Lecture #15 of 20+

571

Liquid-Junction Potentials

Chapter 2

Q: What's in this set of lectures?

- A: B&F Chapter 2 main concepts:
 - "Section 2.1": Salt; Activity; Underpotential deposition
 - Section 2.3: Transference numbers; Liquid-junction potentials

 Sections 2.2 & 2.4: Donnan potentials; pH meter; Ion-selective electrodes

Refresher... the equilibrium potential and the Nernst Equation ⁵⁷⁴ (UPDATED)

$$O + ne^- \rightleftharpoons R$$

$$E = E^{0} - \frac{RT}{nF} \ln \frac{a_{R}}{a_{O}} \longleftarrow \text{ activity of R}$$

the *standard potential* (look it up in the back of your book or in the CRC table)

... the activity is the product of the activity coefficient and the concentration... ... divided by the standard-state concentration, which is (nearly) always 1 M...

$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R} C_{R} / C_{R}^{0}}{\gamma_{O} C_{O} / C_{O}^{0}}$$
$$= E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R} / C_{R}^{0}}{C_{O} / C_{O}^{0}}$$

E

Refresher... the equilibrium potential and the Nernst Equation ⁵⁷⁵ (UPDATED)

$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R}/C_{R}^{0}}{C_{O}/C_{O}^{0}}$$
$$= \frac{E^{0'}}{E^{0'}}$$

$$E = E^{0\prime} - \frac{RT}{nF} \ln \frac{C_R / C_R^0}{C_0 / C_0^0}$$

the *formal potential*... this depends on the identity and concentration of all ionizable species present in solution

However, (concentration) equilibrium "constants"...

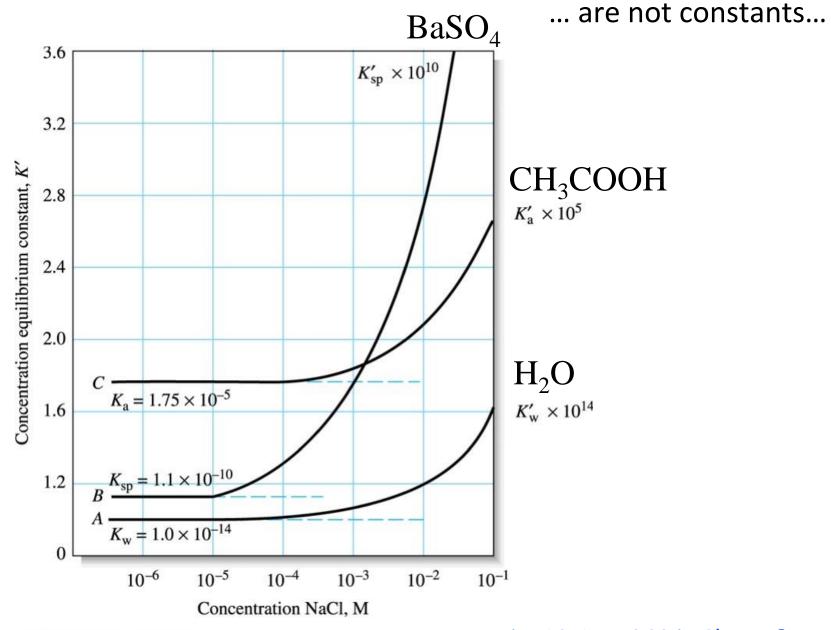


Fig. 10-1, p. 268 in Skoog & West

... let's focus on the solubility of BaSO₄...

$$BaSO_{4}(s) \rightleftharpoons SO_{4}^{2-}(aq) + Ba^{2+}(aq) \qquad K_{sp} = \frac{A_{SO_{4}^{-2}}A_{Ba^{+2}}}{A_{BaSO_{4}}} \approx A_{SO_{4}^{-2}}A_{Ba^{+2}}$$

A (activity) = 1.0 for any pure solid compound

in its standard state at room temperature

... let's focus on the solubility of BaSO₄...

(UPDATED) 578

$$BaSO_{4}(s) \rightleftharpoons SO_{4}^{2-}(aq) + Ba^{2+}(aq) \qquad K_{sp} = \frac{A_{SO_{4}^{-2}}A_{Ba^{+2}}}{A_{BaSO_{4}}} \approx A_{SO_{4}^{-2}}A_{Ba^{+2}}$$

$$K_{sp} = \frac{\gamma_{SO_{4}^{-2}}\left[SO_{4}^{-2}\right]\gamma_{Ba^{+2}}\left[Ba^{+2}\right]}{M_{SO_{4}^{-2}}}$$
the activity coefficient for SO₄²⁻ the concentration of SO₄²⁻

... let's focus on the solubility of BaSO₄...

