

Show-and-Tell

- TiO₂ Photo-anode on a Glass Slide (White Background)
- TiO₂ Photo-anode on a TCO (F-doped SnO₂)
- Dyed Films
 - Ru(bpy)₃²⁺-like
 - Z907
- DSSCs
 - Ours not sealed
 - O'Regan's Can I measure a voltage ???
- TiO₂ Sol + Doctor Blading (= Painting)
 - Time to make a photo-anode for a DSSC !!!

Let's Make a p-n Junction for Comparison

Nature's Photo-induced Charge Separation

	Definitions
•	 η, Light-to-Electrical Power Conversion Efficiency Percentage of power converted (< ~31% for a single-junction cell) (Power Output) / (Power Input)
•	 Ø, Quantum Yield Percentage (Probability) of the occurrence of an event (≤ 100%) (Rate of Productive Event) / (Sum of the Rates of All Loss Events)
•	 ε, Extinction Coefficient (Absorption Cross Section; Oscillator Strength) Ability to absorb light on a per molar (concentration), per pathlength basis (A = εc/)
•	 <i>F</i>, Faraday's Constant Electronic Charge (e or q) times Avogadro's number
•	 P_{sun}, 1 sun, Air mass 1.5 Solar Irradiance Spectrum 100 mW/cm² (1000 W/m²) as sunlight in US under typical conditions

The Photocurrent Action Spectrum

$IPCE(\lambda) = \phi_{abs} \cdot \phi_{inj} \cdot \phi_{cc}$	$_{\text{oll}} = \alpha(\lambda) \cdot APCE(\lambda)$	
$\alpha(\lambda) = \phi_{abs}(\lambda) = \frac{\text{number absorbed}}{\text{number incident photon}}$	$\frac{1}{1-\sqrt{6}} = 1 - \sqrt{6} T = 1 - 10^{-Abs} = 1 - 10^{-ac\ell}$	
muchanizated Detection	<i>k</i> (C [*]) <i>k</i>	
$\phi_{\rm inj}(\lambda) = \frac{\text{number injected}}{\text{number excited}} = \frac{\text{Rate of injection}}{\text{Rates of Loss}}$	$=\frac{\kappa_{inj}[S]}{k_{r}[S^{*}]+k_{nr}[S^{*}]+k_{inj}[S^{*}]}=\frac{\kappa_{inj}}{k_{r}+k_{nr}+k_{inj}}$	

The Photocurrent Action Spectrum
$IPCE(\lambda) = \phi_{abs} \cdot \phi_{inj} \cdot \phi_{coll} = \alpha(\lambda) \cdot APCE(\lambda)$
$\alpha(\lambda) = \phi_{abs}(\lambda) = \frac{\text{number absorbed}}{\text{number incident photons}} = 1 - \% T = 1 - 10^{-Abs} = 1 - 10^{-ac\ell}$
$\phi_{\rm inj}(\lambda) = \frac{\text{number injected}}{\text{number excited}} = \frac{\text{Rate of Injection}}{\text{Rates of Loss}} = \frac{k_{\rm inj}[S^*]}{k_{\rm r}[S^*] + k_{\rm inj}[S^*]} = \frac{k_{\rm inj}}{k_{\rm r} + k_{\rm inj}}$
$\eta_{\text{coll}} = \phi_{\text{coll}} = \frac{\text{number as current}}{\text{number injected}} = \frac{\text{Flux of Current}}{\text{Rates of Loss}}$
Difficult to Quantify, except backwards

phenomenon→ ↓type of solar cell↓	light absorbed by ^a	type of mobile charges in device ^b	contact selectivity for charge carriers	current mechanism
p/n junction N_D ~ 10¹⁶ cm⁻³ point contact	semiconductor semiconductor	electronic electronic (+ ionic, for pec variant) ^c	electric field ε _o ~ 12 electric field due to contacts	drift; some diffusion possible diffusion ^c (electronic charge carriers); diffusion for ion (drift near the contacts)
photogalvanic photoelectrochemical (PEC)	dye semiconductor	ionic electronic and ionic	electrochemical kinetics electric field and electrochemical kinetics	ion diffusion ion diffusion and electronic charge carrier drift
nanoporous photoelectrochemical (PEC)	semiconductor	electronic and ionic	electrochemical kinetics	diffusion
organic	semiconductor	electronic (e.g., via excitons)	nature of organic material and/or its interface with the contacts	can be diffusion or drift, depending on cell type
urface-sensitized Schottky barrier	dye	electronic	ballistic, electric field	ballistic and drift
lye-sensitized (DSSC)	dye	electronic and ionic	energy level (mis)match between molecules and semiconductor; electrochemical kinetics	diffusion
E.	E _{Frades.}	E.		$= 8\sqrt{\frac{\varepsilon_{\rm o}\varepsilon_{\rm s}k_{\rm B}T}{{\rm e}^2N_{\rm D}}} = C\sqrt{\frac{\varepsilon_{\rm s}}{N_{\rm D}}}$

