Looking forward… our review of Chapter "0"

- Cool applications
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{\text{cell}} = E_{\text{red}} - E_{\text{ox}}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- Calculating E_{cell} under non-standard state conditions
- Conventions

RECALL: Daniell (galvanic) Cell (1836)

No more H₂ from the (primary) battery!

Zn (s) → Zn²⁺ (aq) + 2e⁻

Cu²⁺ (aq) + 2e⁻ → Cu (s)

NET REACTION: Zn (s) + Cu²⁺ (aq) → Zn²⁺ (aq) + Cu (s)

John Frederic Daniell (1790–1845)

from Wiki
 Voltage Produced by Galvanic Cells

The difference in electric potential between the anode and the cathode is called:

✓ Cell potential
✓ Cell voltage
✓ emf (electromotive force)

Cell Diagram

\[\text{Zn (s)} + \text{Cu}^{2+} (\text{aq}) \rightarrow \text{Cu (s)} + \text{Zn}^{2+} (\text{aq}) \]

\[[\text{Cu}^{2+}] = 1 \text{ M and } [\text{Zn}^{2+}] = 1 \text{ M} \]

\[\text{Zn (s)} | \text{Zn}^{2+} (\text{aq}, 1 \text{ M}) || \text{Cu}^{2+} (\text{aq}, 1 \text{ M}) | \text{Cu (s)} \]

Anode salt bridge Cathode

This should be \(-0.76 \text{ V}\) (we will discuss this later)

EXAMPLE: What is the (standard) potential of a galvanic cell consisting of a Cd electrode in a 1.0 M Cd(NO\(_3\))\(_2\) solution and a Cr electrode in a 1.0 M Cr(NO\(_3\))\(_3\) solution?

Which half-reaction is reducing?

\[\text{Cd}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Cd (s)} \quad E^{\circ} = -0.40 \text{ V} \quad \text{Cd}^{2+} \text{ will get reduced to Cd} \]

\[\text{Cr}^{3+} (\text{aq}) + 3e^- \rightarrow \text{Cr (s)} \quad E^{\circ} = -0.74 \text{ V} \quad \text{Cr will get oxidized to Cr}^{3+} \]

More negative of the two

Anode (oxidation): \[\text{Cr (s)} \rightarrow \text{Cr}^{3+} (1 \text{ M}) + 3e^- \times 2 \]

Cathode (reduction): \[\text{2Cd (s)} + 2\text{Cd}^{2+} (1 \text{ M}) \rightarrow \text{3Cd (s)} + 2\text{Cr}^{3+} (1 \text{ M}) \]

\[E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} \]

\[E_{\text{cell}} = -0.40 \text{ V} - (-0.74 \text{ V}) \]

\[E_{\text{cell}} = +0.34 \text{ V} (\text{positive = spontaneous, since } \Delta G = -nFE) \]

... if your answer is negative then you switched the anode/cathode in the galvanic cell

Electrochemistry:

conventions... oh, conventions!

Cathode – electrode where catholyte species are reduced
Anode – electrode where anolyte species are oxidized
Electrochemistry: conventions... oh, conventions!
Cathode – electrode where catholyte species are reduced
Anode – electrode where anolyte species are oxidized

Does a Negative/Positive Electrode = Cathode or Anode?... It depends!

For the discharging (galvanic) battery, label the anode and the cathode.

http://autoshop101.com/

Electrochemistry: conventions... oh, conventions!
Cathode – electrode where catholyte species are reduced
Anode – electrode where anolyte species are oxidized

Does a Negative/Positive Electrode = Cathode or Anode?... It depends!

For the charging (electrolytic) battery, label the anode and the cathode.

http://autoshop101.com/

Electrochemistry: conventions... oh, conventions!
Positive electrode – positively charged; immersed in the posolyte
Negative electrode – negatively charged; immersed in the negolyte

... I'm not kidding!

... Sheesh!

... Take-home message: For batteries, don’t call electrodes anodes and cathodes (but naming convention used by most is for discharge)

http://autoshop101.com/
John Frederic Daniell (1790–1845)

As drawn, current flows for <1 sec and then stops due to lack of charge neutrality...
...capacitive charging

The Daniell Cell (1836)

low impedance to measure current

Zn | Zn$^{2+}$(aq) || Cu$^{2+}$(aq) | Cu

Now it works = "electrochemistry"!

Salt bridge contains an inert, redox inactive salt solution (electrolyte)

Zn | Zn$^{2+}$(aq) || Cu$^{2+}$(aq) | Cu

Quick Quiz
* Name the cell type
* Identify the anode
* Identify the cathode
* Name the electrode signs
* primary galvanic cell

Ultimately, this cell will have fully discharged, and at which point it will be at equilibrium ($\Delta G = E_{\text{cell}} = 0$)
...Then, any direction of polarization bias will result in electrolytic function (i.e. charging)!
Quick Check on Your Understanding

You try!

(a) What is the standard E_{cell} for a galvanic cell based on zinc and silver?

$b_{\text{cell}} = +0.80 \text{ V} - (-0.76 \text{ V}) = 1.56 \text{ V}$

(b) If one wanted to electrolytically charge the cell from part a (before any reactions took place), what potential would one have to provide?

