Natural rotation of polarization

For small

\(\theta \) (longitudinal case),

we may ignore

\(\pm \theta \) and

\(s \sim \theta \sim 0 \) and

\(a \sim 0.5 \).

For application,

\(\psi \) is

an

axis.

\(\theta \) is

circular.

Thus, we may

find

the

angle

by

tracing

the

rotation

through

the

grating.

\(\theta \) for circular rotation

\(\psi \) for rotation.

\(\psi \) is

the

angle

between

the

polarization

and

the

initial

direction.

\(\phi \) is

the

angle

between

the

incident

and

the

normal.

\(\theta \) is

the

angle

between

the

polarization

and

the

normal.

\(\psi \) is

the

angle

between

the

incident

and

the

normal.

\(\phi \) is

the

angle

between

the

incident

and

the

normal.

\(\psi \) is

the

angle

between

the

polarization

and

the

normal.

\(\theta \) is

the

angle

between

the

polarization

and

the

normal.

\(\psi \) is

the

angle

between

the

incident