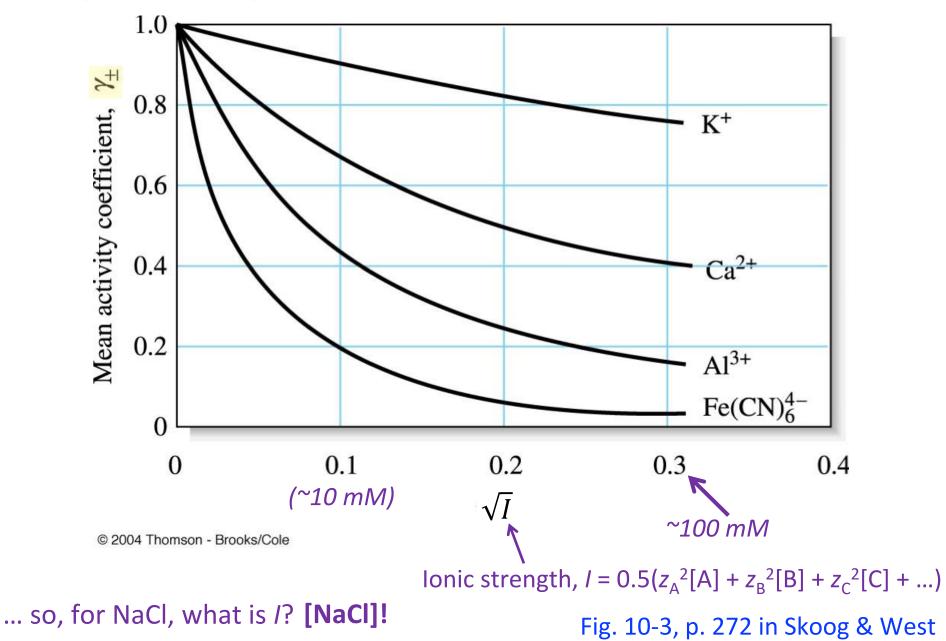
(UPDATED) 579

$$\operatorname{BaSO}_{4}(s) \rightleftharpoons \operatorname{SO}_{4}^{2}(aq) + \operatorname{Ba}^{2+}(aq) \qquad K_{sp} = \frac{A_{SO_{4}^{-2}}A_{Ba^{+2}}}{A_{BaSO_{4}}} \approx A_{SO_{4}^{-2}}A_{Ba^{+2}}$$

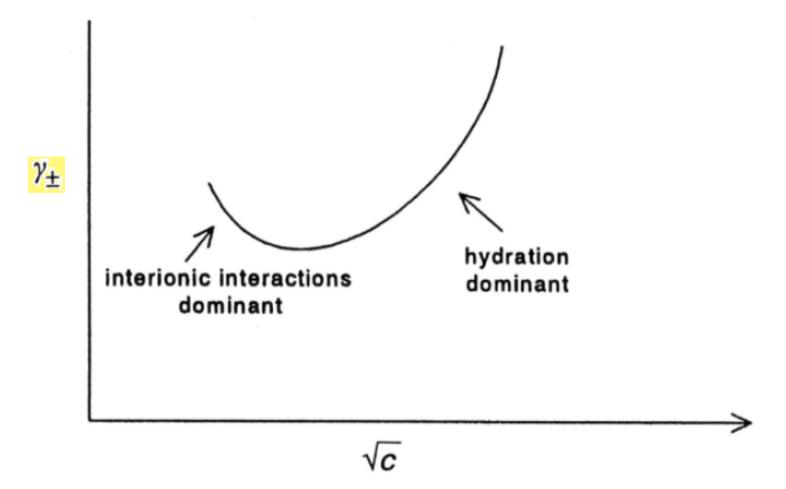
Λ

Λ

$$K_{sp} = \gamma_{SO_4^{-2}} \left[SO_4^{-2} \right] \gamma_{Ba^{+2}} \left[Ba^{+2} \right]$$


the *thermodynamic* equilibrium constant

$$K_{sp}' = \frac{K_{sp}}{\gamma_{SO_4^{-2}}\gamma_{Ba^{+2}}} = \left[SO_4^{-2}\right]\left[Ba^{+2}\right]$$


the *concentration* equilibrium constant

(with each concentration already divided by its standard-state concentration)

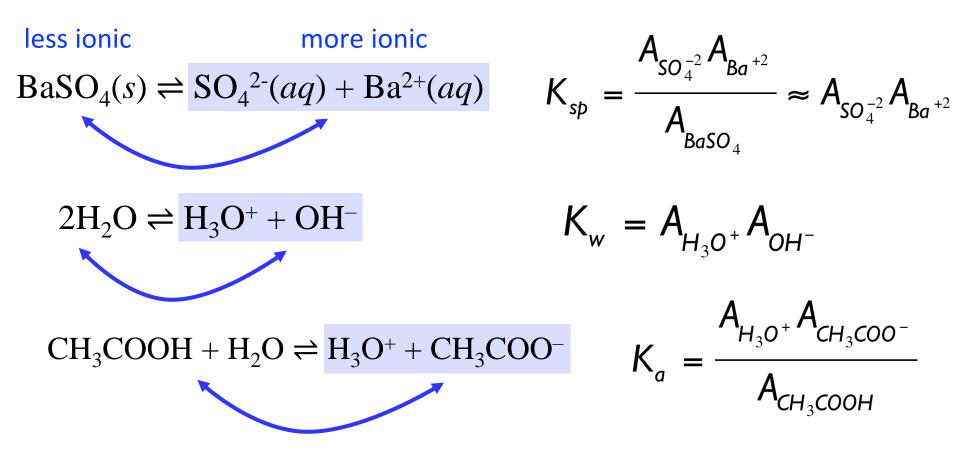
... the greater the charge on an ion, the greater the *depression* of its activity coefficient by an inert salt...

... the greater the charge on an ion, the greater the *depression* of its 581 activity coefficient by an inert salt... **but at high concentration, this trend flips!**

Fig. 2.18. Schematic of the observed trend of γ_{\pm} versus \sqrt{c} curve for salts showing a minimum.

Bockris & Reddy, Fig. 2.18

... let's focus on the solubility of BaSO₄...


