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Gradient-corrected or semi-local functionals (GGA’s) have achieved the accuracy required to make
We show that local (LSD) and

semi-local functionals work because they usefully model the exchange-correlation hole around an

density functional theory a useful tool in quantum chemistry.
average electron, rather than by yielding accurate results at all electron positions. We discuss
the system-averaged hole at small interelectronic separations, where such functionals are extremely
accurate, and at large interelectronic separations, where the local approximation is incorrect for
finite systems. We argue that the “on-top” hole density provides the missing link between real
atoms and molecules and the uniform electron gas. We show how exchange-correlation potentials
can be related to energies. We also discuss how the degree of nonlocality, i.e., the error made by
LSD, is related to the spatial extent of the hole. Decomposing the energy by coupling-constant and
spin, we find that the deeper the on-top hole is, the smaller the error in the local approximation
to the energy. We use this insight to demonstrate that Hartree-Fock hybrid functionals do not
consistently improve on GGA. A different hybrid invokes wavefunction methods for exchange and
parallel-spin correlation, but we show that configuration interaction wavefunction calculations with
limited basis sets for the Ne atom make the same relative errors in the antiparallel- and parallel-
spin correlation energies, despite the lack of a Coulomb cusp in the parallel-spin correlation hole.
Finally, we review a recent reinterpretation of spin density functional theory, which is preferable to

the standard interpretation in certain cases of extreme nonlocality.
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I. DENSITY FUNCTIONALS IN QUANTUM
CHEMISTRY AND SOLID STATE PHYSICS:
INTRODUCTION AND SUMMARY

Most practical electronic structure calculations using den-
sity functional theory [1] involve solving the Kohn-Sham
equations [2]. The only unknown quantity in a Kohn-
Sham spin-density functional calculation is the exchange-
correlation energy (and its functional derivative) [2]
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where T is the interacting kinetic energy, 75 is the non-
interacting kinetic energy, V.. is the exact Coulomb re-
pulsion, and U = [d3 [ d®'n(r) n(x')/2|r — 1’| is the
classical Coulomb energy associated with the density n(r).
Modern density functional calculations are based on some
approximate form of Ex.. For example, the local spin den-
sity (LSD) approximation [2] is:

EEPny ) = [ dr nfe) &2 (ny0). ), (2)
where €2 (n1(r), n (r)) is the exchange-correlation energy
per particle of a uniform electron gas (jellium) [3,4]. Eq. 2
is exact for an electron gas of uniform (jellium) or slowly-
varying spin densities.

For many years, LSD has been very popular with solid-
state physicists [1], and quite unpopular with quantum
chemists [5]. LSD achieves a remarkable moderate accu-
racy for the energies and densities of almost all systems, no

matter how rapidly their densities vary. In fact, LSD solid-
state calculations are often called ab initio. However, this
moderate accuracy is insufficient for chemical purposes, and
no way was known to improve the approximation systemat-
ically.

Recently, a new class of functionals, called generalized
gradient approximations (GGA's) [6—14], has been devel-
oped. These take the general form

ESSA(ny )] = / B f(n1(v),ny(x), Vg, Tny), (3)

where the function f is chosen by some set of criteria.
The idea is that, by including information about the gra-
dient, one should be able to improve the accuracy of the
functional. Several forms for f are currently in use in the
literature [7-11], but we focus on the Perdew-Wang 1991
(PWO91) form [11-14], because it is derived without semiem-
pirical parameters and is the 'best’ functional on formal
grounds [12]. Results of calculations with this form show
that it typically reduces exchange energy errors from 10%
in LSD to 1% and correlation energy errors from 100% to
about 10% [13]. PWO1 corrects the LSD overestimate of
atomization energies for molecules and solids in almost all
cases, it enlarges equilibrium bond lengths and lattice spac-
ings, usually correctly, and reduces vibrational frequencies
and bulk moduli, again usually correctly [14]. PW91 also
generally improves activation barriers [15] and yields an im-
proved description of the phase diagram of Fe under normal
or high pressure [16]. In almost all cases where PW91 has
been carefully tested, it significantly improves on LSD. Thus



PW91 and similar GGA's have become popular in quantum
chemistry.

The success of PW91 can be understood in terms of its
construction as a systematic, parameter-free refinement of
LSD. While LSD does not typically work well at all points
in the system (section IlA), it does remarkably well for
system-averaged quantities, such as the energy, because the
average electron lives in a region of moderate density varia-
tion and because the LSD exchange-correlation hole satisfies
many conditions satisfied by the exact hole. A straight-
forward gradient expansion violates these conditions, but
a real-space cutoff procedure restores them [8,11], lead-
ing to an improved description of system-averaged quan-
tities, as shown in section [IB. The PW91 functional is
a parametrization of the result of this procedure. In par-
ticular, we study the system-averaged exchange-correlation
hole, a function of the separation between any two points in
the system, and demonstrate that LSD gives a remarkably
accurate description of this quantity [17], which is improved
by PW91 [17].

