Lecture \#15 of 20+

Liquid-Junction Potentials

Chapter 2

Q: What's in this set of lectures?
A: B\&F Chapter 2 main concepts:

- "Section 2.1": Salt; Activity; Underpotential deposition
- Section 2.3: Transference numbers; Liquid-junction potentials
- Sections 2.2 \& 2.4: Donnan potentials; Membrane potentials; pH meter; Ion-selective electrodes

$$
\mathrm{O}+n \mathrm{e}^{-} \rightleftharpoons \mathrm{R}
$$

$$
E=\underset{\uparrow}{E^{0}}-\frac{R T}{n F} \ln \frac{a_{R}}{a_{O}} \longleftarrow \text { activity of } \mathrm{R}
$$

the standard potential
(look it up in the back of your book or in the CRC table)
... the activity is the product of the activity coefficient and the concentration... ... divided by the standard-state concentration, which is (nearly) always $1 \mathrm{M} . .$.

$$
\begin{gathered}
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R} C_{R} / C_{R}^{o}}{\gamma_{O} C_{O} / C_{O}^{o}} \\
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{o}}{C_{O} / C_{O}^{o}}
\end{gathered}
$$

Refresher... the equilibrium potential and the Nernst Equation

$$
E=\frac{E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}}{E^{0^{\prime}}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{\mathrm{o}}}{C_{O} / C_{O}^{\mathrm{o}}}
$$

$$
E=E_{\uparrow}^{0 \prime}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{o}}{C_{O} / C_{O}^{0}}
$$

the formal potential... this depends on the identity and concentration of all ionizable species present in solution

However, (concentration) equilibrium "constants"...

Fig. 10-1, p. 268 in Skoog \& West
... let's focus on the solubility of $\mathrm{BaSO}_{4} \ldots$

A (activity) $=1.0$ for any pure solid compound in its standard state at room temperature
... let's focus on the solubility of $\mathrm{BaSO}_{4} \ldots$
$\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{SO}_{4}^{2-}(a q)+\mathrm{Ba}^{2+}(a q) \quad K_{\mathrm{sp}}=\frac{\mathrm{A}_{\mathrm{SO}_{4}^{-2}} \mathrm{ABa}_{\mathrm{a}^{+2}}}{A_{\mathrm{BaSO}_{4}}} \approx \mathrm{~A}_{\mathrm{SO}_{4}^{-2}} A_{\mathrm{Ba}^{+2}}$

$$
\mathrm{K}_{\mathrm{SP}}=\gamma_{\mathrm{SO}_{4}^{-2}}\left[\mathrm{SO}_{4}^{-2}\right] \gamma_{\mathrm{Ba}^{+2}}\left[\mathrm{Ba}^{+2}\right]
$$

(already divided by the standard-state concentration)
... let's focus on the solubility of $\mathrm{BaSO}_{4} \ldots$
$\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{SO}_{4}^{2-}(a q)+\mathrm{Ba}^{2+}(a q) \quad K_{\mathrm{sp}}=\frac{\mathrm{A}_{\mathrm{SO}_{4}^{-2}} \mathrm{~A}_{\mathrm{Ba}^{+2}}}{A_{\mathrm{BaSO}_{4}}} \approx \mathrm{~A}_{\mathrm{SO}_{4}^{-2}} A_{\mathrm{Ba}^{+2}}$

$$
K_{\mathrm{sp}}=\gamma_{\mathrm{SO}_{4}^{-2}}\left[\mathrm{SO}_{4}^{-2}\right] \gamma_{\mathrm{Ba}^{+2}}\left[\mathrm{Ba}^{+2}\right]
$$

the thermodynamic equilibrium constant

$$
K_{s p}^{\prime}=\frac{K_{s p}}{\gamma_{\mathrm{SO}_{4}^{-2}} \gamma_{\mathrm{Ba}}{ }^{+2}}=\left[\mathrm{SO}_{4}^{-2}\right]\left[\mathrm{Ba}^{+2}\right]
$$

the concentration equilibrium constant
(with each concentration already divided by its standard-state concentration)
... the greater the charge on an ion, the greater the depression of its activity coefficient by an inert salt...