$b_{\text{cell}} < -1.56 \text{ V}$ such that $b_{\text{cell}} + b_{\text{cell}} < 0$ (this is the observed value)

International Union of Pure and Applied Chemistry (IUPAC)

(Accepted) Nomenclature and Terminology that you’ve learned, but may have forgotten

- Coulomb (in units of C = As) is the unit of change (96,485 C are in a mole of singly charged species, $F = 96,500 \text{ C/mole} \times 10 \text{ C/mol}$)

Electromotive force (EMF) is the flow of current (I) in units of A (C/s) and is negative (cathodic) or positive (anodic) depending on the direction and sign of the current-carrying species (e.g. e-, H^+)

Integrate, over time

Differentiate, with respect to time

Based on our current sign convention, it is best to only write reduction potentials; however, if we lived in an oxidation-potential-centric world, we could write them all (i.e. everything) as oxidation potentials: simply put, it is best to not mix the conventions and so stick with reduction potentials

$E^\circ(\text{Cu}^{2+}/\text{Cu}) = +0.34 \text{ V vs. SHE}$

$E^\circ(\text{Cu}^{2+}/\text{Cu}) = +0.34 \text{ V vs. SHE}$

... is incorrect! You can subtract redox potentials but do not change the sign of the potential and then call it an oxidation potential!
International Union of Pure and Applied Chemistry (IUPAC)

(Accepted) Nomenclature and Terminology that you’ve learned, but may have forgotten

- Coulomb (in units of C = A·s) is the unit of charge (96,485 C are in a mole of singly charged species, F = 96,500 C/mol)
- Electricity is the flow of current (I) in units of A = C/s and is a negative (cathodic) or positive (anodic) depending on the direction and sign of the current-carrying species (e.g. e⁻, H⁺)
- (Electrode) (electric) potential (V or E) in units of V = J/C is written as a reduction
 - This relates to Gibbs free energy as \(\Delta G = -RT \ln \frac{N_{a}}{P_{a}} \) (electrical work per mole), and... partial molar Gibbs free energy is the electrochemical potential (\(\mu \), in units of J/mol)
 - Chemical potential (\(\mu \), in units of J/mol)
 - Reduced/electrochemical potential (\(\bar{\mu} \) in units of J/C)
 - and in summary, \(\Delta G = \bar{\mu} + RT \phi \)
 - Cannot be measured independently!

Galvanic cells produce power (P) in units of W = A x V = C/s x J/C = J/s) by spontaneous redox reactions

Galvanic cells require a power input to drive redox reactions; thus, the reactions are thermodynamically unfavorable

A battery has an anode (anolyte) and a cathode (catholyte), but these descriptors change depending on whether the battery is being discharged (galvanic) or charged (electrolytic); negative electrolyte/negolyte and positive electrolyte/posolyte are better

For "clarity," a brief (more rigorous) "review" of thermodynamics...

For an uncharged species \(\mu_i^\beta = \mu_i \).

Electrochemical potential of species \(i \) in phase \(\beta \) is an energy (J/mol),

\[
\bar{\mu}_i^\beta = \left(\frac{\partial G}{\partial n_i^\beta} \right)_{T,P,n_{\text{all}}} = \mu_i + z_i F \phi^\beta ,
\]

where

- \(G \) (Gibbs free energy (J))
- \(n_i \) (amount of species \(i \) (mol))
- \(\mu_i = \mu_i^\beta + RT \ln a_i \) (chemical potential (J/mol))
- \(z_i \) (valency of species \(i \))
- \(F = 10^5 \) (Faraday constant (C/mol))
- \(\phi^\beta \) (Galvani/inner electric potential (V))
- \(a_i \) (activity of species \(i \))

For an uncharged species \(\mu_i^\beta = \mu_i \).

... more on this later... Parsons, Pure & Appl. Chem., 1973, 57, 901
IUPAC Gold (http://goldbook.iupac.org)
Half reactions, at non-unity activity, obey the Nernst equation...

Take $\Delta G = \Delta G^0 + RT \ln Q$ and use the relation $\Delta G = -nFE$.

But first... what is Q, again? ... the reaction quotient!

$$Q_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

Half reactions, at non-unity activity, obey the Nernst equation...

Take $\Delta G = \Delta G^0 + RT \ln Q$ and use the relation $\Delta G = -nFE$.

But first... what is Q, again? ... the reaction quotient!

$$Q = \frac{\prod_p a_p^{v_p}}{\prod_r a_r^{v_r}} = \frac{\prod_i (\gamma_i c_i)^{v_i}}{\prod_j (\gamma_j c_j)^{v_j}}$$

$Q = \frac{\prod_p a_p^{v_p}}{\prod_r a_r^{v_r}}$, for dilute solutions... which we never have!

- a_p is the activity of product p
- a_r is the activity of reactant r
- v_i is the stoichiometric number of i
- γ_i is the activity coefficient of i
- c_i is the concentration of i
- c_i^0 is the standard state concentration of i

Half reactions, at non-unity activity, obey the Nernst equation...

Take $\Delta G = \Delta G^0 + RT \ln Q$ and use the relation $\Delta G = -nFE$.

And at 298.15 K, $E = E^0 - 0.05916 \frac{RT}{n} \ln Q$

Memorize ~60 mV per order in log, but do not forget n and that this is at 25 °C!
Looking forward… our review of Chapter “0”

- Cool applications
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{cell} = E_{red} - E_{ox}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- Calculating E_{cell} under non-standard state conditions
- Conventions

Half reactions must be referenced to something…

$$E_{cell} = E_{red} - E_{ox}$$

Since the method of half-reactions ultimately results in us taking their difference, we can add an arbitrary constant to all half reactions... By one (somewhat arbitrary) convention, it is often assumed that E^0 for the standard hydrogen electrode (SHE) is equal to zero.

Half-Reaction for Hydrogen gas (H$_2$):

$$H^+ + e^- \rightarrow \frac{1}{2} H_2 (g)$$

$$E_{H_2} = E_{H_2}^0 + \frac{RT}{F} \ln \frac{\sqrt{P_{H_2}}}{[H^+]}$$

$$E_{H_2}^0 = 0$$

Thus, the potentials for half-cell reactions are actually full-cell potential (difference(s)) versus SHE, or other!