The LSD and PW91-GGA system-averaged holes agree at
zero interelectronic separation, where both are nearly exact.
In section I1C, we discuss how the near-universality of this
“on-top” hole density provides the missing link between real
atoms and molecules and the uniform electron gas. Except
very close to the nucleus, the focal on-top hole density is
also accurately represented by LSD, even in the classically-
forbidden tail region of the electron density [18].

In Ref. [12], Perdew and Burke made a graphical compar-
ison of various GGA's. The popular functionals for exchange
(Perdew-Wang 86 [8], Becke 88 [9], and Perdew-Wang 91
[11-14]) are similar for practical purposes, but the popular
functionals for correlation are not. In particular, the Lee-
Yang-Parr 88 [10] functional is rather different from the
Perdew-Wang 1986 [7], and 1991 [11-14] correlation func-
tionals. In fact, the LYP correlation energy is in error by
about a factor of two in the important uniform-gas limit
[18]. We discuss this difference further in section IID, as
we believe it has important consequences for the description
of delocalized electrons in carbon clusters and metals, and
for spin-magnetized systems. Indeed, because PW91 is the
“most local” [12] of the GGA's for exchange and correlation,
as defined in section Ill, it is the least likely to overcorrect
the subtle LSD errors for solids.

While the LSD exchange-correlation hole is accurate for
small interelectronic separations (section IIC), it is less
satisfactory at large separations, as discussed in section
IlE. For example, consider the hole for an electron which
has wandered out into the classically-forbidden tail region
around an atom (or molecule). The exact hole remains
localized around the nucleus, and in section Il E we give ex-
plicit results for its limiting form as the electron moves far
away [19]. The LSD hole, however, becomes more and more
diffuse as the density at the electron's position gets smaller,
and so is quite incorrect. The weighted density approxima-
tion (WDA) and the self-interaction correction (SIC) both

yield more accurate (but not exact) descriptions of this phe-
nomenon.

PW91 GGA’s significantly improve the
exchange-correlation energy, but the corresponding poten-
tial vxe = 6Exc/én(r) is not much improved over LSD,
and is in some respects worse [20-22]. We address this
point in detail in section IIF. From our perspective, this
is neither a surprising nor disturbing result. We are fit-
ting a “square peg’ (the exact Exc[ng, n|] with its deriva-
tive discontinuities [23,24]) into a “round hole” (the simple
continuum approximation of Eq. 3). The areas (integrated
properties) of a square and circle can be matched, but their
perimeters (differential properties) remain stubbornly differ-
ent. (For completeness, we note that the potential vyc(r),
a functional derivative, can also be constructed from a more
physical perspective [25-29]).

While PW91 and other GGA's are more accurate than
LSD, another factor-of-five reduction in error is needed to
reach chemical accuracy. This might be achieved by isolat-
ing those aspects of the exchange-correlation problem that
local and semi-local approximations treat well, and using
more nonlocal approaches for the remainder. To do this,
we must first understand the origin of nonlocal effects, i.e.,
corrections to LSD, in the energy (section Ill). Because
LSD works best in the vicinity of the electron, the shorter
the range of the hole, the better it is described by local and
semi-local approximations [18]. Furthermore, because of
sum-rules satisfied by both the exact hole and its functional
approximation, the deeper the on-top hole is, the shorter
is its range. Thus the depth of the on-top hole is strongly
related to how accurate LSD (and, by extension, PW91)
energies are.

This kind of analysis is relevant to the hybrid functionals
which mix exact Hartree-Fock with semi-local functionals
and are currently popular [30,31]. The exchange on-top
hole is shallower than the exchange-correlation hole, and so
the exchange energy is less local than exchange and corre-
lation together. Thus GGA's might be improved by mixing
some exact Hartree-Fock exchange. However, we show in
section |11 B that the optimum amount of mixing is far from
universal.

Another possible hybrid approach combines a density
functional for antiparallel-spin correlation with conventional
wavefunction methods for exchange and parallel-spin cor-
relation. The parallel-spin correlation has no on-top hole
density, and so is less local than the entire correlation en-
ergy, as we show in section IlIC. This hybrid approach
thus relies on the fact that the antiparallel-spin correlation
can be accurately described by a local or semilocal density
functional, and on the hope that the parallel-spin correlation
contribution can be easily calculated within a finite basis-set
approach such as the coupled-cluster (CC) or configuration-
interaction (Cl) techniques. Finite basis-set methods are
known to be inefficient in describing the antiparallel-spin
Coulomb cusp (see, e.g., [32-34]), and are believed to be
efficient in the description of the more long-ranged parallel-

and other



spin correlation hole [35]. However, we show that, within
the range of computationally-tractable basis sets, the con-
vergence rates of the parallel and antiparallel-spin contribu-
tions to the correlation energy are comparable.

