Lecture \#9 of 17

Geometry and...
(1) For working electrodes benefitting from convergent transport, worthwhile compensation is impossible unless a midget RE is positioned extremely close to WE.
(2) Uncompensated resistance declines dramatically as RE approaches WE; however, the angle of approach may be important.
(3) A large CE is effectively remote when its distance from the working electrode is at least 5 times the radius of WE.
(4) When the CE is of a size comparable to that of WE, it is effectively remote when the interelectrode distance is at least 10 times the radius of WE.
(5) The resistance is effectively that of a cell in an infinitely large vessel, if the vessel's radius exceeds that of the electrodes 5 -fold.
(6) An electrode must be covered by at least 10 times its own radius of solution, before it is immersed in an effectively infinite volume.

Mass Transfer Processes

Chapters 1 and 4

Q: What's in this set of lectures?
A: B\&F Chapters 1 \& 4 main concepts:

- Section 1.4: Mass transfer and Semi-empirical treatment of electrochemical observations
- Chapter 4: Mass transfer

Looking forward... Section 1.4 and Chapter 4

- Mass transfer
- Diffusion
- Migration / Drift
- Convection
- Semi-empirical diffusive models
- Conductivity
- Transport (Transference) number
- Balance sheets
- Ohmic drop/loss

We can all label the faradaic and non-faradaic processes...
... but what is this new feature?

... mass transfer in electrochemistry is concerned with the movement of material = mass (even species as small as electrons) from one location (in solution) to another, and arises from spatial differences in electric potential, chemical potential, or from volume movement (of solution)...
... We need to understand mass transfer! ...
... but first, because it relates directly to mass transfer, I need to introduce the governing equation for the continuity of mass, which is even more stringent than the law of the conservation of mass! law, and it is highly relevant to electrochemistry and in fact all science and engineering fields, we better know it...
... it is introduced to most undergraduate students studying chemical engineering, materials science, and physics, but only partially to chemists (first half) and mechanical engineers (second half)...
... anyway, here it is for species A along dimension x... Enjoy!

$$
\frac{\partial c_{\mathrm{A}}}{\partial t}=\sum_{i} R_{\mathrm{A}, i}-\frac{\partial N_{\mathrm{A}}}{\partial x}
$$ law, and it is highly relevant to electrochemistry and in fact all science and engineering fields, we better know it...

... it is introduced to most undergraduate students studying chemical engineering, materials science, and physics, but only partially to chemists (first half) and mechanical engineers (second half)...
... anyway, here it is for species A along dimension x... Enjoy!

rate of change of the
(c) oncentration of species A
with respect to (t)ime law, and it is highly relevant to electrochemistry and in fact all science and engineering fields, we better know it...
... it is introduced to most undergraduate students studying chemical engineering, materials science, and physics, but only partially to chemists (first half) and mechanical engineers (second half)...
... anyway, here it is for species A along dimension x... Enjoy!
rate of change of the (c) oncentration of species A with respect to (t)ime

mass action (R)ate laws that effect species A, e.g. $R_{A}=k_{2}[\mathrm{~A}][\mathrm{B}]$
. this is what chemists were taught ... it's simple! ... and recall that these (R)eactions are driven by differences in chemical potential, μ, of various species, including A

$$
\text { since the continuity of mass equation is "better than" the conservation of mass } 315
$$ law, and it is highly relevant to electrochemistry and in fact all science and engineering fields, we better know it...

