giving it a higher boiling point than an alkene with *no net dipole*. Cis isomers have a higher boiling point than their trans isomers.

10.11 Recall from Section 5.13B that the odor of a molecule is determined more by shape than by functional groups. That is why the *R* and *S* isomers of limonene smell so differently.

10.12 Increasing number of double bonds = decreasing melting point.

10.13

- **10.14** To draw the products of an addition reaction:
 - [1] Locate the two bonds that will be broken in the reaction. Always break the π bond.
 - [2] Draw the product by forming two new σ bonds.

a.
$$HCI$$
 two new σ bonds c. CH_3 HCI CH_3 two new σ bonds CH_3 CH

b.
$$CH_3CH_2CH_2CH=CHCH_2CH_2CH_3$$

$$\xrightarrow{HCl} CH_3CH_2CH_2-C-C-C-CH_2CH_2CH_3$$

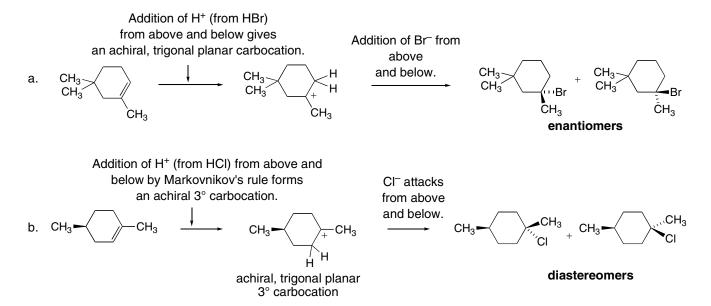
$$\xrightarrow{H} Cl$$

$$two new σ bonds$$

10.15 Addition reactions of HX occur in two steps:

- [1] The double bond attacks the H atom of HX to form a carbocation.
- [2] X⁻ attacks the carbocation to form a C-X bond.

10.16 Addition to alkenes follows Markovnikov's rule: When HX adds to an unsymmetrical alkene, the H bonds to the C that has more H's to begin with.


10.17 To determine which alkene will react faster, draw the carbocation that forms in the rate-determining step. The more stable, more substituted carbocation, the lower the E_a to form it and the faster the reaction.

10.18 Look for rearrangements of a carbocation intermediate to explain these results.

10.19 Addition of HX to alkenes involves formation of carbocation intermediates. Rearrangement of the carbocation will occur if it forms a more stable carbocation.

a.
$$C = CH_3$$
 $H = CH_3$ $H = CH_2CH_3$ $H = CH_3$ $H = CH_3$

10.20 To draw the products, remember that addition of HX proceeds via a carbocation intermediate.

10.21 The product of syn addition will have H and Cl both up or down (both on wedges or both dashes), while the product of anti addition will have one up and one down (one wedge, one dash).

10.22

a.
$$CH_3$$
 CH_3
 $CH_2CH_2CH_3$
 CH_3
 $CH_$

10.23

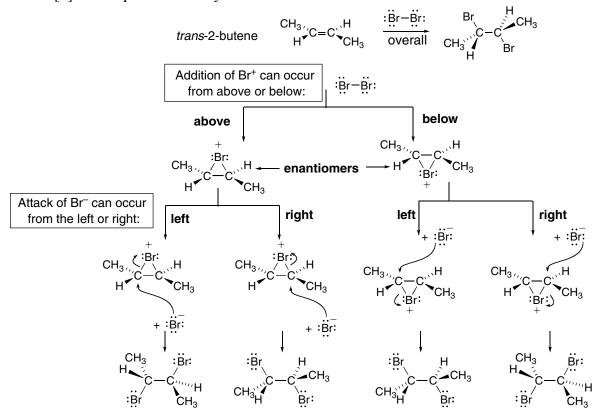
$$H_2O$$
 H_2SO_4 H_2SO_4 H_2SO_4 H_3SO_4 H_4 H_4 H_5 H_6 H_7 H_8 H_8

