Lecture \#5 of 17

Looking forward... our review of Chapter " 0 "

- Cool applications
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{\text {cell }}=E_{\text {red }}-E_{\text {ox }}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams (halfway complete)
- Calculating $E_{\text {cell }}$ under non-standard-state conditions
- Conventions

115

Two diagrams of empirical standard potentials...
116
A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

Disproportionation - spontaneous and simultaneous reduction and oxidation of a molecule (the opposite is comproportionation (AKA: symproportionation))
(1) Does Mn^{2+} disproportionate? NO. $E^{\circ}=E_{\text {red }}-E_{\mathrm{ox}}=1.18-1.51=-0.33 \mathrm{~V}$ (2) What is the standard reduction potential of $\mathrm{MnO}_{4}{ }^{-}$to MnO_{2} ?

Total Reaction: $3 \mathrm{Mn}^{2+} \rightleftarrows \mathrm{Mn}^{\circ}+2 \mathrm{Mn}^{3+} \quad E_{\text {total }}^{\circ}=$?
Reduction: $\mathrm{Mn}^{2+} \rightleftarrows \mathrm{Mn}^{\circ} \quad E^{\circ}=+1.18 \mathrm{~V}$
Oxidation: $\mathrm{Mn}^{2+} \rightleftarrows \mathrm{Mn}^{3+} \quad E^{\circ}=+1.51 \mathrm{~V}$

Two diagrams of empirical standard potentials...

A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

Disproportionation - spontaneous and simultaneous reduction and oxidation of a molecule (the opposite is comproportionation (AKA: symproportionation))
(1) Does Mn^{2+} disproportionate?
No. $E^{\circ}=E_{\mathrm{red}}-E_{\mathrm{ox}}=1.18-1.51=-0.33 \mathrm{~V}$
(2) What is the standard reduction potential of $\mathrm{MnO}_{4}{ }^{-}$to MnO_{2} ?
$\Delta G^{0}=-n F E^{\circ}=-3 F E^{\circ}$
$\Delta G^{\circ}=-n F E^{\circ}{ }_{1}+-n F E^{\circ}{ }_{2}=-F((1 \times 0.56 \mathrm{~V})+(2 \times 2.26 \mathrm{~V}))=-F(5.08 \mathrm{~V})$
Set them equal to each other, and thus, $3 E^{\circ}=5.08$ and $E^{\circ}=1.69 \mathrm{~V}$
.. for $\# 1$, you can work with E° only (do not need ΔG°), because the reaction is always equal in the number of electrons

117

Two diagrams of empirical standard potentials...
A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

118

Two diagrams of empirical standard potentials...
A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

Two diagrams of empirical standard potentials...
A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

$E=E_{\text {acid }}^{0}-\frac{0.05916 \mathrm{~V}}{n} \log \left(\frac{\left[\mathrm{MnO}_{2}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{MnO}_{4}^{2-}\right]^{1}\left[\mathrm{H}^{+}\right]^{4}}\right)=E_{\text {acid }}^{0}-\frac{0.05916 \mathrm{~V}}{2} \log \left(\frac{(1)^{1}}{(1)^{1}\left(10^{-14}\right)^{4}}\right)=E_{\text {acid }}^{0}-0.02958 \mathrm{~V}(56)$
$\begin{array}{llr}\text { What would this } E^{0} & \mathrm{MnO}_{-}^{-}+2 \mathrm{H}_{3} \mathrm{O}+3 e=\mathrm{MnO}_{2}+4 \mathrm{OH}^{-} & 0.595 \\ \text { value be when at } & \mathrm{MnO}_{2}+2 \mathrm{H}_{1} \mathrm{O}+2 e=\mathrm{MnO}_{3}+4 \mathrm{OH}^{-} & 0.60 \\ \text { acidic standard state? } & \mathrm{Mn}(\mathrm{OH})_{2}+2 \mathrm{e}=\mathrm{Mn}+2 \mathrm{OH}^{-} & -1.56 \\ & \mathrm{Mn}(\mathrm{OH})_{s}+e=\mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{OH}^{2} & 0.15\end{array}$

120

Two diagrams of empirical standard potentials...