(UPDATED) 582

$$BaSO_{4}(s) \rightleftharpoons SO_{4}^{2-}(aq) + Ba^{2+}(aq) \qquad K_{sp} = \frac{A_{SO_{4}^{-2}}A_{Ba^{+2}}}{A_{BaSO_{4}}} \approx A_{SO_{4}^{-2}}A_{Ba^{+2}}$$
$$K_{sp} = \gamma_{SO_{4}^{-2}} \left[SO_{4}^{-2} \right] \gamma_{Ba^{+2}} \left[Ba^{+2} \right]$$
$$K_{sp}^{\prime} = \frac{K_{sp}}{\gamma_{SO_{4}^{-2}}\gamma_{Ba^{+2}}} = \left[SO_{4}^{-2} \right] \left[Ba^{+2} \right]$$

... but what are these values? That is, how do we calculate them... ... and **why** do they depend on the concentration of salt?

(with each concentration already divided by its standard-state concentration)

... in all three of these cases, K' > K, at not too large of an ionic strength ⁵⁸³

<u>general observation</u>: K' always shifts (from K) to favor the **most ionic state** of the equilibrium

Refresher... the equilibrium potential and the Nernst Equation (UPDATED) $E = E^{0'} - \frac{RT}{nF} \ln \frac{C_R / C_R^0}{C_O / C_O^0}$

<u>Question</u>: How, qualitatively, is the equilibrium potential for Fe²⁺/Fe³⁺ affected by the addition of a supporting electrolyte, KF, at a concentration of 0.1 M?

$$Fe^{3+} + 1e^{-} \rightleftharpoons Fe^{2+}$$

$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R}/C_{R}^{0}}{C_{O}/C_{O}^{0}}$$

... now, $\gamma_{Fe3+} < \gamma_{Fe2+}$, agreed?...

Debye–Hückel equation (in water at 25 °C) $-\log \gamma_x = \frac{0.51 z_x^2 \sqrt{I}}{1 + 3.3 \alpha_y \sqrt{I}}$

 α = effective diameter of hydrated ion (nm)

TABLE 10-2

	Activity Coefficient at Indicated Ionic Strength					
Ion	α_{X} , nm	0.001	0.005	0.01	0.05	0.1
H ₃ O ⁺	0.9	0.967	0.934	0.913	0.85	0.83
Li ⁺ , C ₆ H ₅ COO ⁻	0.6	0.966	0.930	0.907	0.83	0.80
Na ⁺ , IO ₃ , HSO ₃ , HCO ₃ , H ₂ PO ₄ , H ₂ AsO ₄ , OAc ⁻	0.4-0.45	0.965	0.927	0.902	0.82	0.77
OH-, F-, SCN-, HS-, CIO3-, CIO4-, BrO3-, IO3-, MnO4	0.35	0.965	0.926	0.900	0.81	0.76
K ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , HCOO ⁻	0.3	0.965	0.925	0.899	0.81	0.75
Rb ⁺ , Cs ⁺ , TI ⁺ , Ag ⁺ , NH ⁺	0.25	0.965	0.925	0.897	0.80	0.75
Mg ²⁺ , Be ²⁺	0.8	0.872	0.756	0.690	0.52	0.44
Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ Ni ²⁺ , Co ²⁺ , Phthalate ²⁻	0.6	0.870	0.748	0.676	0.48	0.40
Sr ²⁺ , Ba ²⁺ , Cd ²⁺ , Hg ²⁺ , S ²⁻	0.5	0.869	0.743	0.668	0.46	0.38
$Pb^{2+}, CO_3^{2-}, SO_3^{2-}, C_2O_4^{2-}$	0.45	0.868	0.741	0.665	0.45	0.36
Hg_2^{2+} , SO_4^{2-} , $S_2O_3^{2-}$, Cr_4^{2-} , HPO_4^{2-}	0.40	0.867	0.738	0.661	0.44	0.35
Al^{3+} , Fe^{3+} , Cr^{3+} , La^{3+} , Ce^{3+}	0.9	0.737	0.540	0.443	0.24	0.18
$PO_4^{3-}, Fe(CN)_6^{3-}$	0.4	0.726	0.505	0.394	0.16	0.095
Th ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	1.1	0.587	0.348	0.252	0.10	0.063
$Fe(CN)_{6}^{4-}$	0.5	0.569	0.305	0.200	0.047	0.020

Source: Reprinted with permission from J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675. Copyright 1937 American Chemical Society.

© 2004 Thomson - Brooks/Cole

Table 10-2, p. 274 in Skoog & West

Debye–Hückel equation (in water at 25 °C) $-\log \gamma_x = \frac{0.51 z_x^2 \sqrt{I}}{1 + 3.3 \alpha_x \sqrt{I}}$

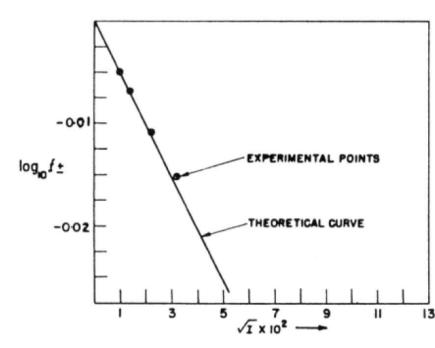
α = effective diameter of hydrated ion (nm)

... the derivation is long... but the main idea is that you balance thermal motion (Boltzmann) with electrostatics (Poisson/Gauss)...