10.24 The two steps in the mechanism for the halogenation of an alkene are:

- [1] Addition of X⁺ to the alkene to form a bridged halonium ion
- [2] Nucleophilic attack by X⁻

transition state [1]: transition state [2]:

10.25 Halogenation of an alkene adds two elements of X in an anti fashion.


$$a. \quad \square \qquad \stackrel{Br_2}{\longrightarrow} \qquad \stackrel{Br}{\longrightarrow} \qquad \qquad b. \qquad \stackrel{Cl_2}{\longrightarrow} \qquad \stackrel{CH_3}{\longleftarrow} \qquad + \qquad \stackrel{CH_3}{\longrightarrow} \qquad \\ Br \qquad \qquad Br \qquad \qquad b. \qquad \qquad Cl_2 \qquad \qquad + \qquad \stackrel{CH_3}{\longrightarrow} \qquad \\ Br \qquad \qquad Br \qquad Br \qquad \qquad Br \qquad Br \qquad \qquad Br \qquad Br$$

10.26 To draw the products of halogenation of an alkene, remember that the halogen adds to both ends of the double bond but only anti addition occurs.

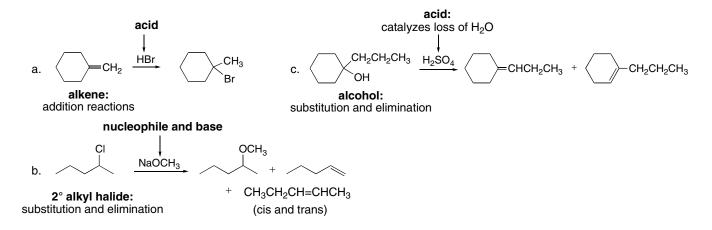
a.
$$Cl_2$$
 Cl_3
 CH_3
 CH_3

10.27 The two steps in the mechanism for the halogenation of an alkene are:

- [1] Addition of X⁺ to the alkene to form a bridged halonium ion
- [2] Nucleophilic attack by X⁻

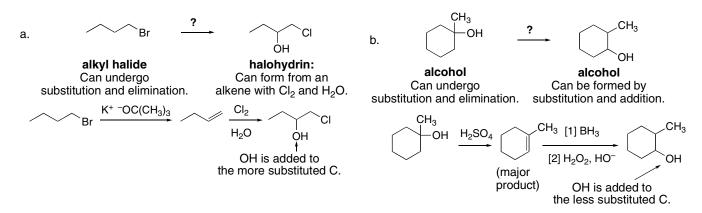
All four compounds are identical—an achiral meso compound.

10.28 Halohydrin formation adds the elements of X and OH across the double bond in an anti fashion. The reaction is regioselective so X ends up on the carbon that had more H's to begin with.


10.30 In hydroboration the boron atom is the electrophile and becomes bonded to the carbon atom that had more H's to begin with.

a.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

- **10.31** The hydroboration–oxidation reaction occurs in two steps:
 - [1] Syn addition of BH₃, with the boron on the less substituted carbon atom
 - [2] OH replaces the BH₂ with retention of configuration.


10.32 Remember that hydroboration results in addition of OH on the less substituted C.

- **10.34** There are always two steps in this kind of question:
 - [1] Identify the functional group and decide what types of reactions it undergoes (for example, substitution, elimination, or addition).
 - [2] Look at the reagent and determine if it is an electrophile, nucleophile, acid, or base.

10.35 To devise a synthesis:

- [1] Look at the starting material and decide what reactions it can undergo.
- [2] Look at the product and decide what reactions could make it.

10.36 Use the directions from Answer 10.2 to calculate degrees of unsaturation.

a. C₃H₄

- [1] maximum number of H's = 2n + 2 = 2(3) + 2 = 8
- [2] subtract actual from maximum = 8 4 = 4
- [3] divide by 2 = 4/2 = 2 degrees of unsaturation

b. C_6H_8

- [1] maximum number of H's = 2n + 2 = 2(6) + 2 = 14
- [2] subtract actual from maximum = 14 8 = 6
- [3] divide by 2 = 6/2 = 3 degrees of unsaturation

c. C₄₀H₅₆

- [1] maximum number of H's = 2n + 2 = 2(40) + 2 = 82
- [2] subtract actual from maximum = 82 56 = 26
- [3] divide by 2 = 26/2 = 13 degrees of unsaturation

d. C₈H₈O

Ignore the O.

