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Density scaling has a rich history in density functional theory, providing exact conditions for
use in the construction of ever more accurate approximations to the unknown exchange-correlation
functional. We define a conjugate potential scaling for each density scaling. This provides exact
relations on various important density functionals, in particular, relating functionals evaluated on
exact densities of different potentials. We illustrate these conditions on the two- and four-electron
ion series.

I. INTRODUCTION

Density functional theory (DFT) has become the
method of choice for many electronic structure calcula-
tions in both computational chemistry and condensed-
matter physics[1]. It balances the competing demands of
accuracy and computational efficiency. The foundation
of DFT is the Hohenberg-Kohn theorem[2] which states
that the total ground-state energy of a system can be
written as a functional of the ground-state density. This
allows the construction of the Kohn-Sham[3] system of
non-interacting fermions in a unique one-body potential,
which is defined to yield the same density as the real
interacting system. Since the ground-state energy is a
density functional, this then gives the ground-state en-
ergy. However, this functional is not known exactly and
in practice, the unknown exchange-correlation (XC) con-
tribution must be approximated.

The plethora of XC functionals in current use in DFT
is a symptom of the lack of a systematic method for func-
tional development[4]. In this regard, the more exact con-
straints that can be discovered, the more tools available
for developers to use in their quest for more accurate ap-
proximations. Any useful approximation in DFT should
try to satisfy these constraints, or be tested against them.

Density scaling has been a particularly useful tool for
the analysis and development of DFT. A singular exam-
ple is uniform coordinate scaling[5], where the coordi-
nates of a given density are linearly scaled, but normal-
ization is preserved. This has led to fundamental ex-
act conditions on the exchange-correlation (XC) energy
functional[5–8]. For example, the form of the local ap-
proximation to the exchange energy can be deduced from
this scaling. The adiabatic-connection formulation[9–12],
much studied and used in DFT development, is essen-
tially an integral over the uniform coordinate scaling
parameter[5, 13, 14]. Here, the electron-electron interac-
tion is scaled by a constant while the density is kept fixed,
linking the non-interacting Kohn-Sham and the fully in-
teracting systems, and leads to many more conditions.
For example, the adiabatic connection formula is behind
rationalizing the hybrid approach[15–18].

Recently, a different form of density scaling was used
in the development of the PBEsol functional[19]. Here,
both the coordinate and the particle number are scaled,
leading to new insights into the XC functional. We refer
to this as charge-neutral scaling[20], as it is equivalent to
simultaneously changing the charges on atoms and the
number of electrons, so as to keep overall neutrality.

In this paper, we extend the use of density scaling as a
tool in DFT. Most importantly we introduce the concept
that any form of density scaling defines a related form
of potential scaling. This leads to more exact conditions
on the various DFT quantities as functionals of densities
of different particle number. Yang and others[21] have
emphasized the duality of the potential with the density,
but have not related scaling of one to the other.

II. BACKGROUND

In DFT, the total ground-state energy for electrons in
a given external potential, v(r) is given as a functional
of the ground-state density n(r),

Ev[n] = F [n] + V [n], (1)

where the external potential energy as a functional of the
density is

V [n] =

∫

d3r n(r)v(r), (2)

and F [n] is the universal functional which may be defined
via a constrainted search[22] over all wavefunctions Ψ
that yield density n(r)

F [n] = min
Ψ→n

< Ψ|T̂ + V̂ee|Ψ >, (3)

= T [n] + Vee[n]. (4)

In the Kohn-Sham method, a reference system of non-
interacting electrons with the same density is solved, so
it is useful to write

F [n] = TS[n] + U [n] + EXC[n], (5)
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where TS is the kinetic energy of non-interacting electrons
of density n(r), U is the Hartree energy and EXC is the
exchange-correlation energy, defined by Eq. (5). The
Hartree energy (sometimes denoted by EH) is defined as

U [n] =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r
′|

. (6)

In Thomas-Fermi (TF) theory[23, 24], the universal func-
tional is approximated as

F [n] ≈ FTF[n] = T
(0)
S [n] + U [n] , (7)

where T
(0)
S is the local kinetic energy functional,

T
(0)
S [n] = AS

∫

d3r n5/3(r), (8)

with AS = (3/10)(3π2)2/3.