So far we have not distinguished between the self-
consistent spin densities and the exact ones, because in
most systems the difference is slight. In section IV, we
discuss ‘abnormal’ systems, where the self-consistent spin
magnetization density, m(r) = ny(r) — n(r), is very dif-
ferent from the exact spin density. In such systems LSD
(and PW91) functionals, evaluated on the exact spin densi-
ties, give very poor energies, but these functionals perform
much better self-consistently. A stereotypical example is
the stretched Hy molecule, which has m(r) = 0 everywhere.
The LSD self-consistent solution makes the molecule (incor-
rectly) magnetized, with an | electron on one nucleus, and a
| electron on the other. We review a re-interpretation of the
standard theory [36], which shows that in such systems, it
is in fact the on-top pair density which is well-approximated
(i.e., differs little from its exact value) in LSD and GGA
calculations for these systems, rather than m(r). In the ab-
sence of an external magnetic field, the spin magnetization
density is therefore not as robust a prediction as the energy
and the density itself.

We use atomic units throughout (e?
unless otherwise stated.

:h:m:l),

II. EXCHANGE-CORRELATION HOLE

In order to understand why approximate functionals yield
accurate exchange-correlation energies, we decompose the
exchange-correlation energy as follows [37]. We define the
pair density of the inhomogeneous system as

N-1) Z /d3r3 .../d3rN
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where N is the number of electrons in the system, r;, o; are
the spatial and spin coordinates of the ith electron, and W
is the ground-state wavefunction of the system in which the
strength of the Coulomb repulsion is given by Ae?, where
0 < A <1, and in which the external potential varies with
A, U A (r), in such a way as to keep the spin densities n,(r)
fixed [38]. The expectation value of the electron-electron
repulsion operator is defined here as

Py(xr, 1)
ee — d3 d3 P TAGY " T :
o= [ [ B (5)

The exchange-correlation hole density at r’ around an elec-
tron at r for coupling strength A, nxc (r, '), is then defined
by the relation

Pa(r,r') = n(x) (n(t) 4 nxcn(5,2)), (6)

where n(r) is the density at r. We may define an exchange-
correlation energy as a function of coupling strength A
as simply 1/2 the Coulomb attraction between the A-
dependent hole density and the density of the electron it
surrounds, i.e

EXC A
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Note that this definition of Eyc , differs from others, e.g.
Ref. [39], but is convenient for the present purpose.

By defining all these quantities as explicit functions of
A, we can relate the density functional quantities to those
more familiar from quantum chemistry. The exchange-
correlation energy of density functional theory can be shown,
via the Hellmann-Feynman theorem [38,37], to be given by
a coupling-constant average, i.e.,

1
B = / d\ Eo . (8)
0

(Note that, in the absence of explicit A-dependence, our
notation implies the coupling-constant averaged quantity.)
On the other hand, at full coupling strength, A = 1, we
return to the fully-interacting system, so that, from Egs. 6
and 7,

Exc,x:1 = Vee,dAz=1 — U= FEx:— TC; (9)
where T = T'—T% is the correlation contribution to the ki-
netic energy. At zero coupling strength (A = 0), the system
is the non-interacting Kohn-Sham system, i.e., v, =0 is the
Kohn-Sham potential, and only exchange effects remain,

Exeace = Ex. (10)

We do not distinguish here this density functional definition
of exchange energy from that of Hartree-Fock (HF). This
simplification is well-justified, if the HF electron density and
the exact electron density differ only slightly [40]. Similarly,
the coupling-constant averaged exchange-correlation hole is
the usual one referred to in density functional theory, while
the full coupling-strength hole can be extracted from the
exact interacting wavefunction, via Egs. 4 and 6, and the
exchange hole is that of the non-interacting Kohn-Sham
wavefunction Wy_q. For purposes of comparison between
exact quantities calculated with more accurate methods and
density functional quantities, we typically use the A = 0 and
A = 1 contributions, which can be extracted directly from
the Hartree-Fock and accurate interacting wavefunctions,
respectively, whose details are given in appendix A. We
obtain the density functional approximations to such quan-
tities by undoing the coupling-constant integration in the
functional definitions.

The approach that we take to the question of how local
and semilocal density functionals work for systems with large



density gradients was pioneered by Gunnarsson, Jonson, and
Lundqvist [41,42]. Define u = v’ —r, the separation of two
points in the system. Then the spherically-averaged hole is

Nxc (T, u) = / df” Nxc(r,r+ u). (11)
T

By studying the exchange (i.e.,A = 0) hole in Ne, Gun-
narson et al. pointed out that the LSD approximation to
this quantity was far better than the LSD approximation to
the exchange hole prior to spherical-averaging. Then, from
Eq. 7, the energy depends only on this spherically-averaged
hole, i.e.,

Eyc,y = / du 27u /dST’ n(r) nxc,x(r: u) (12)
0

In the subsections below, we show how this idea has been
refined by further study of the exchange-correlation hole
since that work.

