Errata

Inside front cover

Because of a printer's error, the Marcus theory equations are incorrect. The correct versions are given in the text, eqs. (3.6.10a) and (3.6.10b).

Chapter 1

Chapter 2

p. 56 Caption of Figure 2.2.2 "interaction"

Chapter 3

p. 116, Figure 3.6.1. The lower "Homogeneous Electron Transfer" should be "Heterogeneous Electron Transfer."

Chapter 4

Chapter 5

p. 171 equation (5.3.2a) should be $i_{\mathrm{ss}}=\ldots$
p. 197 top lines, "sampling times longer than $0.1 \mathrm{~s}, \lambda^{\circ}>2 \ldots$ Sampling times between 0.1 s and $250 \mu \mathrm{~s} . .$. "

Chapter 6
In problem 6.12a, " ferro cene " should be "ferrocene".

Chapter 7

Chapter 8

Problem 8.3. Although the problem can be solved correctly as formulated, the mercury pool electrode area would be unreasonably large. The currents should be in $\mu \mathrm{A}$, not mA .
page 309 , in the sentence above equation (8.2.12). Reference should be to (8.2.10) instead of (8.2.8).

Chapter 9

Chapter 10

Problem 10.4. The frequency should be $\omega \square\left(\mathrm{s}^{-1}\right)$, not $\mathrm{f}(\mathrm{Hz})$.
Problem 10.11, line 4, "127th element representing $\omega / 2 \pi \square=12700 \mathrm{~Hz} . .$. "
In caption of Figure 10.9.1, "A" should be a lower case "a" in the statement "In circuit A..."

Chapter 11

In problem 11.5, on page $467, " ~ e-"$ should be " e " in the table for the $\mathrm{I}_{3}{ }^{-}$reduction.

Chapter 12

Page 493, Figure 12.3.7, the curves are mislabelled. The values of K from left to right (top curve to bottom) should be $10,1,0.1,10^{-2} \ldots$

In Problem 12.6, one needs the transform for

$$
\frac{1}{s \cdot \sqrt{s+a}}
$$

which is not listed in Table A.1.1 and does not have a trivial inverse. It can be obtained from

$$
\frac{1}{(s+a) \cdot \sqrt{s+b}} \Leftrightarrow \frac{1}{\sqrt{b-a}} \exp [-a t] \operatorname{erf}(\cdot \sqrt{(b-a) t})
$$

In problem 12.4, $\left(I_{\mathrm{d}}\right)_{\max }$ should be $\left(I_{\text {max }}\right.$.

Chapter 13

Page 568, 4th line: $\beta C_{\mathrm{i}} \ll 1$ should be $\beta_{\mathrm{l}} C_{\mathrm{i}} \ll 1$

Chapter 14

Chapter 15

p. 651 Figure 15.7.1 The polarity of the operational amplifiers is reversed. The signal should be into the inverting inputs of both.

Page 652, 4 lines from bottom, "below $1 \mathrm{ps} /$ point at 14 -bit resolution" should be "below " $50 \mathrm{ps} / \mathrm{point}$ at 8 bit resolution."

Chapter 16

Page 671 equation (16.4.2). The right side in brackets should be raised to the -1 power, i.e., should read $I_{\mathrm{T}}(L)=[0.292+1.5151 / \mathrm{L}+0.6553 \exp (-2.4035 / \mathrm{L})]^{-1}$

In the caption of Figure 16.2.5, part (A), 25 nm should be 25 nA .
In Figure 16.4.3, the label on the y axis should be $I_{\mathrm{T}}(\mathrm{L})$.
In the definition of m_{O} in the equation below equation (16.4.4) 78377 should be 0.78377 .

Chapter 17

Chapter 18

On page 751 , footnote 5, " ideally polarized semicondutor" should be "ideally polarized semiconductor".

Appendix A

Appendix B

Appendix C

Inside back cover

Figure E. 1 The potential listed for the $\mathrm{Hg} / \mathrm{HgO}, \mathrm{NaOH}(0.1 \mathrm{M})$ reference electrode is incorrect. What is listed is the potential of the electrode $v s$. a hydrogen electrode in the same medium, i.e. the potential of the cell $\mathrm{Hg} / \mathrm{HgO}, \mathrm{NaOH}(0.1 \mathrm{M}) / \mathrm{H}_{2} / \mathrm{Pt}$ (independent of NaOH concentration). The E^{O} of the $\mathrm{Hg} / \mathrm{HgO}, \mathrm{NaOH}$ vs. NHE is 0.0977 V , as shown in Appendix C, so the reference electrode shown has a potential of 0.165 V vs. NHE or -0.076 V . vs. SCE . A convenient reference electrode is $\mathrm{Hg} / \mathrm{HgO} / \mathrm{Ba}(\mathrm{OH})_{2}\left(\mathrm{sat}{ }^{\prime}\right.$) which has a potential of 0.1462 V . vs. NHE or -0.0984 V . vs. SCE.