III. POTENTIAL SCALING

Consider a density n(r) that is the ground-state den-
sity of some interacting problem with potential v(r).
Now, introduce some positive parameter, 0 < γ < ∞,
which produces a family of densities, nγ(r), with γ de-
fined so that γ → ∞ corresponds to the high-density
limit. A simple example is the uniform coordinate scal-
ing of Levy and Perdew[5]:

nγ(r) = γ3n(γr), 0 < γ < ∞, (9)

where the prefactor was chosen to keep the density nor-
malizd. For example, under uniform coordinate scal-
ing with γ > 1, the density of He is squeezed into a
smaller volume, and looks like a distorted version of a
two-electron ion[25]. This scaling has become a mainstay
of DFT and leads to many important results. Most im-
portantly, when particles interact, the coordinate-scaled
wavefunction is not the ground-state wavefunction of the
scaled density. Considering such a wavefunction as a trial
state in the Rayleigh-Ritz principle yields useful inequal-
ities for the various density functionals[5]:

T [nγ ] ≤ γ2 T [n], γ ≥ 1, (10)

Vee[nγ ] ≥ γ Vee[n], γ ≥ 1, (11)

and a similar condition applies for the correlation energy
EC[n] itself.

A second example that we focus on here is what we
call charge-neutral (CN) scaling, in which

nζ(r) = ζ2n(ζ1/3
r), 0 < ζ < ∞ (12)

and so Nζ = ζN . We use ζ as the scaling parameter
to distinguish from coordinate scaling. This choice both
scales the coordinate and changes the particle number.
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FIG. 1: The exact radial densities of Beryllium (solid line)[26],
and of the CN scaled (with ζ = 2) Helium (dashed line)[27].

For Coulomb-interacting matter, this ensures neutrality
as a function of ζ. For example, for single atoms, it sim-
ply implies Zζ = ζZ and the atom remains neutral. Lieb
and Simon[28] showed that Thomas-Fermi (TF) theory
becomes exact for neutral atoms as ζ → ∞, and Lieb[29]
later generalized the proof to all Coulomb-interacting
matter. In Fig 1, we illustrate this scaling on the He
atom density.

In both coordinate and CN scaling, as the scaling pa-
rameter is taken to ∞, the solution simplifies. Under
uniform coordinate scaling to the high-density limit, the
system becomes effectively non-interacting. Under CN
scaling to the high-density limit, Thomas-Fermi theory
becomes relatively exact. In either case, we can ask how
the potential changes when the density is scaled. We de-
fine this as the potential scaling conjugate to the given
density scaling, but consider it for all values of the scaling
parameter, not just in the high-density limit.

Under coordinate scaling, in the large γ limit,

vγ(r) = γ2v(γr). (13)

We therefore define our potential scaling by this equation,
applied for all γ. We use a superscript to indicate that
the potential has been scaled, not the density. This is
simply how the external potential would change when the
density is scaled, if the particles were non-interacting par-
ticles. For example, for a neutral atom, this changes the
nuclear charge by γ, keeping the particle number fixed.
As γ → ∞, the repulsion between electrons becomes neg-
ligible relative to the nuclear attraction, and the density
becomes that of the non-interacting limit, scaled by γ.

Similarly, under CN scaling with ζ → ∞, the TF equa-
tions become relatively exact[30], and

vζ(r) = ζ4/3v(ζ1/3
r), Nζ = ζN. (14)

Again, the conjugate potential scaling is defined by this,
applied to all values of ζ. Analogously, if self-consistent
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TF theory were exact, this is how the potential would
scale for any ζ as the density is scaled.

Although chosen to match the corresponding density
scaling in the high-density or high-potential limit, these
potential scalings can be applied for any values of their
scaling parameter. Since scaling the potential is much
more common in quantum problems than scaling the den-
sity, often solutions are known or can be accurately cal-
culated for different scalings of the potential, but not
of the density. In this paper, we find relations and in-
equalities between such solutions that complement the
ground-breaking results of the previous generation[5].

