
Two electrons in a magnetic field∗

The problem of two electrons interacting via their 1/r12 Coulomb poten-
tial in a constant magnetic field may be solved by a simple transformation of
coordinates [Taut 1994]. Following Burke, the Hamiltonian for two electrons
in a magnetic field is given by,
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where k = B2/4c2. This is of the form of a Hamiltonian for two interact-
ing electrons connected to an infinite mass by springs with the same spring
constant k.

Analytic solutions may be found by using the simple transformation ~R =
(~r1 + ~r2)/2 and ~u = ~r2 − ~r1, whence,
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The wavefunction separates into a product of a three-dimensional oscillator
in ~R (of mass 2 and spring constant 2k) and a simple equation in ~u:

Ψ(~r1, ~r2) =
(2ω

π

)3/4
exp (−ωR2) φ0(~u) (4)

where ω =
√
k is the Larmor frequency. Now φ0(~u) satisfies,
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where the total energy E = 3ω/2 + ε. Equation (5) can easily be solved
numerically [Laufer and Kreiger, 1986; Burke, 1996], but can also be solved
analytically for certain discrete values of k.
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To obtain an analytic solution, expand φ0(~u) as a power series in u times
the gaussian decay due to the oscillator potential:

φ0(~u) = Ylm(Ωu)
N∑
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where uo =
√

2/ω is the length scale of the oscillator in the absence of the
Coulomb repulsion, and Ωu denotes the direction of ~u. Insertion of this
form into Eq. (5) yields a double recursive series for the coefficients cj which
terminates at finite j only for certain values of k [Taut, 1994]. For l = 0, the
first few values are k = ∞ (the independent electron limit), k = 1/4, and
k = 1/100, with energies ε = 3ω/2, 5/4, 7/20, for N = 0, 1, 2, respectively.
For these values of k, the wavefunction may be written analytically e.g., for
k = 1/4 [Kais et al., 1989],
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This ‘Hooke’s law atom’ has been used to study the Coulomb cusp condi-
tion on the ground state two electron wavefunction at ~r1 = ~r2 [Burke et al.,
1994], the “pair” Wigner crystal in solid state physics [Taut, 1994a], as a test
of density functional approximations to the ground-state energy of electronic
systems [Filippi et al., 1994] and as a pedagogic tool for illustrating concepts
of conditional probability densities [Burke et al., 1995].

∗ contributed by K. Burke.
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