lonic strength, $I=0.5\left(z_{\mathrm{A}}^{2}[\mathrm{~A}]+z_{\mathrm{B}}^{2}[\mathrm{~B}]+z_{\mathrm{C}}^{2}[\mathrm{C}]+\ldots\right)$
... the greater the charge on an ion, the greater the depression of its activity coefficient by an inert salt... but at high concentration, this trend flips!

Fig. 2.18. Schematic of the observed trend of $\gamma_{ \pm}$versus \sqrt{C} curve for salts showing a minimum.
... let's focus on the solubility of $\mathrm{BaSO}_{4} \ldots$
$\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{SO}_{4}^{2-}(a q)+\mathrm{Ba}^{2+}(a q) \quad K_{\mathrm{sp}}=\frac{\mathrm{A}_{\mathrm{SO}_{4}^{-2}} \mathrm{~A}_{\mathrm{Ba}^{+2}}}{A_{\mathrm{BaSO}_{4}}} \approx A_{\mathrm{SO}_{4}^{-2}} A_{\mathrm{Ba}^{+2}}$

$$
\begin{aligned}
K_{S p} & =\gamma_{\mathrm{SO}_{4}^{-2}}\left[\mathrm{SO}_{4}^{-2}\right] \gamma_{\mathrm{Ba}^{+2}}\left[\mathrm{Ba}^{+2}\right] \\
K_{S p}^{\prime} & =\frac{K_{\mathrm{sp}}}{\gamma_{\mathrm{SO}_{4}^{-2}} \gamma_{\mathrm{Ba}^{+2}}}=\left[\mathrm{SO}_{4}^{-2}\right]\left[\mathrm{Ba}^{+2}\right]
\end{aligned}
$$

... but what are these values? That is, how do we calculate them...
... and why do they depend on the concentration of salt?
(with each concentration already divided by its standard-state concentration)
... in all three of these cases, $\boldsymbol{K}^{\prime}>\boldsymbol{K}$, at not too large of an ionic strength

$$
K_{\mathrm{sp}}=\frac{\mathrm{A}_{\mathrm{SO}_{4}^{-2}} A_{\mathrm{Ba}^{+2}}}{A_{\mathrm{BaSO}_{4}}} \approx A_{\mathrm{SO}_{4}^{-2}} A_{\mathrm{Ba}}
$$

$$
K_{w}=A_{\mathrm{H}_{3} \mathrm{O}^{+}} A_{\mathrm{OH}^{-}}
$$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

$$
K_{a}=\frac{A_{\mathrm{H}_{3} \mathrm{O}^{+}} A_{\mathrm{CH}_{3} \mathrm{COO}}}{} A_{\mathrm{CH}_{3} \mathrm{COOH}}
$$

general observation: K^{\prime} always shifts (from K) to favor the most ionic state of the equilibrium

Refresher... the equilibrium potential and the Nernst Equation

$$
E=E^{0 \prime}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{0}}{C_{O} / C_{O}^{0}}
$$

Question: How, qualitatively, is the equilibrium potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ affected by the addition of a supporting electrolyte, KF, at a concentration of 0.1 M ?

$$
\begin{gathered}
\mathrm{Fe}^{3+}+1 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} \\
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{\mathrm{o}}}{C_{O} / C_{O}^{\mathrm{o}}}
\end{gathered}
$$

... now, $\gamma_{\text {Fe3+ }}<\gamma_{\text {Fe2+, }}$ agreed?...