- [1] maximum number of H's = 2n + 2 = 2(8) + 2 = 18
- [2] subtract actual from maximum = 18 8 = 10
- [3] divide by 2 = 10/2 = 5 degrees of unsaturation

e. C₁₀H₁₆O₂

Ignore both O's.

- [1] maximum number of H's = 2n + 2 = 2(10) + 2 = 22
- [2] subtract actual from maximum = 22 16 = 6
- [3] divide by 2 = 6/2 = 3 degrees of unsaturation

f. C₈H₉Br

Because of Br, add one H (9 + 1 = 10 H/s).

- [1] maximum number of H's = 2n + 2 = 2(8) + 2 = 18
- [2] subtract actual from maximum = 18 10 = 8
- [3] divide by 2 = 8/2 = 4 degrees of unsaturation

g. C₈H₉CIO

Ignore the O; count Cl as one more H (9 + 1 = 10 H/s).

- [1] maximum number of H's = 2n + 2 = 2(8) + 2 = 18
- [2] subtract actual from maximum = 18 10 = 8
- [3] divide by 2 = 8/2 = 4 degrees of unsaturation

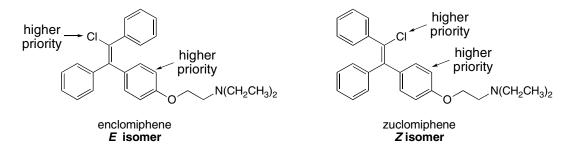
h. C₇H₉Br

Because of Br, add one H (9 + 1 = 10 H/s).

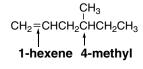
- [1] maximum number of H's = 2n + 2 = 2(7) + 2 = 16
- [2] subtract actual from maximum = 16-10=6
- [3] divide by 2 = 6/2 = 3 degrees of unsaturation

i. C₇H₁₁N

Because of N, subtract one H (11 – 1 = 10 H's).

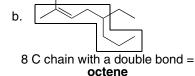

- [1] maximum number of H's = 2n + 2 = 2(7) + 2 = 16
- [2] subtract actual from maximum = 16 10 = 6
- [3] divide by 2 = 6/2 = 3 degrees of unsaturation

j. C₄H₈BrN


Because of Br, add one H, but subtract one for N (8 + 1 - 1 = 8 H/s).

- [1] maximum number of H's = 2n + 2 = 2(4) + 2 = 10
- [2] subtract actual from maximum = 10 8 = 2
- [3] divide by 2 = 2/2 = 1 degree of unsaturation

- 10.37 First determine the number of degrees of unsaturation in the compound. Then decide which combinations of rings and π bonds could exist.
 - $C_{10}H_{14}$ possibilities: [1] maximum number of H's = 2n + 2 = 2(10) + 2 = 22 4π bonds [2] subtract actual from maximum = 22 - 14 = 8 3π bonds + 1 ring [3] divide by two = 8/2 = 4 degrees of unsaturation 2π bonds + 2 rings 1π bond + 3 rings 4π rings
- 10.38 The statement is incorrect because in naming isomers with more than two groups on a double bond, one must use an E/Z label, rather than a cis/trans label.



- **10.39** Name the alkenes using the rules in Answers 10.4 and 10.6.
- a. CH₂=CHCH₂CH(CH₃)CH₂CH₃
 6 C chain with a double bond = hexene

5-ethyl

4-methyl-1-hexene

2-methyl 2-octene

2-isopropyl

5-ethyl-2-methyl-2-octene

c.