A. Point-wise decomposition of energy

A natural way to decompose the exchange-correlation en-
ergy is in terms of the exchange-correlation energy per par-
ticle. Half the electrostatic potential at r due to the density
of the hole surrounding an electron at r is

!
L
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and we take this as our definition of the exchange-
correlation energy per particle.  While other definitions
are also possible, this definition is unambiguous, since
nxc,A(r,r’') is defined in terms of the pair density, Eq. 6.
Then LSD may be considered as making the approximation
exca(r) = € (ny(r),ny(r)). In Figs. 1 and 2, we plot
€x(r) = €xcazo(T) and €c o1 () = €xcazi(r) — €x(r) for
the He atom, both exactly and in LSD. We see that the
LSD curves are not very accurate. LSD yields the wrong
value at r = 0 (where Vzn/ns/?’ diverges), has an incor-
rect cusp at r = 0, and decays exponentially as r — oo
(where |Vn|/n*/3 diverges). The He atom is particularly
difficult for LSD, because of the relative importance of the
“rapidly-varying” regions r — 0 and 7 — oo. However,
the radial density-weighted curve, shown for the exchange
energy in Fig. 3, looks much better. The LSD errors at
small and large r are given little weight. The LSD approx-
imation to the density-weighted integral of these curves,
Exc, = fd?’r n(r) exc,(r), is only in error by 16% at
A =0and by 6% at A = 1, as can be seen in Table . (Note
that we do not plot any PW91 curves, because PW91 in-
vokes an integration by parts over r, and so makes mean-
ingful predictions only for system-averaged quantities.) We
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FIG. 1. Exchange energy per electron in the He atom, both
exactly (CI) and in LSD. The nucleus is at r = 0.

conclude that, while the spherically-averaged hole is bet-
ter in LSD than the unaveraged hole, it is vital to consider
density-weighted quantities to understand their effect on the
corresponding total energy.

Similar remarks may be made about the exchange-
correlation potential, vxc(r) = § Exc/6n(r), which, for the
He atom, is shown very accurately in Figs. 10 and 11 of
Ref. [21]. An important piece of vyc(r) is 2exc(r). Again,

0.00
/N

Z -0.05
Il
~<
o
w

—-0.10

\ \
0 1 2 3
r
FIG. 2. Correlation energy per electron at full cou-

pling-strength in the He atom, both exactly (CI) and in LSD.
The nucleus is at r = 0.
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FIG. 3. Exchange energy per electron times the radial den-
sity in the He atom, both exactly (CI) and in LSD. The area
under each curve is the exchange energy.

LSD is inaccurate at small r and large r. In fact, PW91
is even worse, having a divergence at small r. It has been
pointed out that the PW91 correlation potential would look
closer to the exact potential if its sign were reversed! But,
as in the case of the energy per particle, it is unclear what
the effect of a poor-looking potential is on the quality of
the energy. We show in section || F how a different decom-
position yields more insight into which properties are being

well-approximated by LSD and PW91.

TABLE 1. Various energies of the He atom (in eV). The ap-
proximate energies were evaluated on the self-consistent den-
sities, and their errors measured relative to the exact energies.
All numbers taken from Table III of Ref. [19]. (1 hartree =
27.2116 eV.)

Energy LSD error PWI1 error Exact
Ex 23.449 (-16%)  -27.470 (-1%)  -27.880
Ec -3.023  (164%)  -1.224  (T%) -1.146
Te 1.825  (83%) 1010 (1%) 0.997
Exc 26472 (-9%)  -28.693 (-1%)  -29.026

Excaei  -28.297  (-6%)  -29.704 (-1%)  -30.023

Ec+Te  -1.198 (705%)  -0.213 (43%)  -0.149

B. Real-space decomposition of energy

The real-space decomposition of the energy is in terms
of u = r’ — r, the separation between points in the system
[43]. We define the system- and angle-averaged hole as

(recnu)= [ T2 5

N d3r n(r) nxca(r,r+u)

1 3
= ﬁ/d r n(r) nxe(r, u), (14)

where €, represents the solid angle of u, and N is the num-
ber of electrons in the system. Thus, for any given system,
(nxc,»(u)) is a function of one variable, u. The relation
between this averaged hole and the exchange-correlation
energy is immediate, from Eq. 7,
o0
Exci =N / du 2mu (nyc ,(u)). (15)
0
Thus any good approximation to (nxc .(u)) will yield a
good approximation to Exc ;.

In Figs. 4 and 5, we plot the system-averaged exchange
and correlation holes at full coupling strength in the He
atom, taken from our configuration-interaction calculation.
We also plot the LSD holes, and the numerical GGA holes
(NGGA, defined below) which underlie the construction of

PW91. Accurate analytic expressions for the uniform-gas
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FIG. 4. System-averaged exchange hole density (in atomic
units) in the He atom, in LSD, numerical GGA, and exactly
(CI). The area under each curve is the exchange energy.

hole are known [44], and were used to construct the LSD
hole. We immediately see that LSD is doing a good job of
modelling the hole, and GGA does even better.