Debye-Hückel equation

$\alpha=$ effective diameter of hydrated ion (nm)

TABLE 10-2
Activity Coefficients for lons at $25^{\circ} \mathrm{C}$

Ion	Activity Coefficient at Indicated Ionic Strength					
	$\alpha_{\text {X }}$, nm	0.001	0.005	0.01	0.05	0.1
$\mathrm{H}_{3} \mathrm{O}^{+}$	0.9	0.967	0.934	0.913	0.85	0.83
$\mathrm{Li}^{+}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	0.6	0.966	0.930	0.907	0.83	0.80
$\mathrm{Na}^{+}, \mathrm{IO}_{3}^{-}, \mathrm{HSO}_{3}^{-}, \mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}, \mathrm{OAc}^{-}$	0.4-0.45	0.965	0.927	0.902	0.82	0.77
$\mathrm{OH}^{-}, \mathrm{F}^{-}, \mathrm{SCN}^{-}, \mathrm{HS}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{BrO}_{3}^{-}, \mathrm{IO}_{3}^{-}, \mathrm{MnO}_{4}^{-}$	0.35	0.965	0.926	0.900	0.81	0.76
$\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{HCOO}^{-}$	0.3	0.965	0.925	0.899	0.81	0.75
$\mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Tl}^{+}, \mathrm{Ag}^{+}, \mathrm{NH}_{4}$	0.25	0.965	0.925	0.897	0.80	0.75
$\mathrm{Mg}^{2+}, \mathrm{Be}^{2+}$	0.8	0.872	0.756	0.690	0.52	0.44
$\mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+} \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}$, Phthalate ${ }^{2-}$	0.6	0.870	0.748	0.676	0.48	0.40
$\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{S}^{2-}$	0.5	0.869	0.743	0.668	0.46	0.38
$\mathrm{Pb}^{2+}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	0.45	0.868	0.741	0.665	0.45	0.36
$\mathrm{Hg}_{2}^{2+}, \mathrm{SO}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{Cr}_{4}^{2-}, \mathrm{HPO}_{4}^{2-}$	0.40	0.867	0.738	0.661	0.44	0.35
$\mathrm{Al}^{3+}, \mathrm{Fe}^{3+} \mathrm{Cr}^{3+}, \mathrm{La}^{3+}, \mathrm{Ce}^{3+}$	0.9	0.737	0.540	0.443	0.24	0.18
PO_{4}^{3-} - $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$	0.4	0.726	0.505	0.394	0.16	0.095
$\mathrm{Th}^{4+}, \mathrm{Zr}^{4+}, \mathrm{Ce}^{4+}, \mathrm{Sn}^{4+}$	1.1	0.587	0.348	0.252	0.10	0.063
$\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$	0.5	0.569	0.305	0.200	0.047	0.020

[^0]© 2004 Thomson-Brooks/Cole

Debye-Hückel equation

$$
\text { (in water at } 25^{\circ} \mathrm{C} \text {) } \quad-\log \gamma_{x}=\frac{0.51 z_{x}^{2} \sqrt{I}}{1+3.3 \alpha_{x} \sqrt{I}}
$$

$\alpha=$ effective diameter of hydrated ion (nm)

... the derivation is long... but the main idea is that you balance thermal motion (Boltzmann) with electrostatics (Poisson/Gauss)...

Peter Joseph William Debye (1884-1966)

Erich Armand Arthur Joseph Hückel (1896-1980)

Debye-Hückel equation

$$
\text { (in water at } 25^{\circ} \mathrm{C} \text {) } \quad-\log \gamma_{x}=\frac{0.51 z_{x}^{2} \sqrt{I}}{1+3.3 \alpha_{x} \sqrt{I}}
$$

$\alpha=$ effective diameter of hydrated ion (nm)
... the "limiting law" is when $I \rightarrow 0(<10 \mathrm{mM})$...

... and then the Debye-Hückel equation simplifies to just the numerator:

$$
-\log \gamma_{x}=0.51 z_{x}^{2} \sqrt{I}
$$

Fig. 3.23. The comparison of the experimentally observed mean activity coefficients of HCl and those that are calculated from the Debye-Hückel limiting law.