... it is introduced to most undergraduate students studying chemical engineering, materials science, and physics, but only partially to chemists (first half) and mechanical engineers (second half)...
... anyway, here it is for species A along dimension x... Enjoy!
rate of change of the (c) oncentration of species A with respect to (t)ime

mass action (R)ate laws that effect species A, e.g. $R_{A}=k_{2}[\mathrm{~A}][\mathrm{B}]$
rate of change of the flux (N) of species A with respect to position (x)
... what is mass flux?
(1) Migration / Drift (no analogous term for heat, as heat is not charged) Flux ($\mathrm{mol} \mathrm{cm}{ }^{-2} \mathrm{~s}^{-1}$) of charged species due to an electric field (electric potential)... in general, stirring does not affect this as cations and anions move in opposite directions

(1) Migration / Drift (no analogous term for heat, as heat is not charged) Flux ($\mathrm{mol} \mathrm{cm}{ }^{-2} \mathrm{~s}^{-1}$) of charged species due to an electric field (electric potential)... in general, stirring does not affect this as cations and anions move in opposite directions
(2) Diffusion (analogous heat transport is down a temperature gradient) Net flux of species due to a spatial gradient in their concentration and random thermal motion (no real "force")

Diffusion
http://en.wikipedia.org/wiki/Diffusion
(1) Migration / Drift (no analogous term for heat, as heat is not charged) Flux ($\mathrm{mol} \mathrm{cm}{ }^{-2} \mathrm{~s}^{-1}$) of charged species due to an electric field (electric potential)... in general, stirring does not affect this as cations and anions move in opposite directions
(2) Diffusion (analogous heat transport is down a temperature gradient) Net flux of species due to a spatial gradient in their concentration and random thermal motion (no real "force")
(3) Convection (analogous heat transport is fluid/gas motion) Hydrodynamic movement (e.g. forced convection (stirring)) of species, where charged species still remain near each other (Coulombic attraction)
... FYI: even without intentional forced convection, unintentional forced convection (e.g. vibrations) influences an electrochemical experiment after ~ 30 seconds
(1) Migrat Flux (n potent anions
(2) Diffusi Net flu randor
 charged) (electric and
rradient)
ation and
(3) Convection (analogous heat transport is fluid/gas motion) Hydrodynamic movement (e.g. forced convection (stirring)) of species, where charged species still remain near each other (Coulombic attraction)
... FYI: even without intentional forced convection, unintentional forced convection (e.g. vibrations) influences an electrochemical experiment after ~ 30 seconds

Mass transfer, for a charged species, seems like a current!

How is current density $\left(J, \mathrm{Acm}^{-2}\right)$ related to flux $\left(\mathbf{N}, \mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$?
... well, current density has units of $A \mathrm{~cm}^{-2}=\mathrm{Cm}^{-2} \mathrm{~s}^{-1}$...
... and flux has units of $\mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \ldots$
... So what do we need to equate these? ...
... something with units of $\mathrm{C} \mathrm{mol}^{-1}$...

$$
J_{x}=\boldsymbol{z} \boldsymbol{F} \boldsymbol{N}_{x} \ldots \text { the Faraday constant... and } z
$$

The total current density, in one-dimension, due to all charged species is,

$$
\begin{aligned}
& J_{x}=z F N_{x}=F \sum_{i} z_{i}\left(-\frac{D_{i, x} c_{i}}{R T} \cdot \frac{d \bar{\mu}_{i}}{d x}+c_{i} v_{x}\right) \text {, and in 3D... } \\
& J=z F \boldsymbol{N}=F \sum_{i} z_{i}\left(-\frac{D_{i} c_{i}}{R T} \cdot \nabla \bar{\mu}_{i}+c_{i} v\right), \text { where } \nabla \text { is "del" (nabla) }
\end{aligned}
$$

... where D_{i} is the diffusion coefficient of species $i\left(\right.$ in units of $\left.\mathrm{cm}^{2} \mathrm{~s}^{-1}\right), c_{i}$ is the concentration (in units of $\mathrm{mol} \mathrm{cm}^{-3}$), $\bar{\mu}_{i}$ is the electrochemical potential (in units of $\mathrm{J} \mathrm{mol}{ }^{-1}$), and v is the velocity of the solution (in units of $\mathrm{cm} \mathrm{s}^{-1}$)

Mass transfer, for a charged species, seems like a current!