121

A Latimer diagram is a summary of the E^{0} values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

121

Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1974
123

(1) What is the electrocatalyst for O_{2} evolution through water oxidation? MnO_{2} (2) At what pH values is a solid electrocatalyst for H_{2} evolution stable? $\mathrm{pH} \sim 7.5-\sim 13 .$. . Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, $1974 \quad$... likely a smaller range; why?

124

Looking forward... our review of Chapter "0"

- Cool applications
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{\text {cell }}=E_{\text {red }}-E_{\text {ox }}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- Calculating $E_{\text {cel }}$ under non-standard-state conditions
- Conventions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
126

How to quantitatively attack non-standard-state cell problems... ${ }^{127}$

	Method 2: Half Cell Potential Method	Nernst Equation: $E=E^{0}-\frac{R T}{n F} \ln Q$
Facile	$\varepsilon_{\text {cell }}=\mathrm{E}_{\mathrm{Zn}}-\mathrm{E}_{\mathrm{AgCl}}$	Recall (2)
	$\mathrm{Zn}^{2+}+2 \mathrm{em} \mathrm{Zn}_{(\mathrm{s})}$	- $E_{\text {cell }}$ does not require " n " - ΔG requires " n " ($\left.-n F E_{\text {cell }}\right)$
	$\mathrm{E}_{\mathrm{Zn}}=\mathrm{E}^{\circ} \mathrm{Zn}-(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left[\mathrm{Zn}^{2+}\right]\right)$	(3)
	$\mathrm{AgCl}_{(\mathrm{s})}+\mathrm{e} \Longrightarrow \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cl}^{-}$	
	$\mathrm{E}_{\mathrm{AgCl}=\mathrm{E}^{\circ} \mathrm{AgCl} \cdot(\mathrm{RT} / \mathrm{F}) \ln \left(\left[\mathrm{Cl}^{-}\right]\right)}$	(4)

Equivalence of the Two Metwo
Now since $(\mathrm{RT} / \mathrm{F}) \ln \left(\left[\mathrm{Cl}^{-1}\right)=-(\mathrm{RT} / \mathrm{F}) \ln \left(1 /\left[\mathrm{Cl}^{-}\right]\right)=-(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left[\mathrm{Cl}^{-}\right]^{2}\right)\right.$ this eqn becomes:
$\mathrm{E}_{\mathrm{AgCl}}=\mathrm{E}_{\mathrm{AgCl}}{ }^{+(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left[\mathrm{Cl}^{-}\right]^{2}\right)}$
$\varepsilon_{\text {cell }}=\left(\mathrm{E}^{0} \mathrm{Zn}-(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left[\mathrm{Zn}^{2+}\right]\right)\right)-\left(\mathrm{E}_{\mathrm{AgCl}}^{0}+(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left[\mathrm{Cl}^{-}\right]^{2}\right)\right)$ $\varepsilon_{\text {cell }}=\left(\mathrm{E}^{\circ} \mathrm{Zn} \cdot \mathrm{E}_{\mathrm{AgCl})}^{\circ}\right) \cdot(\mathrm{RT} / 2 \mathrm{~F}) \ln \left(1 /\left(\left[\mathrm{Zn}^{2+}\right][\mathrm{Cl}]^{-}\right]^{2}\right)$
(4)

If we define $\left(\mathrm{E}^{\circ} \mathrm{Zn}-\mathrm{E}^{\circ}{ }_{\mathrm{AgCl}}\right)=\boldsymbol{\varepsilon}^{\circ}$ cell , Then we see that this is exactly the same equation that we found by Method I (Equation 1)