Question: How, qualitatively, is the equilibrium potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3588}$ affected by the addition of a supporting electrolyte, KF, at (UPDATED) concentration of 0.1 M ?

$$
\begin{gathered}
\mathrm{Fe}^{3+}+1 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} \\
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{\mathrm{o}}}{C_{O} / C_{O}^{\mathrm{o}}}
\end{gathered}
$$

... now, $\gamma_{\text {Fe3+ }}<\gamma_{\text {Fe2 } 2+}$ agreed?... So...

$$
\frac{\gamma_{R}}{\gamma_{O}}>1.0 \text { and } \ln \frac{\gamma_{R}}{\gamma_{O}}>0
$$

... and we conclude that in the presence of added salt... you tell me!

Question: How, qualitatively, is the equilibrium potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3589}$ affected by the addition of a supporting electrolyte, KF, at (UPDATED) concentration of 0.1 M ?
$\mathrm{Fe}^{3+}+1 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$

$$
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{\mathrm{o}}}{C_{O} / C_{O}^{\mathrm{o}}}
$$

no added salt... with added salt...

$$
\begin{gathered}
\gamma_{O} \approx \gamma_{R} \approx 1.0 \\
\ln \frac{\gamma_{R}}{\gamma_{O}} \approx 0
\end{gathered}
$$

$$
\frac{\gamma_{R}}{\gamma_{O}}>1.0 \text { and } \ln \frac{\gamma_{R}}{\gamma_{O}}>0
$$

ANSWER: E0' shifts to more negative potentials

Question: What if the redox species were positive/neutral charged, 590 like $\mathrm{T}^{+/ 0}$, and we increased the concentration of supportir UPPACEDIlyte to $\sim 0.1 \mathrm{M}$?

Figure 4.3.5 Voltammograms for reduction of $0.65 \mathrm{~m} M \mathrm{~T}_{2} \mathrm{SQ}_{4}$ at a mercury film on a silver ultramicroelectrode (radius, $15 \mu \mathrm{~m}$) in the presence of (a) $0,(b) 0 . \mathrm{N}$ (c) 1 , and (d) $100 \mathrm{~m} M \mathrm{LiClO}_{4}$. The potential was controlled $v s$. a Pt wire QRE whose potential was a function of solution composition. This variability is the basis for the shifts in wave position along the potential axis. [Reprinted with permission from M. Ciszkowska and J. G. Osteryoung, Anal. Cherr., 67, 1125 (1995). Copyright 1995, American Chemical Society.]

Question: What if the redox species were negatively charged, like $\left[\mathrm{Fe}^{\mathrm{II} \mathrm{\prime}}(\mathrm{CN})_{6}\right]^{3-} /\left[\mathrm{Fe}^{\mathrm{I} \mathrm{\prime}}(\mathrm{CN})_{6}\right]^{4-}$, and we increased the concentration ofic) supporting electrolyte to $\sim 0.1 \mathrm{M}$? ($F R O M$ LAB!)

$$
\begin{gathered}
{\left[\mathrm{Fe}^{\mathrm{II} \mathrm{I}}\right]^{3-}+1 \mathrm{e}^{-} \rightleftharpoons\left[\mathrm{Fe}^{\mathrm{II}}\right]^{4-}} \\
E=E^{0}-\frac{R T}{n F} \ln \frac{\gamma_{R}}{\gamma_{O}}-\frac{R T}{n F} \ln \frac{C_{R} / C_{R}^{\mathrm{o}}}{C_{O} / C_{O}^{\mathrm{o}}}
\end{gathered}
$$

ANSWER: E0' shifts to more positive potentials

$$
\begin{aligned}
& \text {... practical "activity"... even of solids! Underpotential deposition (UPD) } 592 \\
& \text { UPD of cobalt on Au thin film }
\end{aligned}
$$