How is current density $\left(J, \mathrm{Acm}^{-2}\right)$ related to flux $\left(\mathbf{N}, \mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$?
... well, current density has units of $\mathrm{Acm}^{-2}=\mathrm{C} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$...
... and flux has units of $\mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$... For derivation, see Bockris \& Reddy,
... So what do we need to equate these? ... Modern EChem, Vol. 1, 2002, Section 4.4.15
... something with units of Cmol^{-1}...

$$
J_{x}=z F N_{x} \ldots \text { the Faraday constant... and } z
$$

The total current density, in one-dimension, due to all charged species is,

$$
\begin{aligned}
& J_{x}=z F N_{x}=F \sum_{i} z_{i}\left(-\frac{D_{i, x} c_{i}}{R T} \cdot \frac{d \bar{\mu}_{i}}{d x}+c_{i} v_{x}\right), \text { and in 3D... } \\
& \boldsymbol{J}=z F \boldsymbol{N}=F \sum_{i} z_{i}\left(-\frac{D_{i} c_{i}}{R T} \cdot \nabla \bar{\mu}_{i}+c_{i} v\right), \text { where } \nabla \text { is "del" (nabla) }
\end{aligned}
$$

... where D_{i} is the diffusion coefficient of species $i\left(\right.$ in units of $\left.\mathrm{cm}^{2} \mathrm{~s}^{-1}\right), c_{i}$ is the concentration (in units of $\mathrm{mol} \mathrm{cm}^{-3}$), $\bar{\mu}_{i}$ is the electrochemical potential (in units of $\mathrm{J} \mathrm{mol}{ }^{-1}$), and v is the velocity of the solution (in units of $\mathrm{cm} \mathrm{s}^{-1}$)

Mass transfer, for a charged species, seems like a current!

How is current density $\left(J, \mathrm{Acm}^{-2}\right)$ related to flux $\left(\mathbf{N}, \mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$?
... well, current density has units of $A \mathrm{~cm}^{-2}=\mathrm{Ccm}^{-2} \mathrm{~s}^{-1} .$.
... and flux has units of $\mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \ldots$
... So what do we need to equate these? ...
... something with units of Cmol^{-1}...
As we will see, besides the sign, this equals $\quad J_{\boldsymbol{x}}=\boldsymbol{z} \boldsymbol{F} \boldsymbol{N}_{\boldsymbol{x}} \ldots$... the Faraday constant... and z.
conductivity $(\sigma$.$) divided by z$....
... and thus in the absence of convection...
The total current density, in one-dimension, due to all charged species is,

$$
\begin{aligned}
& J_{x}=z F N_{x}=F \sum_{i} z_{i}\left(-\frac{D_{i, x} c_{i}}{R T} \cdot \frac{d \bar{\mu}_{i}}{d x}+c_{i} v_{x}\right) \text {, and in 3D... } \\
& \boldsymbol{J}=z F \boldsymbol{N}=F \sum_{i} z_{i}\left(-\frac{D_{i} c_{i}}{R T} \cdot \nabla \bar{\mu}_{i}+c_{i} \boldsymbol{v}\right), \text { where } \nabla \text { is "del" (nabla) } \\
& \ldots J_{x, i}=\frac{\sigma_{i}}{z_{i} F} \frac{d \bar{\mu}_{i}}{d x} \ldots \text { how elegant... and rather easy to memorize! }
\end{aligned}
$$

... where D_{i} is the diffusion coefficient of species i (in units of $\mathrm{cm}^{2} \mathrm{~s}^{-1}$), c_{i} is the concentration (in units of $\mathrm{mol} \mathrm{cm}^{-3}$), $\bar{\mu}_{i}$ is the electrochemical potential (in units of $\mathrm{J} \mathrm{mol}^{-1}$), and v is the velocity of the solution (in units of $\mathrm{cm} \mathrm{s}^{-1}$)
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i} v(x)
$$

$$
1
$$

the total flux of reactant i to a flat electrode (this is $N_{i}(x)$ in many textbooks - not ours! especially engineering ones; it has units of $\mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$)

