
Lecture #5 of 12

Prof. Shane Ardo
 Department of Chemistry
 University of California Irvine

Thermal (Dark) Reactions

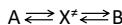
Prof. Shane Ardo
 Department of Chemistry
 University of California Irvine

Marcus–Hush Theory

Marcus–Hush (1950s–1960s) theoretical (semiclassical) rate constant equation

$$k_{ET} = \frac{2\pi}{\hbar} |H_{DA}|^2 \frac{1}{\sqrt{4\pi\lambda_{AB}k_B T}} \exp\left(-\frac{\Delta G_{AB}^\ddagger}{k_B T}\right) \dots \frac{2\pi|H_{DA}|^2}{\hbar\sqrt{4\pi\lambda k_B T}} \text{ has units of } s^{-1}$$

(REVIEW) 106



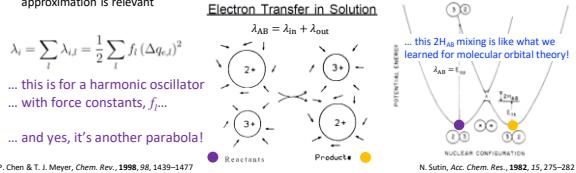
Eyring–Polanyi–Evans (1930s) theoretical rate constant equation (from transition-state theory / activated complex theory)

$$k_f = \kappa \nu K^\ddagger = \frac{\kappa k_B T}{h} K^\ddagger \dots \text{ with transmission coefficient, } \kappa, \text{ and vibrational frequency, } \nu \text{ (s}^{-1}\text{)}$$

... and $R = N_A k_B$... and $\frac{\kappa k_B T}{h}$ has units of s^{-1}

$$k_f = \frac{\kappa k_B T}{h} \exp\left(-\frac{\Delta G^\ddagger}{RT}\right) = \frac{\kappa k_B T}{h} \exp\left(\frac{\Delta S^\ddagger}{R}\right) \exp\left(-\frac{\Delta H^\ddagger}{RT}\right) \dots \text{ and so } A \text{ contains } \Delta S^\ddagger$$

... what is the largest predicted pre-exponential factor at 25 °C? $(161 \text{ fs})^{-1} = (1.61 \times 10^{13} \text{ s})^{-1}$


Outer + Inner Reorganization Energies

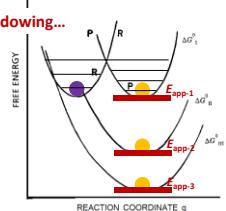
(REVIEW) 107

Marcus–Hush (1950s–1960s)

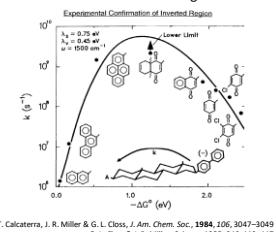
theoretical (semiclassical) rate constant equation

This theory came about by answering the following question: For an electron-transfer event, how does one satisfy the Franck–Condon principle and the conservation of energy?

• **Franck–Condon principle:** Nuclei are fixed during electron-transfer between orbitals... Born–Oppenheimer approximation is relevantP. Chen & T. J. Meyer, *Chem. Rev.*, 1998, 98, 1439–1477N. Sutin, *Acc. Chem. Res.*, 1982, 15, 275–282


Observation of Inverted Region Behavior

108


Marcus–Hush (1950s–1960s)

theoretical (semiclassical) rate constant equation

The Inverted Region Effect

Closs–Miller (1984)

observation of inverted region

L.T. Calcaterra, J.R. Miller & G.L. Closs, *J. Am. Chem. Soc.*, 1984, 106, 3047–3049G.L. Closs & J.R. Miller, *Science*, 1988, 240, 440–447

Today's Critical Guiding Question

109

What thermodynamic term indicates whether a process will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information... for real this time: Part 2?

