Lecture #5 of 17

114

115

Looking forward... our review of Chapter "0"

- <u>Cool applications</u>
- Redox half-reactions
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and E_{cell} = E_{red} E_{ox}
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams (halfway complete)
- Calculating E_{cell} under non-standard-state conditions
- Conventions

115

Two diagrams of empirical standard potentials...

116

A <u>Latimer diagram</u> is a summary of the E⁰ values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

Two diagrams of empirical standard potentials...

A <u>Latimer diagram</u> is a summary of the *E*⁰ values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

117

Two diagrams of empirical standard potentials...

118

A <u>Latimer diagram</u> is a summary of the *E*⁰ values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

118

Two diagrams of empirical standard potentials...

119

A <u>Latimer diagram</u> is a summary of the E^0 values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

Two diagrams of empirical standard potentials...

120

A <u>Latimer diagram</u> is a summary of the E^0 values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

120

Two diagrams of empirical standard potentials...

121

A <u>Latimer diagram</u> is a summary of the E⁰ values for an element; it is useful for visualizing the complete redox series for an element and for determining when disproportionation will occur.

... Second one (not truly standard potentials)...

122

A <u>Pourbaix diagram</u> is a map of the predominant *equilibrium* species of an aqueous electrochemical system; it is useful for identifying which materials/species are present/stable

... Second one (not truly standard potentials)...

123

A <u>Pourbaix diagram</u> is a map of the predominant *equilibrium* species of an aqueous electrochemical system; it is useful for identifying which materials/species are present/stable ... mostly based on thermochemical data

Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1974

123

... Second one (not truly standard potentials)...

125

A <u>Pourbaix diagram</u> is a map of the predominant *equilibrium* species of an aqueous electrochemical system; it is useful for identifying which materials/species are present/stable ... mostly based on thermochemical data

(1) What is the electrocatalyst for O₂ evolution through water oxidation? MnO₂
 (2) At what pH values is a solid electrocatalyst for H₂ evolution stable? pH ~7.5 - ~13...
 Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1974 ... likely a smaller range; why?

124

Looking forward... our review of Chapter "0"

- Cool applications
- <u>Redox half-reactions</u>
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{\text{cell}} = E_{\text{red}} E_{\text{ox}}$
- Thermodynamics and the Nernst equation
- Common reference electrodes
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- Calculating E_{cell} under non-standard-state conditions
- Conventions

How to quantitatively attack non-standard-state cell problems...

o quantitatively attack non-standard-state cell problems	
Nernst Equation: $E = E^0 - \frac{RT}{nF}$ ln	ı Q
ctrochemical Cell Potential Calculation	
sider the electrochemical cell:	
$\operatorname{Ag}_{(s)} \operatorname{AgCl}_{(s)} \operatorname{Cl} Zn^{2+} Zn_{(s)}$	
Cell Potential ϵ_{cell} can be calculated by two methods:	
thod 1: Total Reaction Method These should all be E _{cell}	
total cell reaction is:	
$Zn^{2+} + 2Ag(s) + 2Cl^{-} \Longrightarrow Zn(s) + 2AgCl(s)$	

(1)

where $\mathcal{E}^{\circ}_{cell} = -\Delta G^{\circ}/2F$ How else could we write this? ... "(60 mV/2) log"! (at room temp.)

 $\boldsymbol{\epsilon}_{cell} = \boldsymbol{\epsilon}^{\circ}_{cell} - (RT/2F) \ln (1/([Zn^{2+}][Cl^{-}]^{2})$

126

How to quantitatively attack non-standard-state cell problems...127

	Method 2: Half Cell Potential Method	Nernst Equation: E =	$= E^0 - \frac{RT}{nF} \ln Q$
	$\epsilon_{cell} = \epsilon_{Zn} - \epsilon_{AgCl}$	Recall	(2)
	$\varepsilon_{cell} = E_{Zn} \cdot E_{AgCl}$ $Zn^{2+} + 2e \implies Zn_{(s)}$	 <i>E</i>_{cell} does not required Δ<i>G</i> requires "<i>n</i>" (- 	
Facile	$E_{Zn} = E^{\circ}_{Zn} \cdot (RT/2F) \ln (1/[Zn^{2+}])$		(3)
	$\mathrm{AgCl}_{(S)} + e \implies \mathrm{Ag}_{(S)} + \mathrm{Cl}^{\text{-}}$		
	$E_{AgCl} = E^{\circ}_{AgCl} - (RT/F) \ln ([Cl^{-}])$		(4)
	Equivalence of the Two Methods		
	Now since $(RT/F) \ln ([Cl^*]) = (RT/F) \ln (1/[Cl^*])$ this eqn becomes:	$= -(RT/2F) \ln (1/[Cl^-]^2)$	
	$E_{AgCl} = E^{\circ}_{AgCl} + (RT/2F) \ln (1/[Cl^{-}]^{2})$		(5)
	$\epsilon_{cell} = (E^{\circ}_{Zn} - (RT/2F) \ln (1/[Zn^{2+}])) - (E^{\circ}_{AgC})$	$(1/[CI^{-}]^{2})$	(6)
	$\epsilon_{cell} = (E^{\circ}_{Zn} - E^{\circ}_{AgCl}) - (RT/2F) \ln (1/([Zn^{2+}]))$	CI-] ²)	(7)
	If we define (E° _{Zn} - E° _{AgCl})= $\mathcal{E}^{\circ}_{cell}$, Then we equation that we found by Method 1 (Equation 1).		