Walther Hermann Nernst (1864-1941)

Max Karl Ernst Ludwig Planck (1858-1947)

Nobel Prize (Chemistry, 1920) Nobel Prize (Physics, 1918)
mass transport/transfer of molecules to the WE in an electrochemical cell 324 has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i} v(x)
$$

$$
\uparrow
$$

the diffusive flux of reactant i to a flat electrode where, again, D_{i} is the diffusion coefficient for species, i (D has units of $\mathrm{cm}^{2} \mathrm{~s}^{-1}$)
mass transport/transfer of molecules to the WE in an electrochemical cell 325 has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i} v(x)
$$

the flux due to migration/drift of reactant i where z_{i} is the charge on species i, and $\partial \phi / \partial x$ is the gradient in electric potential (which is equal to the negative of the electric field, E)
mass transport/transfer of molecules to the WE in an electrochemical cell has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:
B\&F, 1.4.2

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i}^{*} v(x)
$$

the flux due to convection of reactant i where $\boldsymbol{v}(x)$ is the velocity profile of the solution
mass transport/transfer of molecules to the WE in an electrochemical cell 327 has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{Z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+\begin{gathered}
\text { \&\&F, 1.4.2 } \\
\& C_{i} v(x)
\end{gathered}
$$

... so, because we are adding up three contributions to the flux which is proportional to the current (density) - if we drew a circuit to represent these terms, would these contributions be in series or in parallel?
... in parallel... $J_{i}(x)=J_{1}+J_{2}+J_{3}$
mass transport/transfer of molecules to the WE in an electrochemical cell has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{Z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+\begin{gathered}
\text { \&\&F, 1.4.2 } \\
\& C_{i} v(x)
\end{gathered}
$$

... so, if $J_{\text {migration/drift }}$ is huge and $J_{\text {diffusion }}$ is small, what process dominates J ?
$J_{\text {migration/drift }}$
... and now what if there was rapid stirring?
$J_{\text {convection }}$

mass transport/transfer of molecules to the WE in an electrochemical cell

has three contributions: diffusion, migration/drift, and convection
the Nernst-Planck Equation:

$$
J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i} v(x)
$$

... again... but where did this equation for flux come from?
... who's comfortable with me just giving you this equation?

Electrochemical potential of species i in phase β is an energy $(\mathrm{J} / \mathrm{mol})$,
$\bar{\mu}_{i}^{\beta}=\left(\frac{\partial G}{\partial n_{i}^{\beta}}\right)_{T, p, n_{j \neq i}}=\mu_{i}^{\beta}+z_{i} \boldsymbol{F} \boldsymbol{\phi}^{\boldsymbol{\beta}}$, where
$G($ Gibbs free energy $(\mathrm{J}))$
$n_{i}($ amount of species $i(\mathrm{~mol}))$
$\boldsymbol{\mu}_{\boldsymbol{i}}=\boldsymbol{\mu}_{\boldsymbol{i}}^{\mathbf{0}}+\boldsymbol{R T} \boldsymbol{\operatorname { l n }} \boldsymbol{a}_{\boldsymbol{i}}($ chemical potential $(\mathbf{J} / \mathbf{m o l}))$
$z_{i}($ valency of species $i)$
$F \approx 10^{5}($ Faraday constant $(\mathrm{C} / \mathrm{mol})$
$\boldsymbol{\phi}^{\boldsymbol{\beta}}($ Galvani/inner electric potential $(\mathrm{V}))$
$a_{i}($ activity of species $i)$
For an uncharged species $\bar{\mu}_{i}^{\beta}=\mu_{i}^{\beta}$.