Physicist & P-Chemist

Peter Joseph William Debye (1884–1966)

Physicist & P-Chemist


Erich Armand Arthur Joseph Hückel (1896–1980)

from Wiki

Debye–Hückel equation (in water at 25 °C) $-\log \gamma_x = \frac{0.51 z_x^2 \sqrt{I}}{1 + 3.3 \alpha_x \sqrt{I}}$

 α = effective diameter of hydrated ion (nm)

... the "limiting law" is when $I \rightarrow 0$ (< 10 mM)...

... and then the Debye–Hückel equation simplifies to just the numerator:

587

$$-\log\gamma_x = 0.51 z_x^2 \sqrt{I}$$

Fig. 3.23. The comparison of the experimentally observed mean activity coefficients of HCI and those that are calculated from the Debye–Hückel limiting law.

Bockris & Reddy, Fig. 3.23

<u>Question</u>: How, qualitatively, is the equilibrium potential for Fe^{2+}/Fe^{3588} affected by the addition of a supporting electrolyte, KF, at a concentration of 0.1 M?

$$Fe^{3+} + 1e^{-} \rightleftharpoons Fe^{2+}$$
$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R}/C_{R}^{0}}{C_{O}/C_{O}^{0}}$$

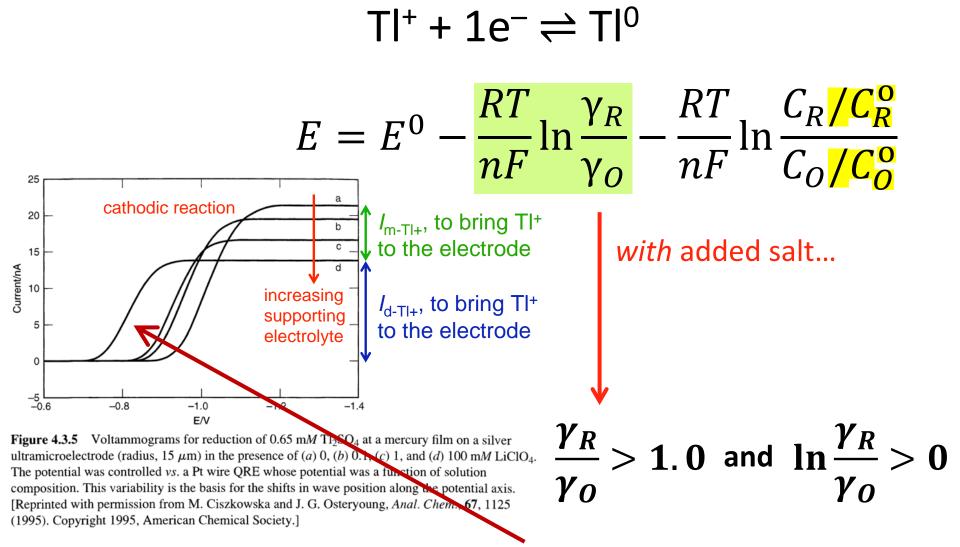
... now, $\gamma_{Fe3+} < \gamma_{Fe2+}$, agreed?... So...

$$\frac{\gamma_R}{\gamma_O} > 1.0$$
 and $\ln \frac{\gamma_R}{\gamma_O} > 0$

... and we conclude that in the presence of added salt... you tell me!

<u>Question</u>: How, qualitatively, is the equilibrium potential for Fe^{2+}/Fe^{3589} affected by the addition of a supporting electrolyte, KF, at a concentration of 0.1 M?

$$Fe^{3+} + 1e^{-} \rightleftharpoons Fe^{2+}$$

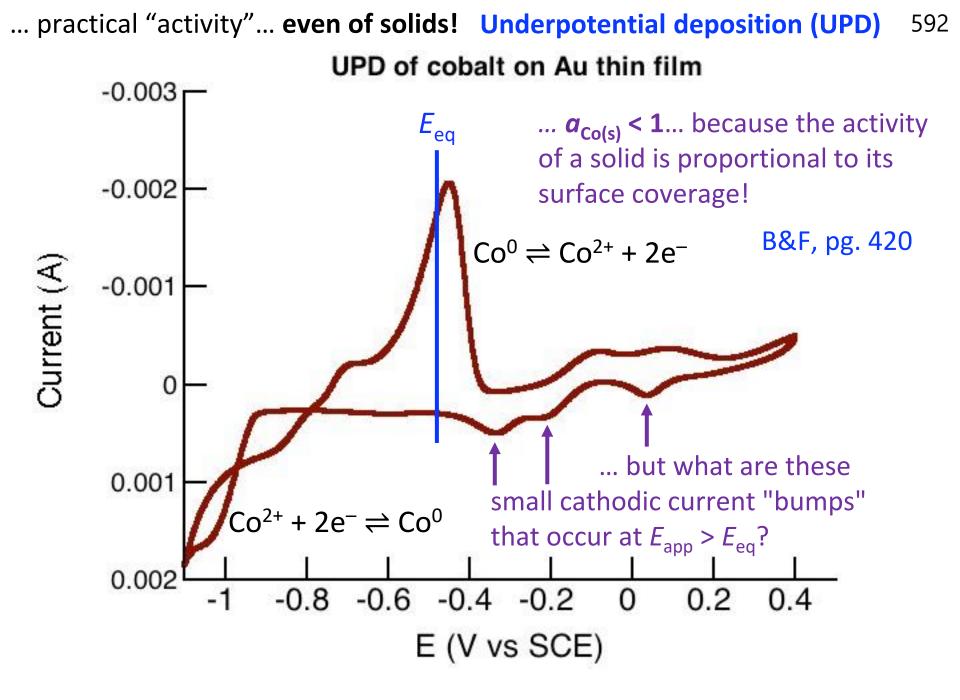

$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R}/C_{R}^{0}}{C_{O}/C_{O}^{0}}$$
no added salt...
$$\gamma_{O} \approx \gamma_{R} \approx 1.0$$