1-pentene

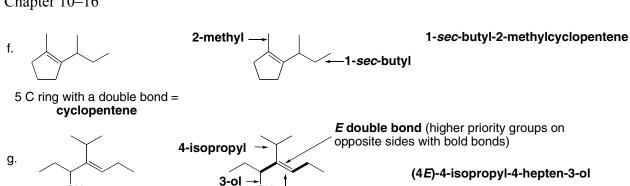
2-isopropyl-4-methyl-1-pentene

5 C chain with a double bond = **pentene**

 $\begin{array}{c|c} \text{CH}_3 & \text{CH}_3 \longleftarrow \textbf{3-methyl} \\ \text{C=C} & \text{CH}_3 \longleftarrow \textbf{5-methyl} \\ \text{H} & \text{CH}_2\text{CHCH}_3 \\ \textbf{2-hexene} \end{array}$

higher priority
$$CH_3$$
 CH_3 (2*E*)-3,5-dimethyl-2-hexene CH_3 CH_2 CH_3 CH_3

6 C chain with a double bond = **hexene**

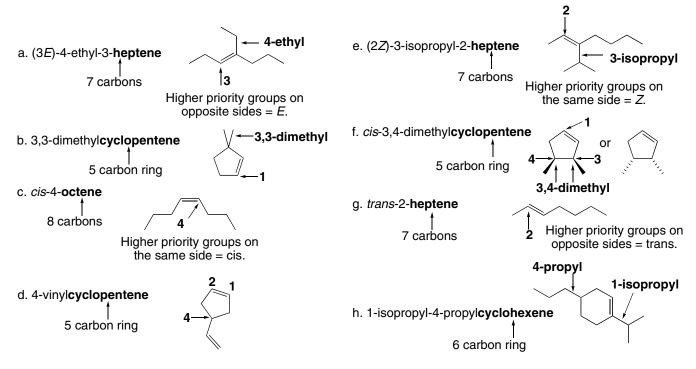

e. •

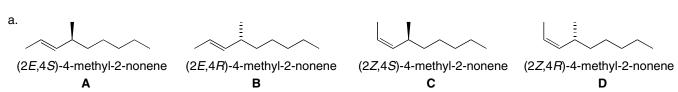
1-ethyl 5-isopropyl

1-ethyl-5-isopropylcyclohexene

are on opposite sides = **E** alkene.

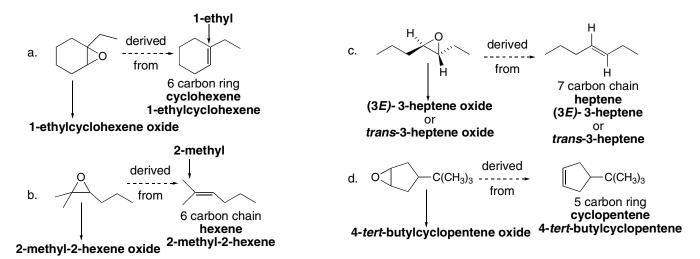
6 C ring with a double bond = cyclohexene

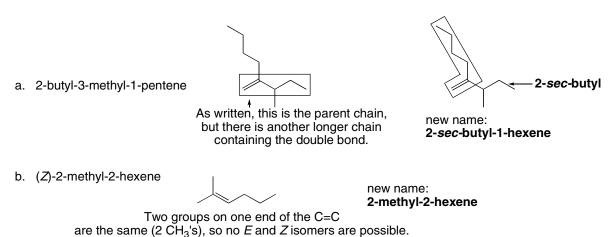

4-heptene


7 C chain with a double bond = heptene

ÓН

ÓН


10.40 Use the directions from Answer 10.8.



- b. A and B are enantiomers. C and D are enantiomers.
- c. Pairs of diastereomers: A and C, A and D, B and C, B and D.

10.43 Name the alkene from which the epoxide can be derived and add the word oxide.

c. (E)-1-isopropyl-1-butene

As written, this is the parent chain, but there is another longer chain containing the double bond.

new name:

(3E)-2-methyl-3-hexene

d. 5-methylcyclohexene

As written the methyl is at C5. Re-number to put it at C4.

new name:

4-methylcyclohexene

e. 4-isobutyl-2-methylcylohexene

new name:

5-isobutyl-1-methylcyclohexene

f. 1-sec-butyl-2-cyclopentene

This has the double bond between C2 and C3. Cycloalkenes must have the double bond between C1 and C2. Re-number.

g. 1-cyclohexen-4-ol

The numbering is incorrect. When a compound contains both a double bond and an OH group, number the C skeleton to give the OH group the lower number.