Thermal (Dark) Reactions

(UPDATED) 110

- Activation energy, Eyring–Polanyi–Evans equation
- Marcus–Hush (electron-transfer) theory
- Transition-state character, Reorganization energies (outer and inner), Linear free energy relationships
- Molecular orbital theory, Huang–Rhys factor
- Quantum mechanical tunneling, Superexchange
- Inner versus Outer sphere reactions, Robin–Day classification
- Self-exchange reactions, Marcus cross relations
- Charge transfer across electrified interfaces, Butler–Volmer equation, Rate-determining step, Fermi's golden rule, Marcus–Gerischer theory

Linear Free Energy Relationships (LFERs)

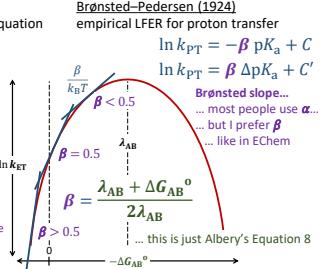
111

Marcus–Hush (1950s–1960s)

theoretical (semiclassical) rate constant equation

linear free-energy relation
 Also called the definition of Marcus–Gibbs energy relation
 A linear correlation between the logarithm of a rate constant or equilibrium constant for a series of reactions and the logarithm of the reorganization or equilibrium constant for a related series of reactions. Typical examples of such relations (also known as linear Gibbs energy relations) are the Brønsted relation, and the Hammett equation.

Energy changes associated with electron transfer reactions are proportional to standard free energy (Gibbs energy) change, and the logarithm of a rate constant is a linear function of the free energy (Gibbs energy) of reaction.


It has been suggested that this name should be replaced by linear Gibbs energy relation, but there is little sign of acceptance of this change. The use of this term originated in an IUPAC recommendation for the use of the term in the 1970s. It was also used in the 1970s by the International Bureau of Weights and Measures (BIPM) in its recommendations for the use of the term in the International System of Units (SI).

Source: Wikipedia, 2014

... trend looks linear over a small enough ΔG_{AB}° rangeJ. Albery, *Ann. Rev. Phys. Chem.*, 1980, 31, 227–263R. A. Marcus, *Ford. Discuss. Chem. Soc.*, 1982, 74, 7–15

Brønsted–Pedersen (1924)

empirical LFER for proton transfer

Marcus Kinetic Behavior

112

Table 13 Applications of the Marcus relation

Electron transfers	Electrochemical	Tafel Law	Electrode kinetics at semiconductors
			Homogeneous
			Correlation with electrochemical
			Cross reactions obey Marcus
			relation (Eq. 4)
Proton transfers	Marcus relation reduces to Brønsted Law		
	O, N bases and some transfers to C	Explains curved Brønsted plots	
	Concerted reactions		Describe enolization of acetone
Methyl transfers	Cross reactions obey Marcus relation		
	Swain–Scott n separated into n^{\ddagger} and n^{\ddagger}		
	α/β isotope effects measure C ⁺ character		
Nucleophilic additions	Provides alternative explanation to Ritchie relation		
	Values of G found to be constant for similar species		

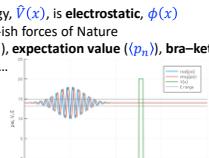
J. Albery, *Ann. Rev. Phys. Chem.*, 1980, 31, 227–263R. A. Marcus, *Ford. Discuss. Chem. Soc.*, 1982, 74, 7–15

Schrödinger Equation

(REVIEW) 113

But you still didn't tell us why we need to recall this equation

$$\text{Poisson's Equation (from Gauss's law)}$$


$$\frac{\partial^2 \phi(x)}{\partial x^2} = -\frac{\rho}{\epsilon} \quad E = -\frac{\partial \phi(x)}{\partial x}$$

... we need to fill **internal energies**, E_n , with particles... okay.