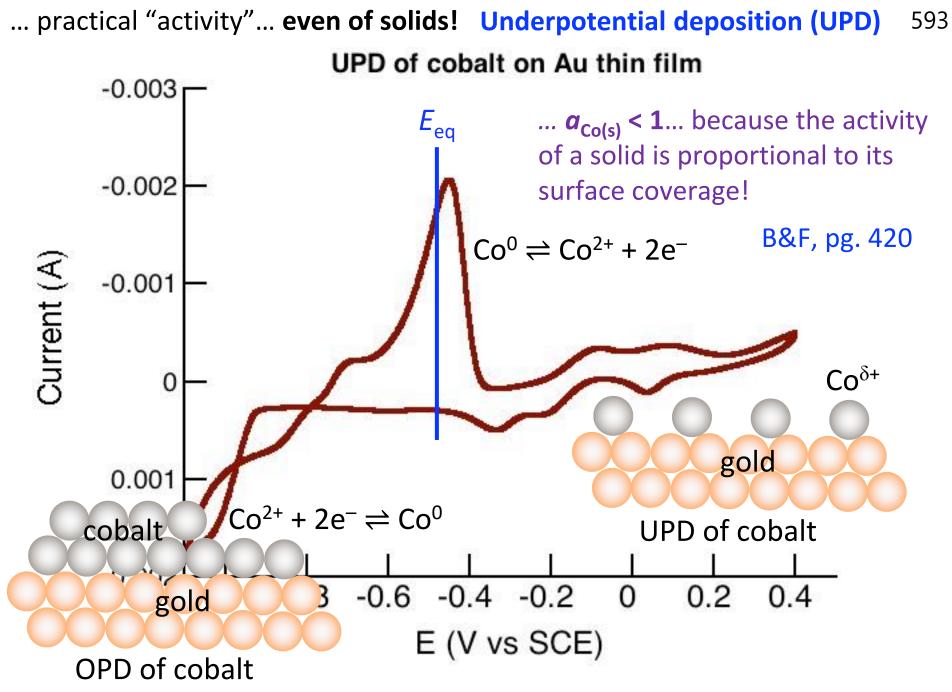
$$\ln \frac{\gamma_{R}}{\gamma_{O}} \approx 0$$

$$\frac{\gamma_{R}}{\gamma_{O}} > 1.0 \text{ and } \ln \frac{\gamma_{R}}{\gamma_{O}} > 0$$

<u>ANSWER</u>: E⁰' shifts to more <u>negative</u> potentials

Question: What if the redox species were positive/neutral charged, ⁵⁹⁰ like Tl^{+/0}, and we increased the concentration of supporting electrolyte to ~0.1 M?




<u>ANSWER</u>: E⁰' shifts to more <u>negative</u> potentials (which are more positive in TX!)

<u>Question</u>: What if the redox species were negatively charged, like $[Fe^{III}(CN)_6]^{3-}/[Fe^{II}(CN)_6]^{4-}$, and we increased the concentration of supporting electrolyte to ~0.1 M? (FROM LAB!)

$$[Fe^{|||}]^{3-} + 1e^{-} \rightleftharpoons [Fe^{||}]^{4-}$$

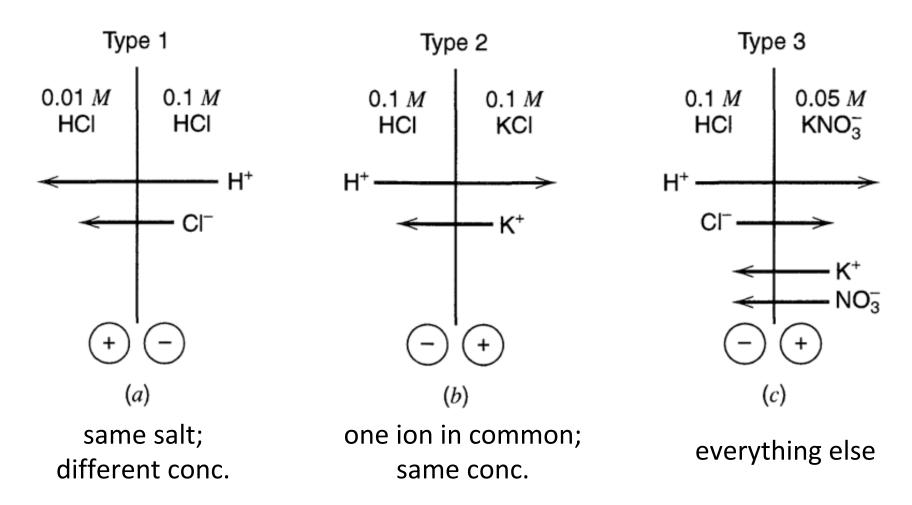
$$E = E^{0} - \frac{RT}{nF} \ln \frac{\gamma_{R}}{\gamma_{O}} - \frac{RT}{nF} \ln \frac{C_{R}/C_{R}^{0}}{C_{O}/C_{O}^{0}}$$
with added salt...
$$\frac{\gamma_{R}}{\gamma_{O}} < 1.0 \text{ and } \ln \frac{\gamma_{R}}{\gamma_{O}} < 0$$
Answer: E⁰ shifts to more positive potentials