127

NOT The Daniell Cell

Write and explain the line notation for the redox reaction ¹²⁹ between Cu/Cu²⁺ and an SCE electrode, where Cu²⁺ is CuSO₄ (0.1 M), and KCI (1 M) is present in all cells.

 $\begin{array}{l} \mathsf{Pt}(s) \mid \mathsf{Hg}(l) \mid \mathsf{Hg}_2\mathsf{Cl}_2(s) \mid \mathsf{KCl}(1\ \mathsf{M},\ aq) \mid \mathsf{KCl}(1\ \mathsf{M},\ aq) \mid \mathsf{KCl}(1\ \mathsf{M},\ aq), \mathsf{CuSO}_4\ (0.1\ \mathsf{M},\ aq) \mid \mathsf{Cu}(s) \\ \\ \mathbf{Pt}(s) \mid \mathsf{Hg}(l) \mid \mathsf{Hg}_2\mathsf{Cl}_2(s) \mid \mathsf{Cr}(1\ \mathsf{M},\ aq) \mid \mathsf{Lu}^2 + (0.1\ \mathsf{M},\ aq) \mid \mathsf{Cu}(s) \end{array}$

129

FYI, cells can be drawn any which way, even on top of each other, or radially... 130 ... but in line notation the anode should be on the left-hand side. *(SKIPPED)*

130

 $\mathsf{Pt}(s) \mid \mathsf{Hg}(\mathit{I}) \mid \mathsf{Hg}_2\mathsf{Cl}_2(s) \mid \mathsf{Cl}^-(1\ \mathsf{M}, \mathit{aq}) \mid \mid \mathsf{Cu}^{2+} (0.1\ \mathsf{M}, \mathit{aq}) \mid \mathsf{Cu}(s)$

10/31/2023

(a) What is *E*_{cell} in this case (1 M KCl, 0.1 M CuSO₄)? (SKIPPED)¹³²

(b) What is E_{cell} if [KCl] = 0.1 M?

E°(Cu²⁺/Cu) = +0.1 V vs. SCE

(a)

$$E_{\text{cell}} = E^o - \frac{RT}{nF} \ln \left(\frac{a_{Cu} a_{Hg_2 Cl_2}}{a_{Cu^2} + a_{Hg} a_{Cl^2}} \right)$$

$$\begin{split} E_{\text{cell}} &\approx E^o - \frac{0.0592 \text{ V}}{n} \log \left(\frac{1}{[Cu^{2+}][Cl^{-}]^2} \right) \\ E_{\text{cell}} &= +0.1 \text{ V} - \frac{0.0592 \text{ V}}{2} \log \left(\frac{1}{0.1} \right) \end{split}$$

 $E_{\text{cell}} = +0.1 \text{ V} - 0.0296 \text{ V} = +0.0704 \text{ V}$

(b)

$$E_{\text{cell}} = +0.1 \text{ V} - \frac{0.0592 \text{ V}}{2} \log\left(\frac{1}{(0.1)^3}\right)^3$$

 $E_{\text{cell}} = +0.1 \text{ V} - 0.0888 \text{ V} = +0.0112 \text{ V}$

Remember, there is no such thing as a half-cell reaction... ... unless you are working with Trasatti Pt(s) | Hg() | Hg2Cl₂(s) | Cl-(1 M, aq) || Cu²⁺ (0.1 M, aq) | Cu(s)

132

In general, IUPAC will be our standard guide for this course...

133

134

 Quick quiz:
 Do the following make sense?

 The grams (or grammage) of my material was 0.1 g.

 The liters (or literrage) of my beaker was 0.1 L.

 The m/s (or m/s-age) of that baseball was 10 m/s...

Then I prefer that you don't say: "The <u>voltage</u> of my cell is 0.1 V." *Let's call it a <u>potential</u>...*

In general, IUPAC will be our standard guide for this course...

133

http://goldbook.iupac.org/V06635.html

In general, IUPAC will be our standard guide for this course...

135

136

<u>Quick quiz</u>: Do the following make sense? The grams (or grammage) of my material was 0.1 g. The liters (or literrage) of my beaker was 0.1 L. The m/s (or m/s-age) of that baseball was 10 m/s...