We can easily understand why LSD does such a good
job. The exact system-averaged hole obeys many conditions
which have been derived over the years [14,42,45]. Amongst
the most important for our purposes [1] are sum rules on
the exchange and correlation contributions:

/000 du 47u? (nx(u)) = -1, (16)

=0, (17)

/0 " du dmu? (no(w))



0.05 ‘ ‘

3 NGGA A

JAY - 'exact'(CI) 1
2 0.00

L |

O L B

5 i |

E —-0.05 I 7

o 3 L3D 1

i He |

—0.10 | |
0 1 2 3
u

FIG. 5. System-averaged correlation hole density at full
coupling strength (in atomic units) in the He atom, in LSD,
numerical GGA, and exactly (CI). The area under each curve
is the full coupling-strength correlation energy.

the non-positivity of the exchange hole:

{nx(u)) <0, (18)
and the cusp condition [46,47] at © = 0,
el Al O+ )], (19)
where
(n(u)) = %/ dgru /d3r n(r) n(r 4+ u). (20)

Now, since LSD replaces the exact hole of the inhomoge-
neous system by that of another physical system, namely
the uniform gas, the LSD hole satisfies all these conditions.
Furthermore, the on-top exchange hole, (nx(0)), is exact
in LSD [48-50] (for systems whose exchange wavefunction
consists of a single Slater determinant — see section IV be-
low), while the on-top correlation contribution is very accu-
rate [51], although not exact [52]. From the cusp condition,
this implies high accuracy for all u close to 0, while the sum
rules then constrain LSD from doing too badly as u becomes
large. These features can be seen in the plots, and explain
why the LSD curves so closely match the exact ones.

To understand the origin of the NGGA curves, consider
the construction of PW91 [11,53]. Kohn and Sham [2] al-
ready recognized that a simple improvement on LSD might
be provided by treating LSD as the zeroth-order term in a
Taylor series in the gradients of the density, and therefore
including the next higher terms. This defines the gradient
expansion approximation (GEA), which includes terms up

to [Vn|?. Such an expansion works well to improve on the
local approximation to the kinetic energy [54]. However,
while GEA moderately improves exchange energies, it pro-
duces very poor correlation energies. The reason for this
failure is clear from our above analysis. In making this ex-
tension, we are no longer approximating (nxc(u)) by the
hole of another physical system, so that the sum rules and
non-positivity constraints are violated. Thus the hole is no
longer constrained by these conditions, and a poor approx-
imation results.

The real-space cutoff procedure is designed to cure these
problems in the gradient expansion [43]. At each point r
in space, all positive portions of the gradient-expanded ex-
change hole are simply thrown away. Furthermore, beyond
a given value of u, the rest of the hole is set to zero, with
that point chosen to recover the exchange sum rule, Eq.
16. A similar procedure chops off the spurious long-range
part of the correlation hole to make it respect Eq. 17. This
recipe defines a no-parameter procedure for constructing
what we call the numerical generalized gradient approxima-
tion to (nxc (u)) [17], which in turn yields a numerically-
defined semilocal functional which obeys the exact condi-
tions given above. The form of the correlation hole in this
procedure was chosen [11] to restore LSD as u — 0, so
GGA retains the accuracy of LSD at small u. The PW91
functional was constructed to mimic the numerical GGA for
moderate values of the gradient, while also incorporating
further exact conditions for small and large gradients. The
kink at u = 1.8 in the NGGA exchange hole of Fig. 4 and
the bump at u = 2.3 in the NGGA correlation hole of Fig.
5 are both artifacts of the sharp cut-offs in this procedure
[17]. The figures demonstrate that by using the gradient
expansion, while still satisfying the exact conditions, the
numerical GGA holes are indeed better approximations to
the exact ones than LSD, thus demonstrating why PW91
yields better energies than LSD.

C. On-top exchange-correlation hole

As mentioned above, LSD yields a reasonable description
of the exchange-correlation hole, because it satisfies several
exact conditions. However, since the correlation hole satis-
fies a zero sum rule, the scale of the hole must be set by
its value at some value of u. The local approximation is
most accurate at points near the electron. In fact, while
not exact at u = 0, LSD is highly accurate there. Thus the
on-top hole provides the “missing link” between the uniform
electron gas and real atoms and molecules [18].