... practical "activity"... even of solids! Underpotential deposition (UPD) UPD of cobalt on Au thin film

OPD of cobalt

Q: What's in this set of lectures?
A: B\&F Chapter 2 main concepts:

- "Section 2.1": Salt; Activity; Underpotential deposition
- Section 2.3: Transference numbers; Liquid-junction potentials
- Sections 2.2 \& 2.4: Donnan potentials; Membrane potentials; pH meter; Ion-selective electrodes

Now on to two general liquid junctions that we care about (the most)...

an SCE

an ISE (for nitrate ions)

... liquid junctions:
when two ionic solutions are separated across an interface that prevents bulk mixing of the ions, but has ionic permeability, a potential (drop) develops called the liquid junction potential.

Bard \& Faulkner, $2^{\text {nd }}$ Ed., Wiley, 2001, Figure 2.3.2
... example " 1 ": . starting at the side with larger ion concentration

- the ion the with larger mobility will impart its charge to the opposite side of the junction
... conceptually, let's think about a condition in the limit where $t_{\mathrm{H}_{+}} \rightarrow 1$ (say $t_{\mathrm{H}_{+}} \approx 0.9$)...
... as H^{+}diffuses down its concentration gradient, an electrostatic force is exerted on Cl^{-}to pull it along (at a larger flux) while at the same time slowing down transport of H^{+}
... this happens until t_{i}-effective $=0.5$ for both H^{+} and Cl^{-}, and at which time the system has attained steady-state mass transport and has generated a maximum liquid-junction potential.
... FYI, in semiconductor physics this same process results in a Dember potential... and the transport process is called ambipolar diffusion

Recall that transport number, t_{i}, (or transference number) is based on ...

$$
u_{\mathrm{i}}=\frac{v}{\mathscr{E}}=\frac{\left|z_{\mathrm{i}}\right| e}{6 \pi \eta r} \quad \begin{aligned}
& \text { units: } \mathrm{cm}^{2} /(\mathrm{s} \mathrm{~V}) \\
& \text { (Stokes' law) }
\end{aligned}
$$

... and that the ionic conductivity, κ or σ, is defined as...

Siemens

$$
\kappa=F \sum_{\mathrm{i}}\left|z_{\mathrm{i}}\right| u_{\mathrm{i}} C_{\mathrm{i}} \quad \text { units: } \mathrm{s} / \mathrm{cm} \text { or } 1 /(\Omega \mathrm{cm})
$$

... so t_{i} is the fraction of the solution conductivity attributable to ion " i "
The Kohlrausch law (empirical) and

$$
t_{\mathrm{i}}=\frac{\left|z_{\mathrm{i}}\right| u_{\mathrm{i}} C_{\mathrm{i}}}{\sum_{\mathrm{j}}\left|z_{\mathrm{j}}\right| u_{\mathrm{j}} C_{\mathrm{j}}}
$$ Debye-Hückel-Onsager equation (theoretical) predict that the molar conductivity is proportional to the square root of the salt concentration

$\Lambda \alpha(C)^{1 / 2}$

Friedrich Wilhelm Georg Kohlrausch
Physicist

Recall that transport number, t_{i}, (or transference number) is based on ...

$$
u_{\mathrm{i}}=\frac{v}{\mathscr{E}}=\frac{\left|z_{\mathrm{i}}\right| e}{6 \pi \eta r} \quad \begin{aligned}
& \text { units: } \mathrm{cm}^{2} /(\mathrm{s} \mathrm{~V}) \\
& \text { (Stokes' law) }
\end{aligned}
$$

... and that the ionic conductivity, κ or σ, is defined as...