The numbering is incorrect. When a compound contains both a double bond and an OH group, number the C skeleton to give the OH group the lower number.

3-1

new name:

3-sec-butylcyclopentene

3-cyclohexenol (The "1" can be omitted.)

6-ethyl-5-octen-4-ol

10.45

c. Since there are 7 double bonds
 and 2 tetrahedral stereogenic
 centers, 2⁹ = 512 possible stereoisomers.

T_H

2-methyl-1-pentene (2E)-4-methyl-2-pentene

2-methyl-2-pentene (2Z)-4-methyl-2-pentene

4-methyl-1-pentene

(2E)-3-methyl-2-pentene

(3R)-3-methyl-1-pentene

2-ethyl-1-butene

(2Z)-3-methyl-2-pentene

(3*S*)-3-methyl-1-pentene

10.47

stearic acid OH

highest melting point no double bonds

elaidic acid

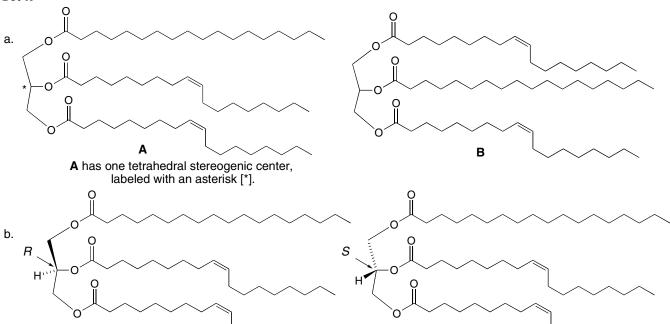
oleic acid

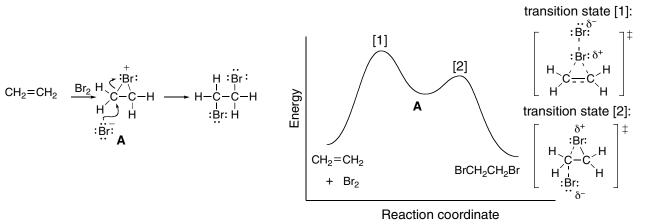
ОН

intermediate melting point one *E* double bond

lowest melting point one *Z* double bond

10.48


OH eleostearic acid

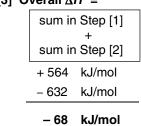

a. OH

all trans double bonds higher melting point

b. all cis double bonds lower melting point

10.51 The more negative the ΔH° , the larger the $K_{\rm eq}$ assuming entropy changes are comparable. Calculate the ΔH° for each reaction and compare.

$$CH_2=CH_2 + HI \longrightarrow CH_3CH_2-I$$


[1] Bonds broken

	ΔH^{0} (kJ/mol)	
C–C π bond	+ 267	
H-I	+ 297	
Total	+ 564 kJ/mo	-

[2] Bonds formed

	∆ <i>H</i> ^o (kJ/mol)
CH ₂ ICH ₂ -H	- 410
C-I	- 222
Total	– 632 kJ/mol

[3] Overall ∆H° =

$$CH_2=CH_2 + HCI \longrightarrow CH_3CH_2-CI$$

[1] Bonds broken

	ΔH ^o (kJ/	/mol)
$C-C \pi$ bond	+ 267	
H-CI	+ 431	
Total	+ 698	kJ/mol

[2] Bonds formed

	Δ <i>H</i> ° (kJ/mol)
CH ₂ CICH ₂ -H	- 410
C-CI	- 339
Total	– 749 kJ/mol

[3] Overall $\Delta H^0 =$

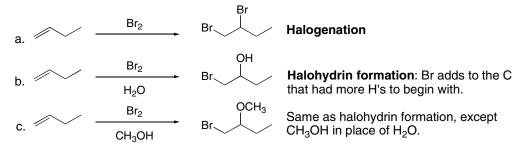
sum in Step [1]
+
sum in Step [2]
+ 698 kJ/mol
- 749 kJ/mol