IV. UNIFORM COORDINATE SCALING

In the old work[5], Levy and Perdew compared two dif-
ferent wavefunctions with the same density, whereas we
compare two different wavefunctions in the same poten-
tial. To do this, begin from a given potential v(r) with
ground-state density n(r). Define nγ(r) as the ground-
state density of vγ(r), given by Eq. (13). Then nγ

1/γ(r) is

a useful trial density for the original problem. It is found
by first scaling the potential, solving the problem, and
then scaling backwards to the original problem. (In Fig.
1, the dashed line corresponds nζ(r) for the He density,
with ζ = 2.) This is exactly what was done (but with an
approximate scale factor) in Ref. 25.

If nγ
1/γ(r) is used as trial density for v(r), the varia-

tional principle states that

F [nγ
1/γ ] + γ−2V γ [nγ ] ≥ F [n] + γ−2V γ [nγ ], (15)

which may be rearranged as

F [nγ
1/γ ] − F [n] ≥ γ−2(V γ [nγ ] − V γ [nγ ]). (16)

Conversely, nγ(r) may be used as a trial density for vγ(r),
yielding

Evγ [nγ ] = F [nγ ] + V γ [nγ ]

≥ F [nγ ] + V γ [nγ ], (17)

which can also be rearranged as

F [nγ ] − F [nγ ] ≤ V γ [nγ ] − V γ [nγ ]. (18)

Combining the two inequalities yields a constraint on the
universal functional F [n]:

F [nγ
1/γ ] −

F [nγ ]

γ2
≥ F [n] −

F [nγ ]

γ2
, (19)

which may be written in a concise form, with λ = 1/γ,

∆Fλ[n
1/λ
λ ] ≥ ∆Fλ[n], (20)

where

∆Fλ[n] = F [n] − λ2F [n1/λ]. (21)

Now, F [n] is typically dominated by the kinetic energy
contribution, but this can be removed, because TS[nγ ] =
γ2 TS[n]. Thus

∆Eλ
HXC

[n
1/λ
λ ] ≥ ∆Eλ

HXC
[n], (22)

where EHXC = U + EXC. This tells us that if we begin
from, e.g., the lowest value of Z that binds a given N

electrons, then ∆Eλ
HXC

[n
1/λ
λ ] is an increasing function of

λ.
Simple results can be extracted from this very general

formula by taking γ to be very large. This makes nγ(r) an
essentially non-interacting density, because the external
potential dominates. Thus

n
1/λ
λ (r) → nNI(r), λ → 0, (23)

where nNI(r) is the density of the system with only an
infinitesimal electron-electron repulsion. But ∆Eλ

HXC
[n]

also simplifies as λ → 0, because all terms scale less than
quadratically. Thus

∆Eλ
HXC

[n] → EHXC[n], λ → 0, (24)

yielding the universal result that

EHXC[nNI] ≥ EHXC[n], (25)

applying to all potentials. For γ < 1, Eq. (20) is less use-
ful, as most systems of interest lose an electron when the
external potential becomes too small. To further simplify
Eq. (22), we note that both the Hartree and exchange
energies scale linearly with γ, i.e.,

EHX[nγ ] = γ EHX[n], (26)

so that

∆Eλ
HX

[n] = (1 − λ)EHX[n]. (27)

Inserted into Eq. (22), we find

EHX[nγ
λ] + ∆′Eλ

C
[nγ

λ] ≥ EHX[n] + ∆′Eλ
C
[n], (28)

where

∆′Eλ
C
[n] = ∆Eλ

C
[n]/(1 − λ). (29)

The simplest way to test this result is by doing a Kohn-
Sham calculation without any correlation (such as oep
exact exchange). Then the correlation contributions van-
ish on both sides of Eq. (28), and so

EHX[n] ≤ EHX[nγ ]/γ ≤ EHX[nNI] (30)

This simplifies even further for the special case of two
electrons in a spin singlet, where EX[n] = −U [n]/2, so
the inequality becomes a bound on the Hartree energy
alone:

U [n] ≤ U [nγ ]/γ ≤ U [nNI] (31)
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TABLE I: The Hartree energies, U , for the helium iso-
electronic series as calculated with the oep exact-exchange
method as implemented in the OPMKS code[32]. We also
demonstrate how, for two values of atomic number Z′, the in-
equalities of Eq. (31) with γ = Z′/Z, are satisfied. Note that
if γ < 1, the inequality is reversed. The values for bordering
values of Z bracket the value of U at atomic number Z and
these bounds become tighter as Z′ increases.

