Diffraction for spectroscopic expansion

In this chapter, we will discuss the possibility of spectroscopic expansion through diffraction, i.e., to perform spectroscopy.

Consider the case where

\(\Delta = \frac{2 \pi}{\lambda} \),

where \(\Delta \) is the spatial frequency and \(\lambda \) is the wavelength.

Let's derive the diffraction properties of the grating.

1. **Young's equation**

 \(\frac{\sin \phi}{\lambda} = \frac{1}{d} \)

 where \(\phi \) is the degree of diffraction and \(d \) is the spacing of the grating.

2. **The grating condition**

 \(d \sin \phi = m \lambda \)

 where \(m \) is an integer.

3. **The angular dispersion**

 \(\phi \) is the greater the grating, the greater the angular dispersion.

What does it mean?

4. **Line of the dispersion**

 This is a curve where different colors do not overlap.

\[\lambda = \frac{1}{n \sin \theta} \]

where \(n \) is the refractive index and \(\theta \) is the angle of detection.

5. **Rayleigh criterion**

 When the angle \(\theta \) is such that

\[n \sin \theta = \frac{1}{\lambda} \]

we can discern two colors.

When do colors come from?

When additional minima correspond to main maxima in the case of visibility will be 20%.

Additional minima \(\Delta \lambda \), where \(\Delta \lambda \) is the Rayleigh criterion.

Main maxima \(\Delta \lambda \), where \(\Delta \lambda = \lambda \),

\[R = \frac{2 \Delta \lambda}{\Delta \lambda} \]