Siemens

$$
\kappa=F \sum_{\mathrm{i}}\left|z_{\mathrm{i}}\right| u_{\mathrm{i}} C_{\mathrm{i}} \quad \text { units: } \mathrm{s} / \mathrm{cm} \text { or } 1 /(\Omega \mathrm{cm})
$$

... so t_{i} is the fraction of the solution conductivity attributable to ion " i "

$$
t_{\mathrm{i}}=\frac{\left|z_{\mathrm{i}}\right| u_{\mathrm{i}} C_{\mathrm{i}}}{\sum_{\mathrm{j}}\left|z_{\mathrm{j}}\right| u_{\mathrm{j}} C_{\mathrm{j}}} \begin{aligned}
& \begin{array}{l}
\text { The Kohlrausch law (empirical) and } \\
\text { Debye-Hückel-Onsager equation } \\
\text { (theoretical) predict that the molar } \\
\text { conductivity is proportional to the } \\
\text { square root of the salt concentration }
\end{array} \\
& \begin{array}{l}
\boldsymbol{\Lambda}(\boldsymbol{C})^{1 / 2} \quad \text { P-Chemist \& Physicist }
\end{array} \\
& \text { from Wiki } \begin{array}{l}
\text { Lars Onsager }
\end{array}
\end{aligned}
$$

Dilution in Aqueous Solutions at $25^{\circ} \mathrm{C}$ conductivity

Ion	$\lambda_{0}, \mathrm{~cm}^{2}$	quiv ${ }^{-}$	$u, \mathrm{~cm}^{2} \mathrm{sec}^{-1} \mathrm{~V}^{-1}$	
H^{+}	349.82	1	3.625×10^{-3}	
K	73.52	I	7.619×10^{4}	
Na^{+}	50.11	1	5.193×10^{-4}	
Li^{+}	38.69	1	4.010×10^{-4}	
NH_{4}^{+}	73.4	/	7.61×10^{-4}	
${ }_{2}^{1} \mathrm{Ca}^{2+}$	59.50	/	6.166×10^{-4}	
OH^{-}	198	1	205×10^{-3}	
Cl^{-}	76.34	/	7.912×10^{-4}	
Br	78.4	/	8.13×10^{-4}	
I^{-}	76.85	/	7.96×10^{-4}	
NO_{3}^{-}	71.44	/	7.404×10^{-4}	
OAc^{-}	40.9	/	4.24×10^{-4}	... and recall the
ClO_{4}^{-}	68.0	/	7.05×10^{-4}	Einstein-
${ }_{2}^{1} \mathrm{SO}_{4}^{2-}$	79.8	1	8.27×10^{-4}	Smoluchowski
HCO_{3}^{-}	44.48	1	4.610×10^{-4}	equation to
${ }_{3}^{1} \mathrm{Fe}(\mathrm{CN}){ }_{6}^{3-}$	101.0	1	1.047×10^{-3}	calculate
${ }_{4}^{1} \mathrm{Fe}(\mathrm{CN})_{6}^{4-}$	110.5	/	1.145×10^{-3}	calculate
$\underset{\substack{\text { FFrom D. A. MacInnes, "The Principles of Electrochemistry,"" } \\ \text { Dover, New York, 1961, p. } 342}}{\text { ant }} \mu_{i}=\frac{\left\|z_{i}\right\| F D_{i}}{R T}$				

... example "2": - compare dissimilar ions (cations or anions)

- the ion with the larger mobility will impart its charge to the opposite side of the junction