Mendoza-Huizar, Robles, & Palomar-Pardavé, J. Electroanal. Chem., 2003, 545, 39

Q: What's in this set of lectures?A: B&F Chapter 2 main concepts:

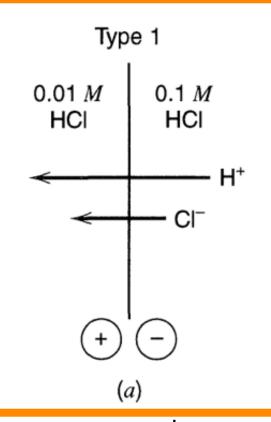
- "Section 2.1": Salt; Activity; Underpotential deposition
- Section 2.3: Transference numbers; Liquid-junction potentials
- Sections 2.2 & 2.4: Donnan potentials; Membrane potentials; pH meter; Ion-selective electrodes

Now on to two general <u>liquid junctions</u> that we care about (the most)... ⁵⁹⁵



an ISE (for nitrate ions)

... liquid junctions:


when two ionic solutions are separated across an interface that prevents bulk mixing of the ions, but has ionic permeability, a potential (drop) develops called the *liquid junction potential*.

Bard & Faulkner, 2nd Ed., Wiley, 2001, Figure 2.3.2

... example "1":

- starting at the side with larger ion concentration
- the ion the with larger mobility will impart its charge to the opposite side of the junction

same salt; different conc.

... conceptually, let's think about a condition in the limit where $t_{\rm H+} \rightarrow 1$ (say $t_{\rm H+} \approx 0.9$)...

... as H⁺ diffuses down its concentration gradient, an electrostatic force is exerted on Cl⁻ to pull it along (at a larger flux) while at the same time slowing down transport of H⁺

... this happens until t_i —effective = 0.5 for both H⁺ and Cl⁻, and at which time the system has attained steady-state mass transport and has generated a maximum liquid-junction potential.

... FYI, in semiconductor physics this same process results in a <u>Dember potential</u>... and the transport process is called <u>ambipolar diffusion</u>

Bard & Faulkner, 2nd Ed., Wiley, 2001, Figure 2.3.2

Recall that transport number, t_i, (or transference number) is based on ...

$$u_{\rm i} = \frac{v}{\mathscr{C}} = \frac{|z_{\rm i}|e}{6\pi\eta r}$$
 units: cm²/(s V)
(Stokes' law)

... and that the ionic conductivity, κ or σ , is defined as...

$$\kappa = F \sum_{i} |z_i| u_i C_i \quad \text{units: S/cm or 1/(Ω cm)}$$

... so t_i is the fraction of the solution conductivity attributable to ion "*i*"


 $Λ α (C)^{1/2}$

$$t_{i} = \frac{|z_{i}|u_{i}C_{i}}{\sum_{j} |z_{j}|u_{j}C_{j}}$$

The Kohlrausch law (empirical) and Debye–Hückel–Onsager equation (theoretical) predict that the molar conductivity is proportional to the square root of the salt concentration

> Friedrich Wilhelm Georg Kohlrausch (1840–1910) from Wiki

Physicist

598

Recall that transport number, t_i, (or transference number) is based on ...

$$u_{\rm i} = \frac{v}{\mathscr{C}} = \frac{|z_{\rm i}|e}{6\pi\eta r}$$
 units: cm²/(s V)
(Stokes' law)

... and that the ionic conductivity, κ or σ , is defined as...

$$\kappa = F \sum_{i} |z_i| u_i C_i \quad \text{units: S/cm or 1/(Ω cm)}$$

... so t_i is the fraction of the solution conductivity attributable to ion "*i*"

Λα(C)

$$t_{i} = \frac{|z_{i}|u_{i}C_{i}}{\sum_{j} |z_{j}|u_{j}C_{j}}$$

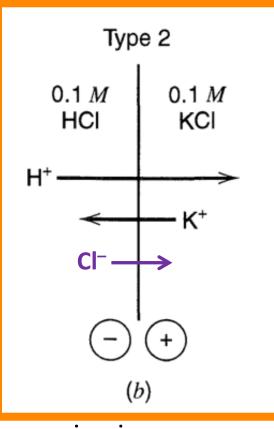
The Kohlrausch law (empirical) and Debye–Hückel–Onsager equation (theoretical) predict that the molar conductivity is proportional to the square root of the salt concentration

./2

Lars Onsager from Wiki (1903–1976)