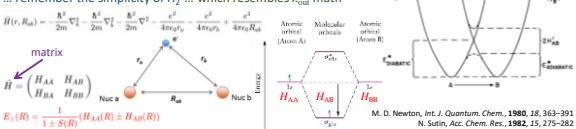
$$\text{for a point charge...} \quad \phi(r) = \frac{q}{4\pi\epsilon r}$$

... and that under most chemical conditions, potential energy, $\tilde{V}(x)$, is **electrostatic**, $\phi(x)$

... which is actually not so limiting because there are only 4-ish forces of Nature

... and while we're at it, let's (re)learn **overlap integral** (S_{nm}), **expectation value** ($\langle p_n \rangle$), **bra-ket notation** ($\langle \psi_n | \psi_m \rangle$), and **exponential tunneling probability**...Probability Density (x) = $|\psi_n(x)|^2 = \psi_n^*(x)\psi_n(x)$... with $\psi_n(x)$ (complex conjugate)Overlap integral, $S_{nm} = \int_{-\infty}^{\infty} \psi_n^*(x)\psi_m(x) dx = \langle \psi_n | \psi_m \rangle$... with $\langle \psi_n |$ ("bra") and $|\psi_m \rangle$ ("ket")Mean Energy, $\langle E_n \rangle = \frac{\int_{-\infty}^{\infty} \psi_n^*(x)x\hat{H}\psi_n(x)dx}{\int_{-\infty}^{\infty} \psi_n^*(x)\psi_n(x)dx} = \langle \psi_n | \hat{H} | \psi_n \rangle = \langle \hat{H} \rangle$ https://en.wikipedia.org/wiki/Quantum_tunnelling#/media/File:E14_V20_B1.gif

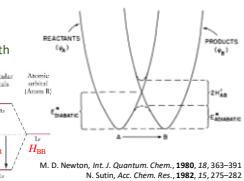
Molecular Orbital Theory


114

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$k_{\text{ET}} = \frac{2\pi}{\hbar} |H_{\text{DA}}|^2 \frac{1}{\sqrt{4\pi\lambda_{\text{AB}}kT}} \exp\left(-\frac{\Delta G_{\text{AB}}^{\ddagger}}{kT}\right)$$


quantum adiabatic
electronic coupling classical nuclear free-
energy dependence

... remember the simplicity of H_2^+ ... which resembles λ_{out} math**Molecular Orbital Theory**

linear combination of atomic orbitals

(30) The splitting at the intersection is only equal to $2\delta_{\text{AB}}$ when the overlap of the electronic wave functions can be neglected. More generally it is equal to $2(H_{\text{AA}} - S_{\text{AB}}H_{\text{AB}})/(1 - S_{\text{AB}}^2)$ where $S_{\text{AB}} = \langle \psi_{\text{A}} | \psi_{\text{B}} \rangle$.

... which equals $(E_{\text{a}} - E_{\text{b}})$ from MO Theory

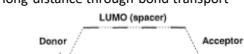
Quantum Mechanical Tunneling / Superexchange

115

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$k_{\text{ET}} = \frac{2\pi}{\hbar} |H_{\text{DA}}|^2 \frac{1}{\sqrt{4\pi\lambda_{\text{AB}}kT}} \exp\left(-\frac{\Delta G_{\text{AB}}^{\ddagger}}{kT}\right)$$

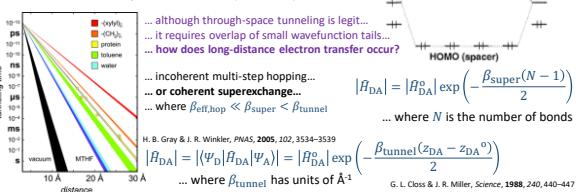

... although through-space tunneling is legit...

... it requires overlap of small wavefunction tails...

... how does long-distance electron transfer occur?

Superexchange (not hopping)

long-distance through-bond transport



... incoherent multi-step hopping...

... or coherent superexchange...

... where $\beta_{\text{eff,hop}} \ll \beta_{\text{super}} < \beta_{\text{tunnel}}$

$$|\hat{H}_{\text{DA}}| = |\hat{H}_{\text{DA}}^0| \exp\left(-\frac{\beta_{\text{super}}(N-1)}{2}\right)$$

... where N is the number of bonds

Inner versus Outer Sphere Reactions

116

Marcus–Hush (1950s–1960s)

theoretical (semiclassical) rate constant equation

$$k_{\text{ET}} = \frac{2\pi}{\hbar} |H_{\text{DA}}|^2 \frac{1}{\sqrt{4\pi\lambda_{\text{AB}}kT}} \exp\left(-\frac{\Delta G_{\text{AB}}^{\ddagger}}{kT}\right)$$

