2. The marine natural product maitotoxin has a molecular formula $C_{164}H_{256}O_{68}S_2Na_2$. In the *negative ion* FAB mass spectrum, maitotoxin shows a peak associated with loss of a sodium cation Na^+ to give the $[C_{164}H_{256}O_{68}S_2Na]^-$ anion. (In the negative ion mode, anions are observed, rather than cations.) (10 points) **a**. What is the m/z ratio of the $[^{12}C_{164}{}^{1}H_{256}{}^{16}O_{68}{}^{32}S_{2}{}^{23}Na]^{-}$ isotopomer of the $[C_{164}H_{256}O_{68}S_{2}Na]^{-}$ ion? ______Please show you work below. **TABLE 1.4** Exact Masses of Isotopes. | Element | Atomic
Weight | Nuclide | Mass | |------------|------------------|--------------------|----------------| | Hydrogen | 1.00794 | ¹ H | 1.00783 | | | | $D(^2H)$ | 2.01410 | | Carbon | 12.01115 | ¹² C | 12.00000 (std) | | | | ¹³ C | 13.00336 | | Nitrogen | 14.0067 | ^{14}N | 14.0031 | | | | 15N | 15.0001 | | Oxygen | 15.9994 | ¹⁶ O | 15.9949 | | | | ¹⁷ O | 16.9991 | | | | ^{18}O | 17.9992 | | Fluorine | 18.9984 | $^{19}\mathrm{F}$ | 18.9984 | | Sodium | 22.9898 | ²³ Na | 22.9898 | | Silicon | 28.0855 | ²⁸ Si | 27.9769 | | | | ²⁹ Si | 28.9765 | | | | ³⁰ Si | 29.9738 | | Phosphorus | 30.9738 | . 31P | 30.9738 | | Sulfur | 32.0660 | ³² S | 31.9721 | | | | ³³ S | 32.9715 | | | | ³⁴ S | 33.9679 | | Chlorine | 35.4527 | 35CI | 34.9689 | | | | ^{37}CI | 36.9659 | | Bromine | 79.9094 | $^{79}\mathrm{Br}$ | 78.9183 | | | | $^{81}\mathrm{Br}$ | 80.9163 | | Iodine | 126.9045 | ¹²⁷ I | 126.9045 | **b.** What is the isotopic composition of the predominant isotopomer of the $[C_{164}H_{256}O_{68}S_2Na]^-$ ion? If you are uncertain among a couple of possibilities, explain below. - **c.** What is the formula of the cation that would you expect to observe in the positive ion ESI mass spectrum of maitotoxin? - **d**. What is the m/z ratio of the ¹²C, ¹H, ¹⁶O, ³²S, ²³Na isotopomer of that cation?