To see this in more detail, consider the ratio of the
system-averaged on-top exchange-correlation hole to the
system-average of the density itself, (n(0)), as defined in
Eq. 20. This ratio satisfies the inequalities

e O)

moy = )



for all systems, both exactly and in LSD. Furthermore, for
either fully spin-polarized systems or extremely low density,
the on-top pair density vanishes, making this ratio -1, both
exactly and in LSD. LSD also becomes exact in the high
density 7s = 0 or non-interacting A = 0 limits, where this
ratio equals -1/2 for spin-unpolarized systems, and the ap-
proach to this limit is also highly accurate (but not exact).
We can see this very clearly in the universal curve plotted
in Fig. 6, which is this ratio as a function of the average 7,
value in the system, defined for spin-unpolarized systems as

- [ &r n?(r) ry(r)
(re) = [d3r n2(x) (22)

where

rs(r) = (

47n

_Eaﬂwé (23)

The solid curve was obtained from Yasuhara's expression
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FIG. 6. Universal curve for the system-averaged on-top
hole density in spin-unpolarized systems.
is for the uniform gas. The circles indicate values calculated
within LSD, while the crosses indicate essentially exact re-

The solid curve

sults, and the plus signs indicate less accurate CI results.
The high-density (r. — 0) and low-density (rs — oo) lim-
its behave respectively like the weak-coupling (A — 0) and
strong-coupling (A — oo) limits.

for the on-top hole for a uniform electron gas [55]. The
circles indicate the LSD values of {(nyc ,(0))/(n(0)). Their
proximity to the uniform-gas curve indicates that the ap-
proximation

(n3e(0)) & ni2 ({rs);u = 0) (24)
is highly accurate. The crosses represent either almost-
exact numerical calculations [36] or exact analytic results for

Hooke's atom [56], which consists of two electrons bound
to a center by a spring of force constant k. The pluses rep-
resent Cl results, which tend to underestimate the depth of
the on-top hole, because of the difficulty in representing the
cusp in a finite basis set (see section 111D).

The importance of the accuracy of the on-top hole in
LSD cannot be over-stressed. This accuracy is not just in
the system-average, but is also there on a point-wise basis.
In Fig. 7, we plot the ratio of the full-coupling strength on-
top exchange-correlation hole to the density as a function
of r in the He atom, both exactly, using a very accurate
wavefunction [36], and in LSD. We see that already for r >
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FIG. 7. Local on-top exchange-correlation hole at full cou-
pling strength divided by density as a function of r in the
He atom. The nuclear cusp produces greater LSD error for
r — 0.

1 (rs > 1.33), the LSD on-top hole is extremely accurate.
Thus, even in the tail region of the density, which is vital
to understanding chemistry, the on-top LSD hole is highly
accurate.

Successful density functional approximations such as the
PW91 GGA or the self-interaction correction (SIC) [57] to
LSD recover [19] LSD values for the on-top hole density and
cusp. The weighted density approximation (WDA) [41,42],
which recovers the LSD exchange hole density but not the
LSD correlation hole density [19] in the limit u — 0, needs
improvement in this respect.

D. Importance of the uniform gas limit

The accuracy of the on-top hole density has a crucial
bearing on the validity of GGA functionals. LSD and GGA
are limited-form approximations to Exc,. These limited
forms can only be exact for uniform densities. Thus any



GGA ought to be correct, i.e., reduce to LSD, in this limit.
Otherwise, it will miss the vital link between the uniform
gas and the real system, namely the on-top hole density, as
shown in Figs. 6 and 7. Moreover, certain real systems (e.g.,
close-packed crystals of simple metals) closely resemble a
uniform electron gas. However, a very popular GGA in use
in quantum chemistry, the Lee-Yang-Parr (LYP) correlation
functional [10], does not satisfy this condition. In Table
I, we compare the correlation energy in LYP for a uniform
gas, as a function of ry, and compare it with the essentially
exact value [3,4,57], using the parametrization of Perdew

and Wang [4]. We see that LYP does badly for the uniform

TABLE II. Correlation energy of the uniform electron gas,
comparing the highly-accurate parametrization of Perdew and
Wang [4] with the LYP functional [10].

Te LYP accurate error(%)

0.01 -.0674 -.1902 -65

0.05 -.0656 -.1413 -54

0.1 -.0635 -.1209 -47

0.5 -.0502 -.0766 -34

1.0 -.0394 -.0598 -34

2.0 -.0270 -.0448 -40

5.0 -.0135 -.0282 -52
10.0 -.0075 -.0186 -60

gas, and therefore does not contain the information about
the on-top hole found in functionals which reproduce this
limit, such as PW91.

For the spin-unpolarized uniform electron gas, the LYP
correlation energy functional reduces to that of Colle and
Salvetti [58], on which LYP is based. McWeeny's work [59]
may have contributed to the widespread misimpression that
the Colle-Salvetti functional is accurate in this limit. Note
however that McWeeny tested Eq. 9 of Ref. [58], and not the
further-approximated Eq. 19 of Ref. [68], which is the basis
of LYP and other Colle-Salvetti applications, and which is
shown in Table II.

A second observation about the LYP functional is that
it predicts no correlation energy for a fully spin-polarized
system of electrons. Yet, in the uniform-density limit, the
correlation energy at full spin-polarization is about half that
of the unpolarized system [3,4,57]. Even in the Ne atom,
the parallel-spin contribution accounts for about 24% of the
total correlation energy (section 111 D).