Then I prefer that you don't say: "The <u>voltage</u> of my cell is 0.1 V." *Let's call it a <u>potential</u>...*

Quick quiz: Do the following make sense? The kinetic process was graphed as an M–s curve. The kinetics were followed as the concentration versus s...

Then I also prefer that you don't say: "The cell's behavior is shown as the <u>I-V</u> curve." Let's call it an <u>I-E</u> curve, or best yet, a <u>I-E</u> curve, where J is current density (A/cm²).

135

Electrochemistry: conventions... oh, conventions!

http://upload.wikimedia.org/wikipedia/commons/thu mb/c/cc/Map_of_USA_TX.svg/2000px-Map_of_USA_TX.svg.png

136

Figure 1.1 American (left) and IUPAC (right) voltammogram conventions.

... But sadly, B&F (2nd edition) use the convention on the left... ... at least you'll be pros at mentally flipping over data Handbook of Electrochemistry, Zoski (ed.), Elsevier, 2007

And finally... we are finished our review of Chapter "0"

- <u>Cool applications</u>
- <u>Redox half-reactions</u>
- Balancing electrochemical equations
- History of electrochemistry and Batteries
- IUPAC terminology and $E_{cell} = E_{red} E_{ox}$
- Thermodynamics and the Nernst equation
- <u>Common reference electrodes</u>
- Standard and Absolute potentials
- Latimer and Pourbaix diagrams
- <u>Calculating E_{cell} under non-standard-state conditions</u>
- <u>Conventions</u>

139

Measurements in Electrochemistry

Chapters 1 and 15

139

140

Q: What's in this set of lectures?

A: B&F Chapters 1 & 15 main concepts:

• Section 1.1: Redox reactions

- Chapter 15: Electrochemical instrumentation
- Section 1.2: Charging interfaces
- Section 1.3: Overview of electrochemical experiments

Looking forward... Section 1.1 (and some of Chapter 15)

- Reference electrodes
- 2-electrode versus 3-electrode measurements
- Potentiostats
- Compliance voltage/current
- J-E and I-E curves
- Kinetic overpotential
- Electrochemical window
- Faradaic reactions

141

Although we would like to measure electrochemical observables (e.g. 142 the current, voltage, etc.) associated with a single "working" electrode (WE), we cannot.

We must always couple our working electrode to a second electrode in order to make a measurement. These two electrodes comprise an electrochemical "cell."

142

- electrometer a device for measuring a potential difference (E_{cell}) ; an ideal voltmeter has infinite input impedance (i.e. it draws no current) (impedance is "complex resistance")
- ammeter a device for measuring a current; an ideal ammeter has zero input impedance (i.e. it imposes no potential drop)

143

Experiments:

95% of the measurements that you will perform have a problem

144

... for example, let's say both electrodes are platinum...

145

144

145

... and at "open circuit," no potential bias is applied between them... 146 (disconnect the wire!)

What is the half-reaction that defines it?

... now, if we apply +0.8 V to the WE (reconnect the wire)... 147 the potential of *both* electrodes likely changes, and *not likely symmetrically*...

... even worse, we don't now the potential of either electrode... 148

... you get the picture!

In principle, this problem can be solved by using a ¹⁵⁰ second electrode that is an (ideal) *reference electrode*... (ideally) non-polarizable:

150

... so get rid of the Pt reference electrode, and substitute in an SCE... 151 ... which has a Pt wire in it...

 $\Delta E_{-} \neq 0.0 \; V$ (likely)

151

... so get rid of the Pt reference electrode, and substitute in an SCE... 152 ... which has a Pt wire in it...

... so get rid of the Pt reference electrode, and substitute in an SCE... 153 ... which has a Pt wire in it...

... so get rid of the Pt reference electrode, and substitute in an SCE... 154 ... which has a Pt wire in it...

$$E_{\rm oc}
eq 0.0 \ {\rm V}$$
 (likely)

... the SCE has a defined potential of +0.241 V vs. SHE...

... the SCE has a defined potential of +0.241 V vs. SHE... ... and its potential "does not" move (much, usually)...

... how did we calculate that (meaning +0.641 V)?

$$E_{app} = +0.4 \text{ V}$$

RE = saturated calomel electrode (SCE)

 $AE = 0.4 \text{ V}$

 AE

... the SCE has a defined potential of +0.241 V vs. SHE... ... and its potential "does not" move (much, usually)...

156

... how did we calculate that (meaning +0.641 V)?

157

$$E_{app} = +0.4 \text{ V}$$

RE = saturated calomel electrode (SCE)

AF = 0.4 V

WE

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 +0.241 V

 $\Delta E = E_{WE} - E_{RE}$

 $E_{WE} = \pm 0.4 \text{ V} + +0.241 \text{ V} = +0.641 \text{ V}$

... you get the picture!... 158 ... but let's learn some more about reference electrodes...

$$E_{\rm app} = -0.7 \ {\rm V}$$