Evidence by Spectroelectrochemistry

DSSC Density of Acceptor States

Kinetic Models of Electron Transport

- In fluid solution
 - Second-Order Reaction Mechanism
 - Rate-Limiting, First-Order Reaction Mechanism
- Electron Transport in semiconductors with many traps
 - Interface-Limited, Second-Order Reaction Mechanism
 - Multiple Trapping (time distribution)
 - CTRW Model (time & location distribution)
 Kohlrausch–Williams–Watts (KWW) stretched-exponential function
 - Serially Linked Reactions
 - Hopping Model (tunneling between states)
 - MT, Random Flight + Coulomb Trap Model (long hops + attraction)
 - Second-Order Reaction Mechanism + Transient Electric Field

Organic Dyes are doing rather well 12 11.18% -Metal complex dyes 10 9.5% (%) Indoline dyes 🔎 ncy 8 Organic dyes 7.12% Polyene dyes 6 5 Coumarin dves 201 Cell – C – D 2 1.3% Indoline dye (D205) $\frac{E_a}{k_p T}$ $k_{\rm ET} = A \cdot \exp (k_{\rm ET})$ 0 0 1976 1992 1994 1996 1998 2000 2002 2004 2006 2008 $= A' \cdot \exp\left[-\beta d\right] \cdot \exp\left[-\frac{E_{a}}{k_{\rm B}T}\right]$ FIGURE 8. Evolution of standard AM 1.5 solar to electric power conversion efficiencies for DSCs based on ruthenium complexes and organic dyes (source: Tetsuo Nozawa Nikkei Electronics Asia, July 2008).

Ca	in one make the TiO ₂ film thinne	er but with a	similar LH		
•	 Increase concentration by making smaller nanoparticles = la surface area = larger roughness factor 				
•	Increase ε: MLCT vs. MM(P)CT vs. L	M(P)CT vs. LC	;		
•	Alter the absorption profile				
-					
•	Decrease the number of trap states Decrease the number of interparticle necki Increase $\tau_{e:h+}$	ng region connect	ions $A =$		
•	Decrease the number of trap states Decrease the number of interparticle necki Increase $\tau_{e:h+}$ Increase the tunneling distance	ng region connect Absorbance (A)	ions $A =$ Absorptance		
• • •	Decrease the number of trap states Decrease the number of interparticle necki Increase $\tau_{e:h+}$ Increase the tunneling distance Increase the activation barrier for reverse electron transfer	ng region connect Absorbance (A) 0.1	A = $Absorptance$ 20.6		
•	Decrease the number of trap states Decrease the number of interparticle necki Increase $\tau_{e:h+}$ Increase the tunneling distance Increase the activation barrier for reverse electron transfer	Absorbance (A) 0.1	A =		
· · ·	Decrease the number of trap states Decrease the number of interparticle necking Increase the number of interparticle necking Increase the tunneling distance Increase the activation barrier for reverse electron transfer $\ell_{e-:h+} = \sqrt{D_{e-} \cdot \tau_{e-:h+}}$	Absorbance (A) 0.1 0.5 1.0	A = Absorptance 20.6 68.4 90		

p-n Junction Solar Cells vs. DSSCs

Conclusions

- Take-home messages
 - Donor Chromophore Acceptor Schemes work
 - Activated Unwanted Back Electron Transfer Recombination
 - A Large Tunneling Distance
 - Voltage is limiting ideal lodide-based DSSCs
 - Increase current with alternative redox mediators and new black(er) sensitizers
 - Fix voltage issues by employing novel redox mediators
 - Light Absorption & Charge Transport are Key (Charge Separation is Ideal)
 - Diffusion length needs to be increased for poorer sensitizers
 - Diffusion length can be decreased by increasing extinction coefficients

Conclusions

- Take-home messages
 - Donor Chromophore Acceptor Schemes work
 - Activated Unwanted Back Electron Transfer Recombination
 - A Large Tunneling Distance
 - Voltage is limiting ideal Iodide-based DSSCs
 - Increase current with alternative redox mediators and new black(er) sensitizers
 - Fix voltage issues by employing novel redox mediators
 - Light Absorption & Charge Transport are Key (Charge Separation is Ideal)
 - Diffusion length needs to be increased for poorer sensitizers
 - Diffusion length can be decreased by increasing extinction coefficients
- Hints for HW Question
 - If DSSCs do not have internal space-charge layers, then how do they achieve efficient charge separation ?
 - What is the expected quantum yield for injection if the rate constant for injection is 10¹² while those for excited-state decay are 10⁴ and 10⁶ (for radiative (r) and non-radiative (nr) decay), respectively ?