Bard \& Faulkner, 2 ${ }^{\text {nd }}$ Ed., Wiley, 2001, Figure 2.3.2

TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at $25^{\circ} \mathrm{C}$

Ion	$\lambda_{0}, \mathrm{~cm}^{2} \Omega^{-1}$ equiv $^{-1 a}$	$u, \mathrm{~cm}^{2} \mathrm{sec}^{-1} \mathrm{~V}^{-1 b}$
H^{+}	349.82	3.625×10^{-3}
$\mathrm{~K}^{+}$	73.52	7.619×10^{-4}
Na^{\top}	50.11	5.193×10^{-4}
Li^{+}	38.69	4.010×10^{-4}
NH_{4}^{+}	73.4	7.61×10^{-4}
$\frac{1}{2} \mathrm{Ca}^{2+}$	59.50	6.166×10^{-4}
OH^{-}	198	2.05×10^{-3}
Cl^{-}	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13×10^{-4}
I^{-}	76.85	7.96×10^{-4}
NO_{3}^{-}	71.44	7.404×10^{-4}
OAc^{-}	40.9	4.24×10^{-4}
ClO_{4}^{-}	68.0	7.05×10^{-4}
$\frac{1}{2} \mathrm{SO}_{4}^{2-}$	79.8	8.27×10^{-4}
HCO_{3}^{-}	44.48	4.610×10^{-4}
$\frac{1}{3} \mathrm{Fe}^{-}(\mathrm{CN})_{6}^{3-}$	101.0	1.047×10^{-3}
$\frac{1}{4} \mathrm{Fe}(\mathrm{CN})_{6}^{4-}$	110.5	1.145×10^{-3}

${ }^{a}$ From D. A. MacInnes, "The Principles of Electrochemistry,"
Dover, New York, 1961, p. 342
${ }^{b}$ Calculated from λ_{0}. the liquid-junction potential (for derivations, see B\&F, pp. 70-72)...

Type 1

Type 2

(b)
same cation or anion; different counter ion; same concentration

Type 3

(c)
no common ions, and/or one common ion; different concs the liquid-junction potential (for derivations, see B\&F, pp. 70-72)...

Type $1 \quad E_{\mathrm{j}}=\left(\phi^{\beta}-\phi^{\alpha}\right)=\left(t_{+}-t_{-}\right) \frac{R T}{F} \ln \frac{a(\alpha)}{a(\beta)}$ act use the entire salt
Type $2 \quad E_{j}=\oplus \frac{R T}{F} \ln \frac{\sum_{i}\left|z_{i}\right| u_{i} C_{i}(\alpha)}{\sum_{i}} \ldots$ use the conductivity due to all ions, even the common one (with a few assumptions, pg. 72)
... sign depends on the charge of the dissimilar ion:
$(+)$ when cations are dissimilar, and (-) when anions are dissimilar

the Henderson Eq. (with a few assumptions, pg. 72)
... as written, these equations calculate E_{j} at β vs α

example: B\&F Problem 2.14d

Calculate E_{j} for $\mathrm{NaNO}_{3}(0.10 \mathrm{M}) \mid \mathrm{NaOH}(0.10 \mathrm{M})$ $\alpha \mid \beta$

1. What Type? Type 2
2. Polarity?

TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at $25^{\circ} \mathrm{C}$

Ion	$\lambda_{0}, \mathrm{~cm}^{2} \Omega^{-1}$ equiv $^{-1 a}$	$u, \mathrm{~cm}^{2} \mathrm{sec}^{-1} \mathrm{~V}^{-1 b}$
H^{+}	349.82	3.625×10^{-3}
$\mathrm{~K}^{+}$	73.52	7.619×10^{-4}
Na^{+}	50.11	5.193×10^{-4}
Li^{+}	38.69	4.010×10^{-4}
NH_{4}^{+}	73.4	7.61×10^{-4}
$\frac{1}{2} \mathrm{Ca}^{2+}$	59.50	6.166×10^{-4}
OH^{-}	198	2.05×10^{-3}
Cl^{-}	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13×10^{-4}
I^{-}	76.85	7.96×10^{-4}
NO_{3}^{-}	71.44	7.404×10^{-4}
OAc^{-}	40.9	7.24×10^{-4}
ClO_{4}^{-}	68.0	8.05×10^{-4}
$\frac{1}{2} \mathrm{SO}_{4}^{2-}$	79.8	4.27×10^{-4}
HCO_{3}^{-}	44.48	$\frac{1}{3} \mathrm{Fe}(\mathrm{CN}){ }_{6}^{3-}$
$\frac{1}{4} \mathrm{Fe}(\mathrm{CN})_{6}^{4-}$	101.0	10.5

${ }^{a}$ From D. A. MacInnes, "The Principles of Electrochemistry,"
Dover, New York, 1961, p. 342
${ }^{b}$ Calculated from λ_{0}.