P-Chemist & Physicist

"equivalent" molar (ionic) —		2 Ionic Prope Aqueous Solutio			600
conductivity	Ion	λ_0 , cm ² Ω^{-1}	equiv ^{-1a}	$u, \mathrm{cm}^2 \mathrm{sec}^{-1} \mathrm{V}^-$	1 <i>b</i>
	H^+	349.82	1	3.625×10^{-3}	
•	\mathbf{K}^+	73.52	1	7.619×10^{-4}	
	Na^+	50.11	<i>'</i> 1	5.193×10^{-4}	
	Li ⁺	38.69	<i>'</i> 1	4.010×10^{-4}	
	NH_4^+	73.4	<i>'</i> /	7.61 $\times 10^{-4}$	- H
	$\frac{1}{2}Ca^{2+}$	59.50	<i>'</i> ,	$6.166 imes 10^{-4}$	`
_	OH ⁻	198	<i>'</i> ,	2.05×10^{-3}	_
	Cl^{-}	76.34	1	$7.912 imes 10^{-4}$	
•	Br [_]	78.4	/	8.13×10^{-4}	
	I	76.85	1	7.96×10^{-4}	
	NO_3^-	71.44	1	7.404×10^{-4}	
	OAc ⁻	40.9	1	4.24×10^{-4}	and recall the
	ClO_4^-	68.0	1	7.05×10^{-4}	Einstein–
	$\frac{1}{2}SO_{4}^{2-}$	79.8	1	8.27×10^{-4}	Smoluchowski
	HCO_3^-	44.48	1	$4.610 imes 10^{-4}$	equation to
	$\frac{1}{3}$ Fe(CN) ₆ ³⁻	101.0	1	1.047×10^{-3}	
	$\frac{1}{4}$ Fe(CN) ₆ ⁴⁻	110.5	1	1.145×10^{-3}	calculate D _i ,
	^a From D. A. N	IacInnes, "The Pr ork, 1961, p. 342	inciples of	Electrochemistry,"	$-\mu_i = \frac{ z_i FD_i}{RT}$


'From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342

RT

^{*b*}Calculated from λ_0 .

... example "2":

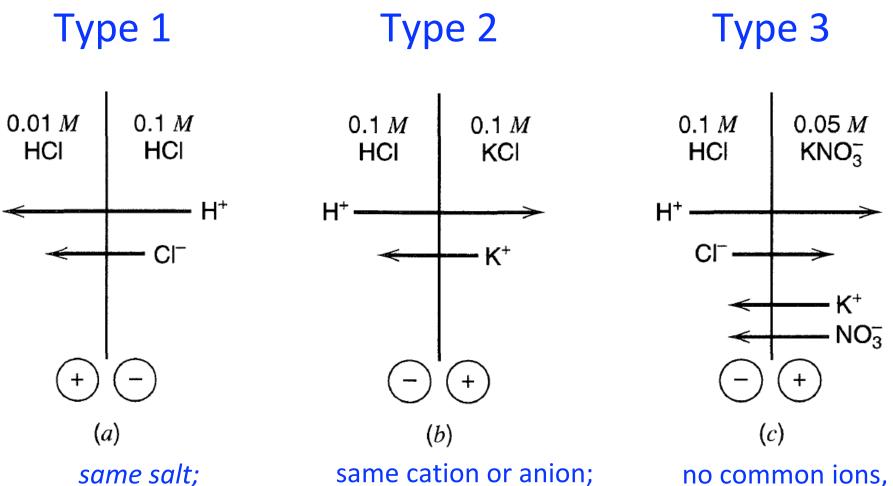
- compare dissimilar ions (cations or anions)
- the ion with the larger mobility will impart its charge to the opposite side of the junction

one ion in common; same conc. ... the sign of the liquid-junction potential is obvious for Types 1 and 2 (but not Type 3) based on the mobilities of the individual ions...

... and so when in doubt, think logically about the sign of the potential to verify answers...

... and yes, Cl⁻ will migrate/drift based on the electric potential formed by cation transport

Bard & Faulkner, 2nd Ed., Wiley, 2001, Figure 2.3.2


TABLE 2.3.2Ionic Properties at InfiniteDilution in Aqueous Solutions at 25°C

Ion	λ_0 , cm ² Ω^{-1} equiv ^{-1a}	$u, \operatorname{cm}^2 \operatorname{sec}^{-1} \operatorname{V}^{-1b}$
H^+	349.82	3.625×10^{-3}
\mathbf{K}^+	73.52	$7.619 imes 10^{-4}$
Na⊤	50.11	5.193×10^{-4}
Li^+	38.69	$4.010 imes 10^{-4}$
NH_4^+	73.4	7.61 $\times 10^{-4}$
$\frac{1}{2}Ca^{2+}$	59.50	6.166×10^{-4}
OH^-	198	2.05×10^{-3}
Cl^{-}	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13 $\times 10^{-4}$
Ι-	76.85	7.96×10^{-4}
NO_3^-	71.44	$7.404 imes 10^{-4}$
OAc ⁻	40.9	4.24×10^{-4}
ClO_4^-	68.0	7.05×10^{-4}
$\frac{1}{2}$ SO ₄ ²⁻	79.8	8.27×10^{-4}
HCO_3^-	44.48	$4.610 imes 10^{-4}$
$\frac{1}{3}$ Fe(CN) $_{6}^{3-}$	101.0	1.047×10^{-3}
$\frac{1}{4}$ Fe(CN) ₆ ⁴⁻	110.5	1.145×10^{-3}

^{*a*}From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342

^{*b*}Calculated from λ_0 .

we use *t_i* values, which are based on *kinetic transport* to determine the liquid-junction potential (for derivations, see B&F, pp. 70 – 72)...

different concentrations

same cation or anion; different counter ion; same concentration no common ions, and/or one common ion; different concs

603

we use *t_i* values, which are based on *kinetic transport* to determine the liquid-junction potential (for derivations, see B&F, pp. 70 – 72)...