127

NOT The Daniell Cell

high impedance to measure potential

$\mathrm{Cu}^{2+}(a q) \rightleftarrows \mathrm{Cu}(s)$
$\mathrm{Pt}(\mathrm{s})|\mathrm{Hg}(\mathrm{l}) \rightleftarrows \mathrm{Pt}(\mathrm{s})| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})$
$+\mathrm{Cl}^{-}(a q)$
Common Reactive Electrodes: Copper, Zinc, Cadmium, Lead, Silver Common Inert Electrodes: Platinum, Carbon, Gold

How to quantitatively attack non-standard-state cell problems...

$$
\text { Nernst Equation: } E=E^{0}-\frac{R T}{n F} \ln Q
$$

	Nernst Equation: $E=E^{0}-\frac{R T}{n F} \ln Q$
Electrochemical Cell Potential Calculation	

Consider the electrochemical cell:

$$
\mathrm{Ag}_{(\mathrm{s})}\left|\mathrm{AgCl}_{(\mathrm{s})}\right| \mathrm{Cl}^{-} \| \mathrm{Zn}^{2+} \mid \mathrm{Zn}_{(\mathrm{s})}
$$

The Cell Potential $\varepsilon_{\text {cell }}$ can be calculated by two methods:
Method 1: Total Reaction Method These should all be $E_{\text {cell }}$
The total cell reaction is:

$$
\mathrm{Zn}^{2+}+2 \mathrm{Ag}_{(\mathrm{s})}+2 \mathrm{Cl}^{-} \Longrightarrow \mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{AgCl}_{(\mathrm{s})}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Write and explain the line notation for the redox reaction 129 between $\mathrm{Cu} / \mathrm{Cu}^{2+}$ and an SCE electrode, where Cu^{2+} is CuSO_{4} (0.1 M), and $\mathrm{KCl}(1 \mathrm{M})$ is present in all cells.

$$
\mathrm{Cu}^{2+}(a q) \rightleftarrows \mathrm{Cu}(s)
$$

$\mathrm{Pt}(s)|\mathrm{Hg}(l) \rightleftarrows \mathrm{Pt}(s)| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)$ $+\mathrm{Cl}^{-(a q)}$
$\mathrm{Pt}(s)|\mathrm{Hg}()| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)|\mathrm{KCl}(1 \mathrm{M}, a q)| \mathrm{KCl}(1 \mathrm{M}, a q)\left|\mathrm{KCl}(1 \mathrm{M}, a q), \mathrm{CuSO}_{4}(0.1 \mathrm{M}, a q)\right| \mathrm{Cu}(s)$ $\mathrm{Pt}(s)|\mathrm{Hg}()| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)\left|\mathrm{Cl}^{-}(1 \mathrm{M}, a q)\right|\left|\mathrm{Cu}^{2+}(0.1 \mathrm{M}, a q)\right| \mathrm{Cu}(s)$

129

FYI, cells can be drawn any which way, even on top of each other, or radially... 130 ... but in line notation the anode should be on the left-hand side. (SKIPPED)

$\mathrm{Pt}(s)|\mathrm{Hg}(n)| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)|\mathrm{Cl}-(1 \mathrm{M}, a q)|\left|\mathrm{Cu}^{2+}(0.1 \mathrm{~m}, a q)\right| \mathrm{Cu}(s)$ http://www.baj.or.jp/e/knowledge/structure.html

