Fraunhofer diffraction on a two-dimensional structure

\[E(x, y) = \frac{1}{i \lambda} \frac{1}{D} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y') \frac{e^{-i k \sqrt{D^2 + (x-x')^2 + (y-y')^2}}}{\sqrt{D^2 + (x-x')^2 + (y-y')^2}} \, dx' \, dy' \]

where \(E(x, y) \) is the complex electric field at a point \((x, y) \), \(G(x', y') \) is the Green's function, \(\lambda \) is the wavelength, and \(D \) is the distance from the source to the screen.

The intensity of the diffraction pattern is given by

\[I(x, y) = |E(x, y)|^2 \]

where \(I(x, y) \) is the intensity at \((x, y) \).