Calculate E_{j} for $\mathrm{NaNO}_{3}(0.10 \mathrm{M}) \mid \mathrm{NaOH}(0.10 \mathrm{M})$

1. What Type? Type 2
2. Polarity? Polarity should be clear... compare mobilities... μ_{OH} is larger... ... so NaNO_{3} side will be (-)... and so β vs α will be (+)
3. Calculate it:

$$
E_{j}=-\frac{R T}{F} \ln \frac{\sum_{i}\left|z_{i}\right| u_{i} C_{i}(\alpha)}{\sum_{i}\left|z_{i}\right| u_{i} C_{i}(\beta)} \begin{gathered}
\text { anions moving }
\end{gathered}
$$

$$
E_{j}=-0.05916 \log \left(\frac{\mu_{\mathrm{NO}_{3}^{-}}+\mu_{\mathrm{Na}^{+}}}{\mu_{\mathrm{OH}^{-}}+\mu_{\mathrm{Na}^{+}}}\right)<\begin{aligned}
& \text { as predicted, a }(+) \sqcup \\
& \text { potential correlates } \\
& \text { with the compartment } \\
& \text { in the denominator, } \beta, \\
& \text { vs } \alpha
\end{aligned}
$$

$$
E_{j}=-0.05916 \log \left(\frac{7.404+5.913}{20.5+5.913}\right)=0.0176 \mathrm{~V}=+17.6 \mathrm{mV}
$$

... a rather large E_{j} (at β vs α)!

TABLE 2.3.2 Ionic Properties at Infinite Dilution in Aqueous Solutions at $\mathbf{2 5}^{\circ} \mathrm{C}$
... so, why do trained electrochemists prefer to use saturated KCl (or KNO_{3}) as the salt to fill reference electrodes?
... similar mobilities and thus, similar t_{i}^{\prime} 's and thus,...
... vanishingly small LJ potentials!

Ion	$\lambda_{0}, \mathrm{~cm}^{2} \Omega^{-1}$ equiv $^{-1 a}$	$u, \mathrm{~cm}^{2} \mathrm{sec}^{-1} \mathrm{~V}^{-1 b}$
H^{+}	349.82	3.625×10^{-3}
K^{+}	73.52	7.619×10^{-4}
$\mathrm{Na}^{\text {+ }}$	50.11	5.193×10^{-4}
Li^{+}	38.69	4.010×10^{-4}
NH_{4}^{+}	73.4	7.61×10^{-4}
$\frac{1}{2} \mathrm{Ca}^{2+}$	59.50	6.166×10^{-4}
OH^{-}	198	2.05×10^{-3}
Cl^{-}	76.34	7.912×10^{-4}
Br	78.4	8.13×10^{-4}
I^{-}	76.85	7.96×10^{-4}
NO_{3}^{-}	71.44	7.404×10^{-4}
OAc	40.9	4.24×10^{-4}
ClO_{4}^{-}	68.0	7.05×10^{-4}
$\frac{1}{2} \mathrm{SO}_{4}^{2-}$	79.8	8.27×10^{-4}
HCO_{3}^{-}	44.48	4.610×10^{-4}
$\frac{1}{3} \mathrm{Fe}(\mathrm{CN})_{6}^{3-}$	101.0	1.047×10^{-3}
$\frac{1}{4} \mathrm{Fe}(\mathrm{CN})_{6}^{4-}$	110.5	1.145×10^{-3}
${ }^{a}$ From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342		

[^0]: Source: Reprinted with permission from J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675. Copyright 1937 American Chemical Society.