Z U Z’=4 Z’=20
1 0.790970 3.163880 15.819400
2 2.051538 4.103076 20.515380
3 3.303373 4.404497 22.022487
4 4.554137 4.554137 22.770685
6 7.054819 4.703213 23.516063
10 12.055315 4.822126 24.110630
20 24.555661 4.911132 24.555661

TABLE II: Hartree-exchange energies for the beryllium iso-
electronic series. Values were also calculated with the
OPMKS code with oep exact-exchange. Also shown are
two examples of the inequalities of Eq. (30), again using
γ = Z′/Z. Although the quantities are more complicate that
those in Table I, the overall trend is the same.

Ion Z EHX Z’=10 Z’=16
Be 4 4.489776 11.224440 17.959104
B+ 5 6.119120 12.238240 19.581184
O4+ 8 10.893545 13.616931 21.787090
Ne6+ 10 14.051482 14.051482 22.482371
S12+ 16 23.498356 14.686473 23.498356
Ca16+ 20 29.788628 14.894314 23.830902

In Table I, we analyze the above inequality, Eq. (31),
while in Fig 2, we plot U [nγ ]/γ as a function of γ for
exact-exchange calculations of the two-electron ion se-
ries, beginning with H−. Indeed, the function increases
toward the Bohr atom limit of 5/4, found by inserting
a doubly-occupied 1s Hydrogen atom orbital into the
Hartree energy.

To test the exchange contribution in a non-trivial way,
i.e., Eq. (28), we repeated the calculations for the
four-electron ion series, this time beginning from Be.
Again the inequality is satisfied, and the limiting value
is found by evaluating the Hartree and exchange ener-
gies of doubly-occupied 1s and 2s Hydrogenic orbitals, as
calculated in Appendix B. These values are reported in
Table II and plotted in Fig 3.

Lastly, we can even include extremely accurate es-
timates of the correlation contributions for the two-
electron series. We work from the data in Table I of Ref.
[31]. Since the two-electron ions are generally weakly cor-
related, one can approximate the scaling of their correla-
tion energies with a Taylor-series around the high-density
limit:

EC[n] = E
(0)
C [n] + λE

(1)
C [n] (32)

where E
(p)
C [n] are scale-invariant functionals. Since TC =

0 5 10 15 20
Z
,

0.8

1

1.2

U
[n

γ ]/γ

FIG. 2: Using the Hartree energies from Table I, Eq. (31) is
illustrated for γ = Z′/Z and Z = 1. The trend is identical to
that seen in Table I, however it is clear that the value is ap-
proaching it’s asymptote, 5/4. This is the Hartree energy for
density consisting of the doubly occupied hydrogen 1s orbital.

0 10 20 30
Z
,

4

5

6

E
H

X
[n

γ ]/γ

FIG. 3: The Hartree-exchange energies reported in Table
II are used to illustrate the inequalities of Eq. (30) with
γ = Z′/Z and Z = 4. Compared to Fig. 2, the value of
EHX[nγ ]/γ is not as fully converged to its asymptote, however
the maximum value of γ is 4 times smaller. The asymptotic
value for this case is 586373/93312 = 6.284, which is found
by doubly occupying both 1s and 2s hydrogenic orbitals with
Z = 4 and calculating Hartree and exchange energies.

−EC +∂EC[nγ]/∂γ(γ = 1)[5], and TC is reported in their
table, one can solve for these two coefficients. This yields

a value of -47.6 mH for E
(0)
C for He, in excellent agreement

with the value of 47.9 estimated in Ref. [25], and predicts
a value of -56.1 mH for H−. Using this approximate
scaling, we can insert all terms into Eq. (22) explicitly
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and find their behavior. The numerical corrections to our
previous results are negligible.