130
(a) What is $E_{\text {cell }}$ in this case $\left(1 \mathrm{M} \mathrm{KCl}, 0.1 \mathrm{M} \mathrm{CuSO}_{4}\right) ?{ }_{(\text {SKIPPED })}^{131}$
(b) What is $E_{\text {cell }}$ if $[\mathrm{KCl}]=0.1 \mathrm{M}$?
 +Cl -(aq)
$\mathrm{Pt}(s)|\mathrm{Hg}(n)| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)|\mathrm{Cl}-(1 \mathrm{M}, a q)|\left|\mathrm{Cu}^{2+}(0.1 \mathrm{~m}, a q)\right| \mathrm{Cu}(s)$
(a) What is $E_{\text {cell }}$ in this case $\left(1 \mathrm{M} \mathrm{KCl}, 0.1 \mathrm{M} \mathrm{CuSO}_{4}\right)$? ${ }_{\text {(SKIPPED) }}{ }^{132}$ (b) What is $E_{\text {cell }}$ if $[\mathrm{KCl}]=0.1 \mathrm{M}$?
$\mathrm{E}^{0}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)=+0.1 \mathrm{~V}$ vs. SCE
${ }_{E_{\text {cell }}}^{\text {(a) }}=E^{o}-\frac{R T}{n F} \ln \left(\frac{a_{C u} a_{H g_{2} C_{2}}}{a_{C u^{2}} a_{H g} a_{C l-}{ }^{2}}\right)$
$E_{\text {cell }} \approx E^{o}-\frac{0.0592 \mathrm{~V}}{n} \log \left(\frac{1}{\left[{\left[u^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}}^{2}\right.}\right)$
$E_{\text {cell }}=+0.1 \mathrm{~V}-\frac{0.0592 \mathrm{~V}}{2} \log \left(\frac{1}{0.1}\right) \quad$ (b) $\quad E_{\text {cell }}=+0.1 \mathrm{~V}-\frac{0.0592 \mathrm{~V}}{2} \log \left(\frac{1}{(0.1)^{3}}\right)$
$E_{\text {cell }}=+0.1 \mathrm{~V}-0.0296 \mathrm{~V}=+0.0704 \mathrm{~V} \quad E_{\text {cell }}=+0.1 \mathrm{~V}-0.0888 \mathrm{~V}=+0.0112 \mathrm{~V}$
Remember, there is no such thing as a half-cell reaction...
.. unless you are working with Trasatti
$\mathrm{Pt}(s)|\mathrm{Hg}()| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)|\mathrm{Cl}-(1 \mathrm{M}, a q)|\left|\mathrm{Cu}^{2+}(0.1 \mathrm{M}, a q)\right| \mathrm{Cu}(s)$

132

In general, IUPAC will be our standard guide for this course...

Quick quiz: Do the following make sense?

The grams (or grammage) of my material was 0.1 g .
The liters (or literrage) of my beaker was 0.1 L .
The m / s (or m / s-age) of that baseball was $10 \mathrm{~m} / \mathrm{s}$...
Then I prefer that you don't say:
"The voltage of my cell is 0.1 V ." Let's call it a potential...

In general, IUPAC will be our standard guide for this course..

Quick quiz: Do the following make sense?

The grams (or grammage) of my material was 0.1 g
The liters (or literrage) of my beaker was 0.1 L .
The m / s (or m / s-age) of that baseball was $10 \mathrm{~m} / \mathrm{s}$...

Then I prefer that you don't say:
"The voltage of my cell is 0.1 V ." Let's call it a potential...

Quick quiz: Do the following make sense?
The kinetic process was graphed as an M -s curve.
The kinetics were followed as the concentration versus s...

Then I also prefer that you don't say:
"The cell's behavior is shown as the $\underline{I-V}$ curve." Let's call it an I-E curve, or best yet, a $\underline{J-E}$ curve, where J is current density $\left(A / \mathrm{cm}^{2}\right)$.

135

Electrochemistry:

http://upload.wikimedia.org/wikipedia/commons/thu
$\mathrm{mb} / \mathrm{c} / \mathrm{cc} / \mathrm{Map}$ _of USA_TX.svg/2000px-
Map of USA TX.svg.png

136

Electrochemistry:

137
conventions... oh, conventions!