A recent and much-discussed system with delocalized
electrons illustrates the importance of a GGA recapturing
the uniform and slowly-varying density limits. Three ba-
sic structures have been proposed for the ground state of
Coo: a ring, a bowl, and a cage. Recent accurate calcu-
lations using diffusion Monte Carlo [60] place the bowl as
the lowest energy structure. These structures differ only
very slightly in their correlation energies per carbon atom,
and so provide a very sensitive test of approximate treat-
ments. Hartree-Fock calculations make the cage the high-
est energy and the ring the lowest, while LSD reverses this

ordering. Various GGA functional forms, including BLYP,
were tested, but only PW91, which does satisfy the slowly-
varying constraint, yields the correct energy ordering, at a
level of accuracy comparable to variational Monte Carlo.
Note that the claim by the authors of Ref. [60], that no
GGA works because several GGA forms yielded different an-
swers, is overdrawn.

E. Long-range asymptotics of the hole

We have recently discovered [19] a new exact formula for
the asymptotic behavior of the wavefunction of an atom or
molecule, when one coordinate becomes large, namely

- IN, UN)
= V/n,()/NU P (xq, 09, ..., vy, on){E, 0} (25)

Here ‘Ilg\ﬂ is (typically [19]) a ground-state wavefunction
of the positive ion (assuming the N-electron system is neu-
tral) which remains when one electron has been removed,
and the notation {r,c} indicates a parametric dependence
on the coordinates of the departing electron. If the remain-

lim ¥, (r,o,r2,00,..
r—o00

ing ion is non-degenerate, e.g., for He, then \Ilg\ﬂ becomes
independent of r as 7 — oco. However, in the common case
when the ion is degenerate, e.g., for Ne, Ar, Kr, Xe, which
have non-spherical ions, the ionic wavefunction appearing in
Eq. 25 is oriented relative to the direction of the departing
electron, no matter how far from the nucleus that electron
is.

This long-range correlation effect shows up in both the
first-order density matrix and the exchange-correlation hole
for finite systems [19]. We concentrate here on the
exchange-correlation hole. The general asymptotic form of
the pair density is then

Jim Pa(e,x') =l @) {x} (), (26)
where
APeEr = -1 Y /dST’z .../d?’rN_1
o1 o 2
X \Il()\+)(r’,0',r2,02,...,rN_l,UN_1){f‘,U} ; (27)

i.e., it is the density of the ion with coupling strength A,
oriented along the direction r. (Note that in the case of
a non-degenerate ion, there is no orientation dependence.)
Eq. 26 implies that the pair correlation function, g(r,r’) =
Py(x,r")/n(r)n(x’), does not typically tend to unity in the
limit of large separations, contrary to intuitive expectations
[1]. Only for N — oo, i.e., a solid, will ng\+)(r’){f‘} —
n(r’), the uncorrelated case. In terms of the exchange-
correlation hole density, we find



lim ne,a(r,x') = n{H () {8} — n(x'), (28)
i.e., the hole remaining behind an electron at large distances
is determined by the A-dependent density of the degenerate
ion, oriented relative to the departing electron.

We may also decompose the exchange and correlation
contributions to this hole. At A = 0, the ion density is that
of the Kohn-Sham potential with N — 1 electrons, so Eq.
28 becomes

lim ng(r, ) = —|¢55 (") {r}|?, (29)
r—00
where ¢%2 is the highest-occupied Kohn-Sham orbital, ori-

ented in the general direction r. Thus the contribution of
exchange to the exchange-correlation hole in the asymptotic
limit » — oo will typically be some finite fraction which
varies with r’.

FIG. 8. Full coupling-strength radial exchange-correlation
hole density around an electron at z = 3,5, 0o, plotted along
the direction of the departing electron.

In the case where the degeneracy is due to sym-
metry, symmetry arguments may be used to determine
n()\+)(r’){f'}. For example, the Ne ion has an electron miss-
ing in a 2p orbital. For the ion density appearing in Eq. 28,
the 2p hole points in the direction of the distant electron
[19]. Toillustrate these effects, we plot the radial exchange-
correlation hole density 471'7“/277,)((;‘):1(1‘, r’) in the Ne atom,
for several large values of r, for r || r',and r L r'. In Fig.
8, we look along the direction of departure of the electron.
The hole for r — oo has the shape of the radial density
of a p orbital, oriented along the plot axis. For finite val-
ues of r, we observe a deformation of the hole, since the
remaining electron in the p orbital moves away from the
electron at position r to the other side of the atom. This
deformation occurs even in the exchange (i.e., A = 0) hole.
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FIG. 9. Hartree-Fock radial hole density around an elec-
tron at z = 2, 3, 0o, plotted perpendicular to the direction of
the departing electron.