V. CHARGE-NEUTRAL SCALING

In this section, we repeat all the logic of the previous
section, but apply it now to CN scaling. After repeating
similar steps (given in Appendix A), we arrive at the
general result:

∆Fα[n1/α
α ] ≥ ∆Fα[n] , (33)

where

∆Fα[n] = F [n] − α7/3F [n1/α] , (34)

and α = 1/ζ. Just as we did for coordinate scaling, we
can refine our inequality substantially. By construction,
∆Fα[n] = 0 for FTF[n], so we define the useful func-
tional:

FNT [n] = F [n] − FTF[n] (35)

as the Non-Thomas-Fermi contribution to F [n]. Our in-
equality then reads:

∆FNTα[n1/α
α ] ≥ ∆FNTα[n] , (36)

where

∆FNTα[n] = FNT [n] − α7/3FNT [n1/α] . (37)

We find an interesting result in the limit α → 0, if we
make the reasonable assumption that all non-Thomas-
Fermi contributions scale less strongly than ζ7/3 :

FNT [nTF] ≥ FNT [n] , (38)

as TF becomes relatively exact in the high ζ. This in-
equality is fiendishly hard to test, even in the large ζ
limit. Consider, e.g., the He atom. The corresponding
TF density is well-known[33] but we would have to eval-
uate the exact interacting functional on it to find the
non-TF contribution. All the above results also apply
directly to non-interacting electrons in a potential, such
as the Bohr atom[34], with F replaced by TS, and the TF
contributions calculated with no Hartree term. But the
same difficulties remain.

There is one case where we know enough already to
test. For the hydrogen atom (or any one-electron sys-
tem), F = T only, and is given by the von Weizacker
functional. The TF density (with or without interaction)
is well-known and singular at the origin, making the von
Weizacker energy diverge. Thus, the formula is satisfied,
but not very informative.

Lastly, we consider Thomas-Fermi-Dirac-Weizsäker
theory[35] (TFDW). Here we add to TF the local ex-
change

E
(0)
X [n] = AX

∫

d3r n4/3(r), (39)

where AX = −(3/4)(3/π)1/3, and the next order gradient
correction to the kinetic energy,

T
(2)
S [n] =

1

72

∫

d3r
|∇n(r)|2

n(r)
. (40)

Both these terms scale the same way under CN density
scaling, i.e.,

F (2)[nζ ] = T (2)[nζ ] + E
(0)
X [nζ ] = ζ5/3(T (2)[n] + E

(0)
X [n]).

(41)
Then can write the inequality as

F (2)[nζ ] ≥ ζ5/3F (2)[n], (42)

where n(r) has been evaluated self-consistently within
TFDW and ζ ≥ 1. Thus

F (2)[nTF] ≥ F (2)[nζ ]/ζ5/3 ≥ F (2)[n], (43)

where nTF(r) is the Thomas-Fermi solution for the same
potential as for n(r).

VI. CONCLUSION

Potential scaling, conjugate to a given density scaling,
promises to be a useful tool in density functional the-
ory. It leads to many exact conditions that can be used
in functional construction. We have applied it to two
distinct types of scaling: uniform coordinate scaling and
charge neutral scaling. In both cases, we have found sev-
eral interesting bounds. Uniform coordinate scaling was
useful for analyzing Kohn-Sham DFT, leading to inequal-
ities involving the only unknown in DFT, the exchange-
correlation functional. The limit of this inequality in-
volves evaluating the Hartree-exchange-correlation en-
ergy of the density of non-interacting fermions in the
external potential. This connection between the interact-
ing and non-interacting systems resonates with standard
approaches in many-body perturbation theory. We il-
lustrate the bounds on the Hartree-exchange energy this
inequality provides by performing OEP exact exchange
calculations on helium and beryllium, showing the ap-
proach to their asymptote. On the other hand, charge-
neutral scaling provides inequalities involving Thomas-
Fermi quantities. The Thomas-Fermi approximation be-
comes relatively exact for all electronic systems[28, 29]
and these relations link the corrections to Thomas-Fermi
with the true system, including those of TFDW theory.
However evaluating the TF density within these theories
often leads to divergences[36, 37]. It is not clear how
important these relations will be for functional develop-
ment, but those derived from uniform coordinate scal-
ing are siblings to those derived by Levy and Perdew[5],
which proved very useful in constraining approximations
in DFT.

