Electromagnetic nature of light

One of the first arguments towards the electromagnetic nature of light was the coincidence between speed of electromagnetic wave calculated by Maxwell and speed of light.

Contruction of constanets

![Diagram of Earth and Sun](image)

Let's imagine we forget all the laws of gravitation, but we can measure mass of the Sun and distance from Earth to the Sun,

\[M = 5.98 \times 10^{24} \text{ kg} \]
\[R = 1.5 \times 10^{11} \text{ m} \]

How can we calculate the duration of year?

Year is seconds, but we need to build it from M and R

\[g = 6.7 \times 10^{-11} \text{ m/s}^2 \]

But what are the units?

\[\frac{M \cdot m_c}{R^2} \cdot g = E \]

\[E = m \cdot V^2 \]

\[f = \frac{g}{V^2} \]

\[T = \sqrt{\frac{R^3}{EM \cdot g}} \]

1. Roemer (Jupiter satellites)
2. Fizeau
3. Knichel-Walker \(\frac{1}{5 \Phi_{Po}} \)
4. Maxwell noticed \(c = \frac{1}{\sqrt{\varepsilon \mu}} \)
5. Mach
6. Michelson speed of light

other experiments.