From before, for one species the total flux in one-dimension is

$$
N=-\frac{D c}{R T} \cdot \frac{d \bar{\mu}}{d x}+c v, \text { where again } D \text { is diffusion coefficient }\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right), c \text { is }
$$

concentration ($\mathrm{mol} \mathrm{cm}^{-3}$), $\bar{\mu}$ is the electrochemical potential $\left(\mathrm{J} \mathrm{mol}^{-1}\right), v$ is velocity $\left(\mathrm{cm} \mathrm{s}^{-1}\right)$
Recall that $\bar{\mu}_{i}^{\beta}=\mu_{i}^{\beta}+z_{i} F \phi^{\beta}$ and so,

$$
\begin{aligned}
& N=-\frac{D c}{R T} \cdot \frac{d(\mu+z F \phi)}{d x}+c v_{\ldots . .} \text { and recall that } \mu_{i}=\mu_{i}^{0}+R T \ln a_{i} \text { and so, } \\
& N=-\frac{D c}{R T} \cdot \frac{d\left(\mu^{0}+R T \ln a+z F \phi\right)}{d x}+c v
\end{aligned}
$$

flux
$J_{i}(x)=-D_{i} \frac{\partial C_{i}(x)}{\partial x}-\frac{z_{i} F}{R T} D_{i} C_{i} \frac{\partial \phi(x)}{\partial x}+C_{i} v(x)$

From before, for one species the total flux in one-dimension is

$$
N=-\frac{D c}{R T} \cdot \frac{d \bar{\mu}}{d x}+c v, \text { where again } D \text { is diffusion coefficient }\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right), \mathrm{c} \text { is }
$$

concentration ($\mathrm{mol} \mathrm{cm}^{-3}$), $\bar{\mu}$ is the electrochemical potential $\left(\mathrm{J} \mathrm{mol}^{-1}\right)$, v is velocity $\left(\mathrm{cm} \mathrm{s}^{-1}\right)$
Recall that $\bar{\mu}_{i}^{\beta}=\mu_{i}^{\beta}+z_{i} F \phi^{\beta}$ and so,

$$
\begin{aligned}
N & =-\frac{D c}{R T} \cdot \frac{d(\mu+z F \phi)}{d x}+c v_{\ldots} \text { and recall that } \mu_{i}=\mu_{i}^{0}+R T \ln a_{i} \text { and so, } \\
N & =-\frac{D c}{R T} \cdot \frac{d\left(\mu^{\beta}+R T \ln a+z F \phi\right)}{d x}+c v_{\ldots . .} \text { and assuming } a \approx c \\
N & =-D c \cdot \frac{d(\ln c)}{d x}-\frac{z F D}{R T} c \cdot \frac{d \phi}{d x}+c v_{\ldots . .} \text { and finally } \ldots \\
\boldsymbol{J}_{\boldsymbol{i}}(\boldsymbol{x}) & =-\boldsymbol{D}_{\boldsymbol{i}} \frac{\boldsymbol{\partial}_{\boldsymbol{i}}(\boldsymbol{x})}{\boldsymbol{\partial} \boldsymbol{x}}-\frac{\boldsymbol{Z}_{\boldsymbol{i}} \boldsymbol{F}}{\boldsymbol{R T}_{\boldsymbol{T}}} \boldsymbol{D}_{\boldsymbol{i}} \boldsymbol{C}_{\boldsymbol{i}} \frac{\boldsymbol{\partial} \boldsymbol{\phi}(\boldsymbol{x})}{\boldsymbol{\partial} \boldsymbol{x}}+\boldsymbol{C}_{\boldsymbol{i}} \boldsymbol{v}(\boldsymbol{x})
\end{aligned}
$$

Diffusion coefficient ($D, \mathrm{~cm}^{\mathbf{2}} \mathbf{s}^{-1}$) - "proportionality constant relating the flux of [the] amount of [an entity to its] concentration gradient..." (IUPAC Gold Book)

Fick's first law of steady-state Diffusion: $N_{z}=-D_{z} \frac{d c}{d z}$ in 1D
(His second law is for non-steady-state conditions, where time is another independent variable.)

