Lecture #7 of 17

217

218

217

Measurements in Electrochemistry

Chapters 1 and 15

218

219

Q: What's in this set of lectures?

A: B&F Chapters 1 & 15 main concepts:

• Section 1.1: Redox reactions

Chapter 15: Electrochemical instrumentation

• Section 1.2: Charging interfaces

• Section 1.3: Overview of electrochemical experiments

220

Looking forward... Section 1.1 (and some of Chapter 15)

- <u>Reference electrodes</u>
- 2-electrode versus 3-electrode measurements
- Potentiostats
- <u>Compliance voltage/current</u>
- J-E and I-E curves
- Kinetic overpotential
- Electrochemical window
- Faradaic reactions

220

... okay, now let's measure the current that flows as we change the potential of the platinum working electrode (imagine that we have a potentiostat here that allows us to do that).

Let's suppose that this WE is platinum, and that all three electrodes are immersed in aqueous 1.0 M HCl

http://www.bio-logic.info/potentiostatelectrochemistry-ec-lab/accessories/analyticalcell-kit/small-volume-cells/

221

... okay, now let's measure the current that flows as we change the potential of the platinum working electrode (imagine that we have a potentiostat here that allows us to do that).

What is the starting potential for this experiment? That is, what is the open-circuit potential (E_{oc}) ?

... okay, now let's measure the current that flows as we change the potential of the platinum working electrode (imagine that we have a potentiostat here that allows us to do that).

Current flow is proportional to rate, so let's write this like chemists:

... okay, now let's measure the current that flows as we change the potential of the platinum working electrode (imagine that we have a potentiostat here that allows us to do that).

224

... okay, now let's measure the current that flows as we change the potential of the platinum working electrode (imagine that we have a potentiostat here that allows us to do that).

... okay, but what if protons could not be reduced so easily? An overpotential is required!

Now, pretend this experimental *I–E* curve (from my labs; in fact) was measured 226 when the Pt WE was switched with a Hg WE... why does little current flow until $\sim -1V$?

Also, don't forget about possible compliance voltage issues (maximum voltage 227 to CE)... and compliance current too!

228

Looking forward... Section 1.1 (and some of Chapter 15)

- <u>Reference electrodes</u>
- 2-electrode versus 3-electrode measurements
- Potentiostats
- <u>Compliance voltage/current</u>
- J-E and I-E curves
- <u>Kinetic overpotential</u>
- Electrochemical window
- Faradaic reactions

... more terminology...

229

supporting electrolyte – an "inert" salt added to impart ionic conductivity to the solution (e.g. 1 M HCl, in this case)

background limits – the two potential limits at which the *pure* solvent + supporting electrolyte begin to react at the working electrode

229

Electrochemical window (Potential range)²³⁰

+3	+2	+1	0	-5	-2	-3
перипа		-		MH,SO,PI	-	
	Pt-	-	_	-i pH 7 But	fer (Pt)	
		+	_		LaCHEP1)	
			+		H,SO,(Hg)	←
	_		-			3(940)
	102				11.47.5	laDH(Hd)
			-			D.1 M ELNOHD
	-			HCIO,(C)	-	
	E	-			AT M KONG	
Nonaqueous						MeCN
PP +-	-	2	-			OT M TBABF
PT +-	1		_			OMF 0.1 M TBABF
PT +-					Benzon	C1 M TBADF,
rr → +					Benzoni 0.1 M TI	DABP + 0.1 M TBADF + 0.1 M TBA
₩ + +	_				Benzoni 0.1 M Ti	DABP
** +					CH ₂ Cl ₂ Cl ₂	HOLIN TBABP
PF +		-		TBAP	CHLCL 0.1 M TB	HOLINTBADF, DAMP DAMP, PC OLINTBA PC OLINTEAP
* 1	+		90¢	e TBAP	Chi,Cl,	A DANE DANE DANE DANE DANE DANE DANE DAN
+ + +	+			r TBAP	CH ₀ Ch ₂	+ 0.1 M TEADP,
			90, 0,1')	# TBAP 1 -1	CH ₀ Ch ₂	4 0.1 M TBADF, 0.1 M TBA 0.1 M TBA 0.1 M TBA 0.1 M TBA 0.1 M TEAP 0.1 M TEAP 0.1 M TEAP 1 0.1 M TEAP -0

