
**2.** A neutral (uncharged) molecule containing only carbon, hydrogen, oxygen, and nitrogen gives a molecular ion shown below in the ESI (electrospray ionization) mass spectrum. The molecule contains 66 carbons, a number of hydrogens, 16 nitrogens, and 14 oxygens. No other elements are present. (5 points).



| Element    | Atomic<br>Weight | Nuclide          | Mass           |  |
|------------|------------------|------------------|----------------|--|
| Hydrogen   | 1.00794          | $^{1}\mathrm{H}$ | 1.00783        |  |
|            |                  | $D(^{2}H)$       | 2.01410        |  |
| Carbon     | 12.01115         | $^{12}C$         | 12.00000 (std) |  |
|            |                  | $^{13}C$         | 13.00336       |  |
| Nitrogen   | 14.0067          | $^{14}N$         | 14.0031        |  |
|            |                  | <sup>15</sup> N  | 15.0001        |  |
| Oxygen     | 15.9994          | <sup>16</sup> O  | 15.9949        |  |
|            |                  | <sup>17</sup> O  | 16.9991        |  |
|            |                  | $^{18}O$         | 17.9992        |  |
| Fluorine   | 18.9984          | $^{19}F$         | 18.9984        |  |
| Silicon    | 28.0855          | <sup>28</sup> Si | 27.9769        |  |
|            |                  | <sup>29</sup> Si | 28.9765        |  |
|            |                  | <sup>30</sup> Si | 29.9738        |  |
| Phosphorus | 30.9738          | <sup>31</sup> P  | 30.9738        |  |
| Sulfur     | 32.0660          | <sup>32</sup> S  | 31.9721        |  |
|            |                  | <sup>33</sup> S  | 32.9715        |  |
|            |                  | <sup>34</sup> S  | 33.9679        |  |
| Chlorine   | 35.4527          | <sup>35</sup> CI | 34.9689        |  |
|            |                  | <sup>37</sup> CI | 36.9659        |  |
| Bromine    | 79.9094          | <sup>79</sup> Br | 78.9183        |  |
|            |                  | $^{81}Br$        | 80.9163        |  |
| Iodine     | 126.9045         | $^{127}I$        | 126,9045       |  |

## TABLE 1.4 Exact Masses of Isotopes

**TABLE 1.3** Relative Isotope Abundances of Common Elements.

| Elements   | Isotope          | Relative<br>Abundance | Isotope ·         | Relative<br>Abundance | Isotope          | Relative<br>Abundance |
|------------|------------------|-----------------------|-------------------|-----------------------|------------------|-----------------------|
| Carbon     | $^{12}C$         | 100                   | <sup>13</sup> C   | 1.11                  |                  |                       |
| Hydrogen   | $^{1}\mathrm{H}$ | 100                   | $^{2}H$           | 0.016                 |                  |                       |
| Nitrogen   | $^{14}N$         | 100                   | <sup>15</sup> N   | 0.38                  |                  |                       |
| Oxygen     | <sup>16</sup> O  | 100                   | <sup>17</sup> O - | 0.04                  | $^{18}O$         | 0.2                   |
| Fluorine   | <sup>19</sup> F  | 100                   |                   |                       |                  |                       |
| Silicon    | <sup>28</sup> Si | 100                   | <sup>29</sup> Si  | 5.1                   | <sup>30</sup> Si | 3.35                  |
| Phosphorus | $^{31}P$         | 100                   |                   |                       |                  |                       |
| Sulfur     | <sup>32</sup> S  | 100                   | <sup>33</sup> S   | 0.78                  | <sup>34</sup> S  | 4.4                   |
| Chlorine   | <sup>35</sup> Cl | 100                   |                   |                       | <sup>37</sup> Cl | 32.5                  |
| Bromine    | <sup>79</sup> Br | 100                   |                   |                       | $^{81}Br$        | 98                    |
| Iodine     | <sup>127</sup> I | 100                   |                   |                       | 21               |                       |

**a.** What is the charge of the ion at m/z 678.40?

**b.** What is the mass of the ion at m/z 678.40?

**c.** How many hydrogens are present in the ion at m/z 678.40?

d. What is the molecular formula of the neutral (uncharged) molecule?