Physician \& Physiologist

Adolf Eugen Fick (1829-1901)

Diffusion coefficient ($D, \mathrm{~cm}^{\mathbf{2}} \mathbf{s}^{-1}$) - "proportionality constant relating the flux of [the] amount of [an entity to its] concentration gradient..." (IUPAC Gold Book)

Fick's first law of steady-state Diffusion: $N_{z}=-D_{z} \frac{d c}{d z}$ in 1D
D also exhibits Arrhenius behavior: $D=D_{0} e^{-\frac{E_{a}}{R T}}$
where D_{0} is the maximum D (at infinite T)

Physician \& Physiologist

Adolf Eugen Fick (1829-1901)

Steady-state? ...

... Initial states equilibrate using ICE, ICE Baby!

$$
A \rightleftarrows B+C
$$

Reaction:	$\mathbf{H A}$	\mathbf{A}^{-}	$\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}$
\mathbf{I}	0.150 M	0.000 M	0.000 M
\mathbf{C}	$-x \mathrm{M}$	+x M	$+x \mathrm{M}$
E	$0.150-\mathrm{xM}$	$\times \mathrm{M}$	$\times \mathrm{M}$

http://chemwiki.ucdavis.edu/Physical Chemistry/Eq uilibria/Le Chatelier\%27s Principle/Ice Tables

$A \rightleftarrows B+C$

Vanilla Ice wants to know, "As the initial state progresses, what happens if you keep supplying A and pulling B and C away?" ...

$\rightarrow A \rightleftharpoons B+C \rightarrow$

... but for how long? ...

$$
M_{1} \longrightarrow A \rightleftarrows B+C \longrightarrow M_{2}
$$

... as long as the rate of supply in and the rate of exit out are constant... ... and in electrochemical systems, as long as a constant potential bias is applied!

In an ideal world, i.e. under certain rare conditions,
$\frac{\partial c_{A}}{\partial t}=\frac{\partial c_{B}}{\partial t}=\frac{\partial c_{C}}{\partial t}=0$, and the system is in a steady-state where there is a net flux of species (generation of A, from the left, and loss of $B \& C$, to the right) but the species concentrations in the cell do not change with time
... when the current is at a steady-state, the current is constant, and there is no new capacitive charging!

... for steady-state current, KCL applies... no, not KCI... but KCL!
Kirchhoff's Current Law (KCL)

$$
\sum_{k=1}^{n} I_{k}=0
$$

But KCL applies to the entire circuit, including in the potentiostat! (when current flows, i.e. due motion of charges, it is the same everywhere in the circuit)

... hey, what are those minus signs at the bottom? ...

Migrating/Drifting Ions!

... we'll get to this shortly

Diffusion coefficient ($D, \mathrm{~cm}^{\mathbf{2}} \mathbf{s}^{-1}$) - "proportionality constant relating the flux of [the] amount of [an entity to its] concentration gradient..." (IUPAC Gold Book)

Fick's first law of steady-state Diffusion: $N_{z}=-D_{z} \frac{d c}{d z}$ in 1D

Do the units of D make sense?
$N_{z}\left(\mathrm{~mol} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$, as $\left.x y\right)=D_{z} \cdot \mathrm{dc} / \mathrm{dz}\left((\mathrm{mol} \mathrm{cm}-3) \mathrm{cm}^{-1}\right.$, as $\left.x y z z\right)$
$\left(\mathrm{mol} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right.$, as $\left.x y\right)=D_{z} \cdot\left(\mathrm{~mol} \mathrm{~cm}^{-4}\right.$, as $\left.x y z z\right)$
Therefore, D_{z} is has units of $\mathrm{cm}^{2} \mathrm{~s}^{-1}$... but as $z z$...

Physician \& Physiologist

Adolf Eugen Fick (1829-1901)
Huh? $z z ? z^{2}$? What?... That was unexpected!... Is it right?...