Compare the ΔH° :

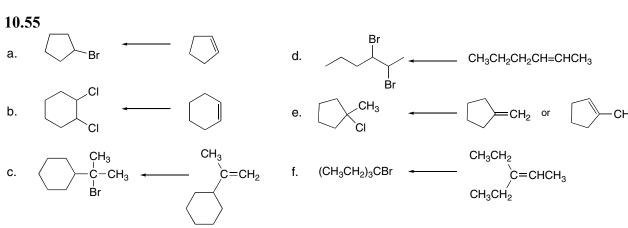
Addition of HI: **-68 kJ/mol** more negative ΔH° , larger $K_{\rm eq}$.

Addition of HCI: -51 kJ/mol

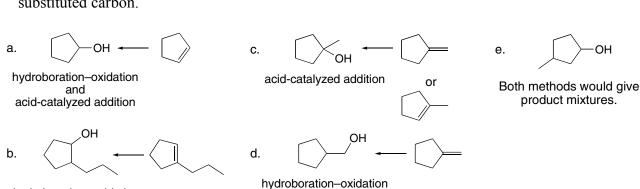
10.52


a.
$$CH_3$$
 $C=CH_2$
 CH_3
 CH

f.
$$CH_3$$
 $C=CH_2$ Br_2 , H_2O CH_3 CH_3 CH_3 CH_3 CH_3 CH_3


h.
$$CH_3$$
 $C=CH_2$ CH_3 CH

i.
$$CH_3$$
 $C=CH_2$ CH_3 CH


10.54

hydroboration-oxidation

10.56 Hydroboration-oxidation results in addition of an OH group on the less substituted carbon, whereas acid-catalyzed addition of H₂O results in the addition of an OH group on the more substituted carbon.

a.
$$(CH_3CH_2)_2C=CHCH_2CH_3$$

$$CH_3CH_2 \qquad H \qquad CH_3CH_2 \qquad H$$

$$C=C \qquad HCI \qquad CH_3CH_2 - C-H$$

$$CH_3CH_2 \qquad CH_2CH_3 \qquad CI \qquad CH_2CH_3$$

$$H \ adds \ here$$

$$to \ less \ substituted \ C.$$

b.
$$(CH_3CH_2)_2C=CH_2$$

$$CH_3CH_2$$

$$C=CH_2$$

$$CH_3CH_2$$

c.
$$(CH_3)_2C=CHCH_3$$
 [1] BH_3 $(CH_3)_2C=CHCH_3$ $(CH_3)_2C=CHCH_3$ $(CH_3)_2C=CHCH_3$ $(CH_3)_2C=CHCH_3$ $(CH_3)_2C=CHCH_3$ $(CH_3)_2C=CHCH_3$

$$\mathsf{d}. \qquad \qquad \mathsf{Cl}_2 \qquad \qquad \mathsf{Cl}_2$$

e.
$$CH_2 \xrightarrow{Br_2} CH_2Br$$

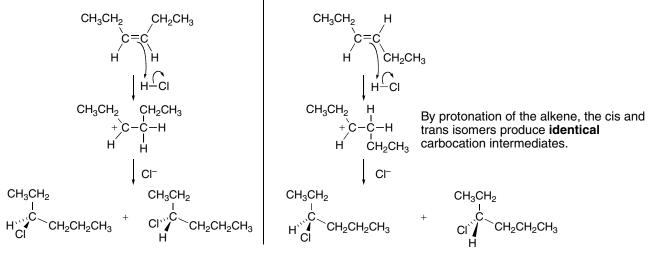
Br adds here to less substituted C.