... Red arrow entries are all measured in 1 M acid

(1) If you wanted an aqueous battery with a large potential, what is the best choice for the electrode materials? Hg (in aq $0.1 \text{ M Et}_4\text{NOH})$ or/and C (in aq 0.1 M KCI)

(2) Between aqueous and non-aqueous batteries, which can generate the largest potential? Non-aqueous! ... much larger "solvent window"

B&F back inside cover

230

... more terminology...

231

 $\label{eq:supporting electrolyte-an "inert" salt added to impart ionic conductivity to the solution (e.g. 1 M HCl, in this case)$

background limits – the two potential limits at which the *pure* solvent + supporting electrolyte begin to react at the working electrode

polarizable electrode – an electrode operated within a potential range in which no <u>Faradaic electrochemistry</u> occurs

(1791–1867) from Wiki

... and, even more terminology ...

Faradaic electrochemistry – electrochemistry characterized by the flow of current to/from electron donor/acceptor species present at the electrode surface

Non-Faradaic electrochemistry – electrochemistry characterized by the flow of current to/from an electrode surface in the absence of donor/acceptor species, typically dominated by capacitive charging of the electrode or adsorption/desorption phenomena

232

... and lastly, typical WE ranges for EChem experiments/technologies... 233

233

234

A review of Section 1.1 (and some of Chapter 15)

- <u>Reference electrodes</u>
- 2-electrode versus 3-electrode measurements
- Potentiostats
- <u>Compliance voltage/current</u>
- J—E and I—E curves
- <u>Kinetic overpotential</u>
- <u>Electrochemical window</u>
- Faradaic reactions

235

Q: What's in this set of lectures?

A: B&F Chapters 1 & 15 main concepts:

- Section 1.1: Redox reactions
- Chapter 15: Electrochemical instrumentation
- Section 1.2: Charging interfaces
- Section 1.3: Overview of electrochemical experiments

235

236

Looking forward... Sections 1.2 and 1.3

- RC circuits (~90% of slides)
- Uncompensated resistance (R_u)
- Electrochemically active surface area (ECSA)
- Luggin–Haber capillary
- Placement of electrodes

236

... We need to understand this background current!

The electrical response of a polarizable electrode is approximated 238 by a series resistor and capacitor (a series *RC* circuit)...

The electrical response of a polarizable electrode is approximated 239 by a series resistor and capacitor (a series *RC* circuit)...

239

First, what are approximate values for $R_{(s)}$ and $C_{(d)}$? ...

240

R = the solution resistance (between the WE and RE)

In aqueous solutions containing 0.1 M supporting electrolyte, R = a few ohms; for non-aq., R > 100 Ω

C = the net capacitance (of the WE and the RE), $C_{(T)otal}$

 20 µF/cm² of electrode area for gold or platinum; 2 – 5 µF/cm² for carbon, typically... but these change slightly with potential as we will see later

(Farad can be cast as C/V... ... and recall that Volt can be cast as J/C)

Now, what response is obtained for various inputs to this circuit?

241

1. Potential-step potentiostatic chronoamperometry (chronocoulometry)

Voltage step (that is, increment the potential by an amount, E):

Bard & Faulkner, 2nd Ed., Wiley, 2001, Figure 1.2.7

241

Now, what response is obtained for various inputs to this circuit? 242

243

Looking forward... Sections 1.2 and 1.3

- RC circuits (~90% of slides)
- Uncompensated resistance (R₁₁)
- Electrochemically active surface area (ECSA)
- Luggin–Haber capillary
- Placement of electrodes