Creutz–Taube ion (1969)

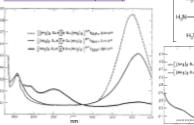
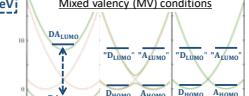



Figure 1. Visible-ultraviolet spectra of 2,2',2''-trimesic acid (2,2,2') in dmf at 25 °C. (Adapted from Ref. 30 for 2,2,2' and 2,2,2'' and from Ref. 31 for 2,2,2,2'' and 2,2,2,2'''. The molar extinction coefficients $\epsilon_{2,2,2}$ and $\epsilon_{2,2,2,2''}$ are measured in the range of 3–5 \times 10^3 M⁻¹ cm⁻¹ and 3–5 \times 10^2 M⁻¹ cm⁻¹, respectively, but actually includes the spectra of 2,2 and 2,2,2,2''' in this range above 300 nm in the concentration limit.)

Taube (1950s–1970s)

inner sphere electron transfer

Robin–Day MV classification... label each below!

Class I: nonadiabatic ($H_{\text{DA}} \approx 0$)Class II: adiabatic, localized ($0 < 2H_{\text{DA}} < \lambda_{\text{AB}}$)Class III: adiabatic, delocalized ($2H_{\text{DA}} > \lambda_{\text{AB}}$)... so what is $2H_{\text{DA}}$ for Class III [C–T]^{1/2}?

C. Creutz & H. Taube, *J. Am. Chem. Soc.*, 1969, 91, 3988–3989
B. S. Brunschwig, C. Creutz & N. Sutin, *Chem. Soc. Rev.*, 2002, 31, 168–184

Huang–Rhys Factor

117

Marcus–Hush (1950s–1960s)

theoretical (semiclassical) rate constant equation

$$k_{\text{ET}} = \frac{2\pi}{\hbar} |H_{\text{DA}}|^2 \frac{1}{\sqrt{4\pi\lambda_{\text{AB}}kT}} \exp\left(-\frac{\Delta G_{\text{AB}}^{\ddagger}}{kT}\right)$$

$$= \nu_{\text{a}}(r) \kappa_{\text{a}}(r) \kappa_{\text{b}}(r)$$

$$= \frac{2\pi}{\hbar} \langle \psi'_{\text{el}} | \hat{H} | \psi_{\text{el}} \rangle^2 \langle \psi'_{\text{vib}} | \psi_{\text{vib}} \rangle^2 \delta(E' - E)$$

... separable due to the Born–Oppenheimer approximation

If $\hbar\omega_j \gg k_B T$; only $\nu_j = 0$ is appreciably populated and

$$\langle \chi_{\nu_j} | \chi_{\nu_j=0} \rangle^2 = \exp(-S_j \frac{S'_j}{\nu_j^2}) \quad (22)$$

Fermi's Golden Rule

time-dependent perturbation theory

With one coupled mode or high-frequency mode that is not mixed, only the $v = 0$ vibrational level is appreciably populated at room temperature ($\nu_0 \gg k_B T$), and

$$k_{\text{ET}} = \frac{2\pi}{\hbar} \frac{H_{\text{DA}}^2}{(4\pi\lambda_{\text{a}}kT)^{1/2}} \sum \exp(-S_j \frac{S'_j}{\nu_j^2} \exp(-[(\Delta G^{\ddagger} + \nu_0 + \lambda_j)/4k_B T])) \quad (23)$$

In this limit the coupled vibration does not contribute to the temperature dependence since the only contributing reaction channels originate from $v = 0$.S is the electron–vibrational coupling constant, or Huang–Rhys factor._{9,10}

M is the reduced mass. The physical significance of the vibrational overlap integrals is that they give the extent to which the final and initial states coincide along the normal coordinate.

N. Sutin, *Acc. Chem. Res.*, 1982, 15, 275–282P. Chen & T. J. Meyer, *Chem. Rev.*, 1998, 98, 1439–1477

Today's Critical Guiding Question

118

What thermodynamic term indicates whether a process will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information... for real this time: Part 2?