We thank Eberhard Engel for use of the OPMKS code
and also thank Cyrus Umrigar for providing exact den-
sities. We acknowledge support from NSF under grant
CHE-0809859.
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APPENDIX A: CHARGE-NEUTRAL SCALING

INEQUALITY

We follow the steps in deriving Eq. (20) but applied
to the charge neutral scaling defined in Eq. (14). Taking

nζ
1/ζ(r) as a trial density for the v(r) system, then the

variational principle states:

F [nζ
1/ζ ] + V [nζ

1/ζ ] ≥ F [n] + V [n] , (A1)

where nζ(r) is the exact density for the scaled potential
vζ(r). Conversely, use nζ(r) as a trial density for the
vζ(r) system:

F [nζ ] + ζ7/3V [n] ≥ F [nζ ] + ζ7/3V [nζ
1/ζ ] (A2)

where we have used V ζ [nζ ] = ζ7/3V [n]. Combining these
inequalities gives:

F [nζ ] − F [nζ ]

ζ7/3
≥ F [n] − F [nζ

1/ζ ] , (A3)

which may be written as

∆F ζ [nζ
1/ζ ] ≥ ∆F ζ [n] , (A4)

with

∆F ζ [n] = F [n] −
F [nζ ]

ζ7/3
. (A5)

APPENDIX B: EXCHANGE ENERGY FOR

NON-INTERACTING BERYLLIUM

The limit of the inequality, Eq. (28), is the Hartree-
exchange functional evaluated on the density of the corre-
sponding non-interacting system. Since the g.s. orbitals
which sum to this density are known analytically (they
are simply hydrogenic orbitals), we may calculate the ex-
act Hartree-exchange value.

Written in spherical coordinates, r = |r|, the 1s and
2s hydrogenic orbitals are:

φ1s(r) =

(

Z3

π

)1/2

e−Zr , (B1)

φ2s(r) =

(

Z3

32π

)1/2

(2 − Zr)e−Zr/2 . (B2)

For beryllium, both these orbitals are doubly occupied,
giving the total density as

n(r) = 2|φ1s(r)|
2 + 2|φ2s(r)|

2 . (B3)

The Hartree energy is defined by Eq. (6), however in the
special case of spherical densities it may be written as:

U [n] =
1

2

∫

∞

0

dr (f [n](r))
2

, (B4)

where

f [n](r) = 4π

∫

∞

r

dr′ r′n(r′) , (B5)

and we use square brackets to indicate that it is a func-
tional of the density. The exchange energy for a spin-
unpolarized system is:

EX = −2
1

2

occ
∑

i,j

∫

d3r

∫

d3r′
φ∗

i (r)φ
∗

j (r′)φj(r)φi(r
′)

|r − r
′|

,

(B6)
where the factor 2 is due to spin, and the sum is over
occupied orbitals only, in this case 1s and 2s. If we define
a new quantity, ñ(r):

ñ(r) = φ1s(r)φ2s(r) , (B7)

then we may write

EX = −2 (U [n1s] + 2U [ñ] + U [n2s]) . (B8)

We can use Eq. (B5) and Eq. (B4) for each term sep-
arately and then combine to find the total exchange en-
ergy. The answer will be equivalent to solving Eq. (B6)
using the orbitals, however this method avoids perform-
ing integrals involving 1/|r − r

′| and, in this case, are
easy to solve using integration by parts. The values for
Hartree, exchange and their sum are:

U [n] =
5 × 23 × 431

2634
=

49565

5184
= 9.561 ,

EX = −
59 × 71 × 73

2736
= −

305797

93312
= −3.277 ,

EHX =
383 × 1531

2736
=

586373

93312
= 6.284 .
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