Figure 1.1 American (left) and IUPAC (right) voltammogram conventions. ... But sadly, B\&F ($2^{\text {nd }}$ edition) use the convention on the left...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

And finally... we are finished our review of Chapter " 0 "

- Cool applications
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{\text {cell }}=E_{\text {red }}-E_{o \underline{o x}}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- Calculating $E_{\text {cell }}$ under non-standard-state conditions
- Conventions

Measurements in Electrochemistry

Chapters 1 and 15

Q: What's in this set of lectures?
A: B\&F Chapters 1 \& 15 main concepts:

- Section 1.1: Redox reactions
- Chapter 15: Electrochemical instrumentation
- Section 1.2: Charging interfaces
- Section 1.3: Overview of electrochemical experiments

Looking forward... Section 1.1 (and some of Chapter 15)

- Reference electrodes

- 2-electrode versus 3-electrode measurements
- Potentiostats
- Compliance voltage/current
- J-E and I-E curves
- Kinetic overpotential
- Electrochemical window
- Faradaic reactions

141

Although we would like to measure electrochemical observables (e.g. the current, voltage, etc.) associated with a single "working" electrode (WE), we cannot.

We must always couple our working electrode to a second electrode in order to make a measurement. These two electrodes comprise an electrochemical "cell."

142

These schematics introduce some terms that we must define:
143
"."

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiments:
... for example, let's say both electrodes are platinum...

145
... and at "open circuit," no potential bias is applied between them... (disconnect the wire!)

$$
E_{\mathrm{oc}}=0.0 \mathrm{~V}=E_{W E}-E_{R E}
$$

... and by the way, we don't know this potential...
... and it is not well-defined because we cannot answer the question:
What is the half-reaction that defines it?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
?
.. now, if we apply +0.8 V to the WE (reconnect the wire)...
147 the potential of both electrodes likely changes, and not likely symmetrically...

147
... even worse, we don't now the potential of either electrode...

148
... you get the picture!
149

$$
E_{\mathrm{app}}=+1.2 \mathrm{~V}
$$

In principle, this problem can be solved by using a
150 second electrode that is an (ideal) reference electrode... (ideally) non-polarizable:

150
... so get rid of the Pt reference electrode, and substitute in an SCE...
... which has a Pt wire in it...

$$
\Delta E \neq 0.0 \mathrm{~V} \text { (likely) }
$$

151
... so get rid of the Pt reference electrode, and substitute in an SCE... 152 ... which has a Pt wire in it...

$$
E_{\mathrm{oc}} \neq 0.0 \mathrm{~V} \text { (likely) }
$$

RE = saturated calomel electrode (SCE)
 What is the half-reaction that defines it?
... so get rid of the Pt reference electrode, and substitute in an SCE...

$E_{\text {oc }} \neq 0.0 \mathrm{~V}$ (likely)

but, where we know this potential because we can answer:
What is the half-reaction that defines it?

153
... so get rid of the Pt reference electrode, and substitute in an SCE... 154
... which has a Pt wire in it...

$$
E_{\mathrm{oc}} \neq 0.0 \mathrm{~V} \text { (likely) }
$$

... the SCE has a defined potential of +0.241 V vs. SHE...

154
... so get rid of the Pt reference electrode, and substitute in an SCE...

$$
E_{\text {app }}=0.0 \mathrm{~V} \quad(\text { ammeter } \neq 0 \mathrm{~A})
$$

... the SCE has a defined potential of +0.241 V vs. SHE... ... and its potential "does not" move (much, usually)...
... how did we calculate that (meaning +0.641 V)?

$$
E_{\mathrm{app}}=+0.4 \mathrm{~V}
$$

... the SCE has a defined potential of +0.241 V vs. SHE... ... and its potential "does not" move (much, usually)...

156
... how did we calculate that (meaning +0.641 V)?

$$
E_{\text {app }}=+0.4 \mathrm{~V}
$$

$$
\underline{\Delta E}=E_{W E}-E_{R E}
$$

$$
\overline{E_{W E}}=+0.4 \mathrm{~V}++0.241 \mathrm{~V}=+0.641 \mathrm{~V}
$$

157
... you get the picture!...
158
... but let's learn some more about reference electrodes...

$$
E_{\text {app }}=-0.7 \mathrm{~V}
$$

$$
\underline{\Delta E}=E_{W E}-E_{R E}
$$

$$
\overline{E_{W E}}=\underline{-0.7 \mathrm{~V}}++0.241 \mathrm{~V}=-0.459 \mathrm{~V}
$$