OH adds here to less substituted C.

g.
$$\frac{\text{NBS}}{\text{DMSO, H}_2\text{O}}$$
 OH Br

Br adds here to less substituted C.

h.
$$\frac{\mathsf{Br}_2}{\mathsf{Br}}$$


10.59

a.
$$(CH_3)_3C$$
 CH_2
 H_2SO_4
 $CH_3)_3C$
 CH_3
 CH_3

C.
$$CH_3$$
 CI_2 CI_2 CH_3 CI_3 CI_4 CI_5 CI_5

10.61

10.62 Draw each reaction. (a) The cis isomer of 4-octene gives two enantiomers on addition of Br₂.(b) The trans isomer gives a meso compound.

Both *cis*- and *trans*-3-hexene give the same racemic mixture of products, so the reaction is not stereospecific.

10.64 The alkene that forms the more stable carbocation reacts faster, according to the Hammond postulate.

This 2° carbocation is resonance stabilized, making it more stable, so the starting alkene reacts faster with HBr.

Markovnikov

b.
$$CH_2 = C$$
 addition $CH_2 - C(CH_3)_2$ faster

 $CH_3 - CH_3$ $CH_2 - C(CH_3)_2$ faster

 $CH_3 - CH_3$ $CH_2 - CH_3$ $CH_3 - CH_3$ $CH_2 - CH_3$ $CH_3 - CH_3$ $CH_2 - CH_3$ from the carbocation is still 3°, but the nearby electron density from the carbocation, destabilizing it. Thus, the reaction to form this carbocation occurs more slowly.

10.65

a.
$$\begin{array}{c} H - CI \\ H + CH_3 \\ H$$

10.66

a.
$$CH_3$$
 H_2O
 H_2SO_4
 H_2SO_4

+ HSO₄-

10.67

$$H = \ddot{O}H_2$$
 $H = \ddot{O}H_2$
 $H = \ddot{O}H_2$

10.68 The isomerization reaction occurs by protonation and deprotonation.

10.70

This carbocation is resonance stabilized by the O atom, and therefore preferentially forms and results in **B**.

C COOCH₃

HBr

COOCH₃

COOCH₃

D

H O

C CH₃

This carbocation is destabilized by the
$$\delta^+$$
 on the adjacent C, so it does not form.

This carbocation is formed preferentially and results in product **D**. It is not destabilized by an

D. It is not destabilized by an adjacent electron-withdrawing COOCH₃ group.

10.71

a.
$$\frac{OH \quad PBr_3}{POCl_3, \text{ pyridine}}$$
 $\frac{H_2O + H_2SO_4}{OH \text{ adds to } \textit{more}} \text{ substituted C.}$

b.
$$CH_3 \stackrel{\text{Br}}{\underset{\text{I}}{\overset{\text{I}}{\hookrightarrow}}} CH_3 \stackrel{\text{K}^+ - OC(CH_3)_3}{\underset{\text{I}}{\longleftrightarrow}} CH_3 - CH = CH_2 \xrightarrow{Br_2} CH_3 - CH_2Br$$

d.
$$CH_3$$
 $-CH$ $-CH_2I$ $\xrightarrow{K^+$ $-OC(CH_3)_3}$ $(CH_3)_2C$ $-CH_2$ \xrightarrow{HCI} CH_3 $-CH_3$ $-CH_3$

e.
$$K^{+}$$
 $OC(CH_3)_3$ Br_2 H_2O

f.
$$CH_3CH=CH_2$$

$$\xrightarrow{Br_2}$$
 CH_3CH-CH_2

$$\xrightarrow{Br}$$
 CH_3CH-CH_2

$$\xrightarrow{NaNH_2}$$
 $CH_3C\equiv CH_3$

a.
$$\frac{Cl_2}{H_2O} \longrightarrow \frac{Cl}{OH} \longrightarrow \frac{Cl}{OH}$$

10.74

a.
$$\xrightarrow{Br} \xrightarrow{K^+ - OC(CH_3)_3}$$

b. $\xrightarrow{Br_2} \xrightarrow{Br_2} \xrightarrow$

10.77