Type 1
$$E_{j} = (\phi^{\beta} - \phi^{\alpha}) = (t_{+} - t_{-}) \frac{RT}{F} \ln \frac{a(\alpha)}{a(\beta)}$$
 ... use the activity of the entire salt

 $E_{j} = \bigoplus_{i} \frac{RT}{F} \ln \frac{\sum_{i} |z_{i}| u_{i} C_{i}(\alpha)}{\sum_{i} |z_{i}| u_{i} C_{i}(\beta)} \qquad \text{... use the conductivity due to} \\ = \lim_{i} \lim_$

... sign depends on the charge of the dissimilar ion:

Type 2

(+) when cations are dissimilar, and (–) when anions are dissimilar

Type 3
$$E_{j} = \frac{\sum_{i} \frac{|z_{i}|u_{i}}{z_{i}} [C_{i}(\beta) - C_{i}(\alpha)]}{\sum_{i} |z_{i}|u_{i}[C_{i}(\beta) - C_{i}(\alpha)]} \frac{RT}{F} \ln \frac{\sum_{i} |z_{i}|u_{i}C_{i}(\alpha)}{\sum_{i} |z_{i}|u_{i}C_{i}(\beta)}$$
the Henderson Eq. (with a few assumptions, pg. 72)

... as written, these equations calculate E_i at β vs α

604

example: B&F Problem 2.14d

Calculate E_i for NaNO₃ (0.10 M) | NaOH (0.10M)

α | β

- 1. What Type? Type 2
- 2. Polarity?

TABLE 2.3.2Ionic Properties at InfiniteDilution in Aqueous Solutions at 25°C

Ion	λ_0 , cm ² Ω^{-1} equiv ^{-1a}	$u, \operatorname{cm}^2 \operatorname{sec}^{-1} \operatorname{V}^{-1b}$
H^+	349.82	3.625×10^{-3}
K^+	73.52	$7.619 imes 10^{-4}$
Na^+	50.11	5.193×10^{-4}
Li^+	38.69	$4.010 imes 10^{-4}$
NH_4^+	73.4	7.61 $\times 10^{-4}$
$\frac{1}{2}Ca^{2+}$	59.50	$6.166 imes 10^{-4}$
OH^-	198	2.05×10^{-3}
Cl^-	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13 $\times 10^{-4}$
Ι-	76.85	7.96×10^{-4}
NO_3^-	71.44	7.404×10^{-4}
OAc ⁻	40.9	4.24×10^{-4}
ClO_4^-	68.0	7.05×10^{-4}
$\frac{1}{2}$ SO ₄ ²⁻	79.8	8.27×10^{-4}
HCO_3^-	44.48	$4.610 imes 10^{-4}$
$\frac{1}{3}$ Fe(CN) $_{6}^{3-}$	101.0	1.047×10^{-3}
$\frac{1}{4}$ Fe(CN) ₆ ⁴⁻	110.5	$1.145 imes 10^{-3}$

^{*a*}From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342

^{*b*}Calculated from λ_0 .

example: B&F Problem 2.14d

Calculate E_j for NaNO₃ (0.10 M) | NaOH (0.10M) $\alpha \mid \beta$

- 1. What Type? Type 2
- 2. Polarity? Polarity should be clear... compare mobilities... μ_{OH-} is larger... ... so NaNO₃ side will be (–)... and so β vs α will be (+)

3. Calculate it:

$$E_{j} = -\frac{RT}{F} \ln \frac{\sum_{i} |z_{i}| \mu_{i} C_{i}(\alpha)}{\sum_{i} |z_{i}| \mu_{i} C_{i}(\beta)} \quad \dots \text{ (-) due to}$$
anions moving
$$E_{j} = -0.05916 \log \left(\frac{\mu_{NO_{3}^{-}} + \mu_{Na^{+}}}{\mu_{OH^{-}} + \mu_{Na^{+}}} \right) \quad \longleftarrow \text{ as predicted, a (+) Ll}$$

$$E_{j} = -0.05916 \log \left(\frac{7.404 + 5.913}{20.5 + 5.913} \right) = 0.0176 \text{ V} = +17.6 \text{ mV}$$

$$\dots \text{ a rather large } E_{j} \text{ (at } \beta \text{ vs } \alpha)!$$

TABLE 2.3.2Ionic Properties at InfiniteDilution in Aqueous Solutions at 25°C

Ion	λ_0 , cm ² Ω^{-1} equiv ^{-1a}	$u, \operatorname{cm}^2 \operatorname{sec}^{-1} \operatorname{V}^{-1b}$
H^+	349.82	3.625×10^{-3}
\mathbf{K}^+	73.52	$7.619 imes 10^{-4}$
Na ⁺	50.11	5.193×10^{-4}
Li ⁺	38.69	4.010×10^{-4}
NH_4^+	73.4	7.61 $\times 10^{-4}$
$\frac{1}{2}Ca^{2+}$	59.50	$6.166 imes 10^{-4}$
OH^-	198	2.05×10^{-3}
Cl^-	76.34	7.912×10^{-4}
Br ⁻	78.4	8.13×10^{-4}
I	76.85	7.96×10^{-4}
NO_3^-	71.44	$7.404 imes 10^{-4}$
OAc ⁻	40.9	4.24×10^{-4}
$ClO_4^{}$	68.0	7.05×10^{-4}
$\frac{1}{2}$ SO ₄ ²⁻	79.8	8.27×10^{-4}
HCO_3^-	44.48	$4.610 imes 10^{-4}$
$\frac{1}{3}$ Fe(CN) $_{6}^{3-}$	101.0	1.047×10^{-3}
$\frac{1}{4}$ Fe(CN) $^{4-}_{6-}$	110.5	1.145×10^{-3}

^{*a*}From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342 ^{*b*}Calculated from λ_0 .

... so, why do trained electrochemists prefer to use saturated KCl (or KNO₃) as the salt to fill reference electrodes?

... similar mobilities and thus, similar t_i's and thus,...

... vanishingly small LJ potentials!