Lecture #26 of 26
(actually out of 27)

Time-Dependent
Electrochemical Techniques
Chapters 6, 9 & 10

Q: What’s in this final set of lectures?
A: B&F Chapters 9, 10, and 6 main concepts:

- Sections 9.1 – 9.4: Rotating (Ring-)Disk Electrochemistry (R(R)DE)
- Sections 10.1 – 10.4: Electrochemical Impedance Spectroscopy (EIS)
- Sections 6.1 – 6.6, 11.7, 14.3: Linear Sweep Voltammetry (LSV), Thin-Layer Electrochemistry, Molecular Electrocatalysis, Cyclic Voltammetry (CV)

... to learn even more about your experimental systems...
... go beyond steady-state conditions and modulate things!
RECALL: ... the voltammetric response will therefore be proportional to the derivative of these curves... more on this in a bit...

... so, thin-layer voltammetry has the following properties:

\[i_p = \frac{n^2 F^2 V C_0^*}{4RT} \]

- \(i_p \propto V \) (the total volume of the thin-layer cell) and
- \(i_p \propto C_0^* \) ... taken together, this really means that....
- \(i_p \propto \Gamma \) (the “coverage”/capacity of the surface by electroactive molecules in units of moles cm\(^{-2}\))...
- \(i_p \propto v^1 \) important... this is how one recognizes & diagnoses thin-layer behavior experimentally... more on this later...
- NOTE: No diffusion, so no DI (that is rare in electrochemistry)
so, to sum up our observations about these two limiting cases:

- diffusion-controlled, static δ\n $|E_p - E^0| > 55$ mV
- activation-controlled, no δ\n $|E_p - E^0| = 0$ mV
- expanding δ using LSV/CV\n $|E_p - E^0| = 28.5$ mV

now let's take a closer look at thin-layer behavior, notably because it is highly relevant to molecular homogeneous electrocatalysis...

... anyway, there are three types of thin-layer cells:

Type #1:

- 2 electrodes, $E_1 = E_2$

Type #2:

- 1 electrode, E_1

Type #3:

- 2 electrodes, $E_1 \neq E_2$

Cyclic Voltammetry Potential Waveform

3 cases of interest:

Type #1: 1 electrode, E_1

Type #2: 2 electrodes, $E_1 \neq E_2$

Type #3: 2 electrodes, $E_1 = E_2$

... what's the current?

consider the generic reaction:

$O + ne^- \rightleftharpoons R^{0-}$

... assuming the concentration everywhere in the cell follows $C(x, t) = C(0, t)$, which means it is uniform (NOT as shown above):

$$i = nFV \frac{dC_0(t)}{dt} = nF(\ell A) \frac{dC_0(t)}{dt}$$

$$j = nF\ell \frac{dC_0(t)}{dt}$$

Note: i and $j \propto \ell$ = the cell thickness... small $\ell \rightarrow$ small $V \rightarrow$ small j

Now, according to the Nernst Equation (written as the fraction oxidized)...

$$C_0(t) = C_0 \left\{ 1 - \left\{ 1 + \exp \left[\frac{nF}{RT} (E - E^{0'}) \right] \right\}^{-1} \right\}$$

this equation makes sense: if $E = E^{0'}$, $C_0(t) = 0.5C_{0}^{*}$

$E \ll E^{0'}$, $C_0(t) = 0$... you're reducing as fast as possible

$E \gg E^{0'}$, $C_0(t) = C_0^{*}$... you're doing nothing
\[i = nFV \frac{dC_0(t)}{dt} = nF(\ell A) \frac{dC_0(t)}{dt} \]
\[j = nF\ell \frac{dC_0(t)}{dt} \]

Note: \(i \) and \(j \propto \ell \) is the cell thickness... small \(\ell \) \(\rightarrow \) small \(V \) \(\rightarrow \) small \(j \)

Now, according to the Nernst Equation (written as the fraction oxidized)...

\[C_0(t) = C_0^* \left\{ 1 - \left\{ 1 + \exp \left[\frac{nF}{RT} (E - E_0') \right] \right\}^{-1} \right\} \]

... there is no explicit time dependence in this equation, but \(E \) is time dependent if we scan: \(E(t) = E_i + \nu t \). Substituting and differentiating...

\[i = nFV \frac{dC_0(t)}{dt} = nF(\ell A) \frac{dC_0(t)}{dt} \]
\[j = nF\ell C_0(t) \frac{dC_0(t)}{dt} \]

Note: \(i \) and \(j \propto \ell \) is the cell thickness... small \(\ell \) \(\rightarrow \) small \(V \) \(\rightarrow \) small \(j \)

Now, according to the Nernst Equation (written as the fraction oxidized)...

\[C_0(t) = C_0^* \left\{ 1 - \left\{ 1 + \exp \left[\frac{nF}{RT} (E - E_0') \right] \right\}^{-1} \right\} \]

... there is no explicit time dependence in this equation, but \(E \) is time dependent if we scan: \(E(t) = E_i + \nu t \). Substituting and differentiating...

\[i = n^2F^2\nu V C_0^* \exp \left[\frac{nF}{RT} (E - E_0') \right] \frac{1}{\left\{ 1 + \exp \left[\frac{nF}{RT} (E - E_0') \right] \right\}^2} \]
\[i_p = -\frac{n^2F^2\nu V C_0^*}{4RT} \]... when \(\frac{di}{dE} = 0 \)

... as the volume of the cell is decreased, for example, by reducing the cell thickness, \(i_p \) falls...

... also, \(i_p \) depends on scan rate and is proportional to \(\nu^{1/2} \)

(Recall that for an LSV/CV, \(i_p \) is proportional to \(\nu^{1/2} \))
... again, here is the resulting \(i \) vs \(E \) thin-layer-cell voltammogram:

\[
i = \frac{n^2F^2vV}{RT} \exp \left(\frac{nF}{RT} (E - E^o) \right) \left[1 + \exp \left(\frac{nF}{RT} (E - E^o) \right) \right] \]

\[
l_p = \frac{n^2F^2vV}{4RT} \exp \frac{nF}{RT} (E - E^o)\]

... schematically what is happening is the following: imagine doing the experiment in many small potential steps...

Figure 11.7.3 Cyclic current-potential curve for a nernstian reaction with \(n = 1 \), \(v = 1.0 \) mA, \(|i| = 1 \) nA/m, \(C_0 = 1.0 \times 10^{-4} \) M, \(T = 298 \) K.

... schematically what is happening is the following: imagine doing the experiment in many small potential steps...
... schematically what is happening is the following: imagine doing the experiment in many small potential steps...

\[Q = nFV\Delta C \]
\[i = nFV \left(\frac{\Delta C}{\Delta t} \right) \]
... schematically what is happening is the following:
imagine doing the experiment in many small potential steps...

\[Q = nFV\Delta C \]
\[i = nFV \left(\frac{\Delta C}{\Delta t} \right) \]

schematically what is happening is the following:
Now this makes more sense...

[Diagram showing the relationship between current and potential]

Now this makes more sense...

[Diagram showing the relationship between current and potential]
Okay, so the two-electrode thin-layer cell (with $E_1 = E_2$) gives the peaked $J-E$ curve that we just calculated...

Now, what happens if you get rid of one electrode?

Answer: Nothing!... The $J-E$ curve is the same as the two-electrode case...
... both electrodes are doing the same thing... and the rate of diffusion is, by definition, negligible

Type #1:

Type #2:

... so, this equation, and the conclusions below, apply both to one-electrode and two-electrode thin-layer cells, with \(E_1 = E_2 \).

\[
 i_p = \frac{n^2 F^2 vV C_0^*}{4RT}
\]

- \(\delta_p \ll V \) (the total volume of the thin-layer cell) and
- \(\delta_p \ll C_0^* \) ... taken together, this really means that...
- \(\delta_p \ll \Gamma \) (the "coverage"/capacity of the surface by electroactive molecules in units of moles cm\(^{-2}\))....
- \(\delta_p \ll v \) important... this is how one recognizes & diagnoses thin-layer behavior experimentally... more on this later...
- NOTE: No diffusion, so no DI (that is rare in electrochemistry)

Now what about the two-electrode \(E_1 \neq E_2 \) case?

Type #1:

Type #2:

Type #3:

2 electrodes, \(E_1 \neq E_2 \)
Now what about the two-electrode $E_1 \neq E_2$ case? Huh?

... in this instance, when "O" is consumed, it is simultaneously regenerated at the other electrode

What’s the current? ... Just Fick’s first law of diffusion...

$$J(0) = -D \left(\frac{\partial C(x)}{\partial x} \right)_{x=0}$$

and then linearize this as in Chapter 1...

$$J(0) = -D \left(\frac{\Delta C}{\Delta x} \right) = -D \left(\frac{C(t) - C(0)}{\ell} \right)$$

The numerator here will be bounded by C_0^*, so the limiting current is

$$i_l = -nFAD \left(\frac{C_0^*}{\ell} \right)$$
... what’s the current?

$$i_l = -nFAD \left(\frac{C^*}{\ell} \right)$$

Now there is D in this equation... because the current depends on the transport rate of molecules across the cell...
... and this has l in the denominator, not in the numerator like for the other thin-layer cells

... one can also calculate the “gain” imparted by the positive feedback produced by the second electrode...

$$\text{gain} = \frac{i_l}{i_p} = \frac{nFAD \left(\frac{C^*}{\ell} \right)}{\frac{n^2 F^2 v (\ell A) C^*}{4RT}} = \frac{4DRT}{nFv\ell^2}$$

example: for $v = 100$ mV s$^{-1}$, and $\ell = 10$ µm we have:

$$\text{gain} = \frac{4(10^{-5})(8.314)(298.15)}{n(96485)(0.1)\ell^2} = \frac{1.0 \times 10^{-5}}{nFv\ell^2}$$

$$= \frac{1.0 \times 10^{-5}}{1(10 \times 10^{-4} \text{ cm})^2} = 10$$

For $l = 1$ µm, we get 1000; for $l = 100$ nm we get 10^5... Wow! "Amplified"!
... for the feedback case (#3), this also makes Warburg (Fickian) diffusion in EIS look capacitive (due to the capacitance of the second electrode)...

... it is now represented by a parallel $R_{\text{mt}} + C_{\text{thin-layer}}$

$B = \delta / \sqrt{D}$

... for the non-feedback cases (#1 and #2) this also changes Warburg (Fickian) diffusion

... it is now represented by a series $R_{\text{mt}} + C_{\text{thin-layer}}$

... but be careful, because molecular catalysis away from the electrode (as a $C_{\text{Chemistry}}$ step) to set an approximate diffusion layer thickness (Gerischer circuit element) looks a lot like restricted diffusion... as one would assume

http://www.consultren.net/resources/eis/diff-o.htm
http://www.consultren.net/resources/eis/diff-t.htm
http://www.consultren.net/resources/eis/gerischer.htm