For any finite value of r, there is a finite probability that
the electron at r is either a 1s or a 2s electron, instead of
a 2p electron, so that the exchange hole is a hybrid be-
tween a hole in an s-shell and a hole in a p-shell [61]. In
Fig. 9, we plot the Hartree-Fock hole perpendicular to the
direction of departure, for several values of the electron po-
sition. The p-orbital hole in the ion density vanishes for all
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FIG. 10. Full coupling-strength radial exchange-correlation
hole density around an electron at z = 2, 3,00, plotted per-
pendicular to the direction of the departing electron.



z’, so, from Eq. 29, the exchange hole also vanishes for all
z’ as r — 0o. However, correlation causes the ion density
to relax as the electron leaves, and the density moves in
toward the nucleus, becoming more compact, to partially
fill the hole left behind. This effect is greatest when the
electron is furthest, i.e., as 7 — co. In Fig. 10, we plot the
full coupling-strength exchange-correlation hole perpendic-
ular to the direction of departure, for the same values of
the electron position. Comparison with Fig. 9 shows that
correlation dominates the shape of this hole.

In the limit r — oo, the LSD hole incorrectly spreads
out over all space, while the SIC and WDA holes behave
[19] exactly or approximately like Eq. 29. The LSD system-
averaged hole decays as the uniform-gas hole decays: both
exchange and correlation decay as u™*, but these long tails
cancel in their sum, to yield an exchange-correlation hole
which vanishes as u~?. This power law decay is quite incor-
rect in a finite system, when compared with the exponential
decay of the hole due to that of n(r). However, the cancel-
lation of exchange and correlation reduces the error due to
this tail, and so accounts, to some extent, for the cancel-
lation of errors between the LSD exchange and correlation
energies. The GGA behavior, on the other hand, provides
an exponential decay for large values of u, because of the
real-space cut-offs [17].

F. Relevance of the exchange-correlation potential

In this subsection, we make a simple and direct con-
nection between point-wise quantities and system-averaged
quantities. In section Il A, we noted several papers which
detail the idiosyncrasies of the approximate exchange-
correlation potentials, and their considerable deviation from
the exact potential. We then showed in section |IB how
system-averaged quantities were much better approximated
by the density functionals. This then raises the question:
can we relate the potentials to some more physically mean-
ingful system-averaged quantities, to see how significant the
LSD and PWO1 errors in the potentials are?

The answer is yes, in a very general way, as has been
discussed before [62,63]. Consider any parameter in the
external potential, called y. For definiteness, we choose the
internuclear separation in a diatomic molecule. Then the
exchange-correlation energy depends parametrically on this
quantity. Now imagine making an infinitesimal change in 7.
The differential change in Exc is

- / &3 vyo(r)

i.e., this change is determined by a system-average of
the exchange-correlation potential. Thus one may relate
system-averages of the potential to differential changes in
the energy. Note that, since the particle number does
not change with v, there are no difficulties associated with

dn(r)
dy ’

dExc
dy

(30)
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derivative discontinuities. In the specific case we have cho-
sen, the quantity dEx/dy has direct physical significance,
as it goes into the equation determining the equilibrium
bond length. Note that, within a fully self-consistent cal-
culation, the equilibrium value of the bond length can be
determined directly from the density and external potential
alone, but that approximate functionals are usually tested
on the exact density, to determine their accuracy. Thus
calculations of such quantities might prove very useful in
studying the efficacy of functionals.

We have applied a slight variation of this general idea
to the exchange-correlation potential of the He atom [18].
The virial theorem applied to the Kohn-Sham system yields
[39]:

By (31)

- / dBr n(r) 1 Vo(r)
and

Ec+Te. (32)

= / d®r n(r) v - Vue(r).
Thus, just as in the case of the energy densities, the small-
and large-r behaviors of the potential receive very little
weight in the energy integrals, leading to the dramatic re-
sults of row 6 of Table I. These results indicate that the
potential in PW91 is far better than that of LSD in terms
of energies (and is also the right way up).

III. UNDERSTANDING NONLOCALITY

In this section, we examine the concept of nonlocality, in
the sense of how much error LSD makes. We have seen in
the previous section that LSD is most accurate near u = 0,
and least accurate at large u. Thus the deeper the hole is
at the origin, and therefore, from the sum rule, the shorter
its range in u, the better approximated it should be in LSD.

A. Coupling-constant decomposition

We tested this idea [18] by examining the holes and cor-
responding energies of three different coupling constants:
A = 0 (exchange), A = 1 (full coupling strength), and av-
eraged over A (as in the actual Eyc)). Since the on-top
correlation hole is negative, the shallowest of these holes is
the exchange hole, followed by the coupling-constant aver-
aged hole, and the deepest is the full coupling-strength hole.
This behavior is illustrated for the uniform electron gas in
Fig. 6 of Ref. [18], and these qualitative features should
be shared by the system-averaged holes of most inhomoge-
neous systems. This is borne out by the results of Table
2 of Ref. [18], in which the error in LSD atomic energies,
measured relative to their PW91 counterparts, was tabu-
lated for the energies of the three different holes. This error



is largest for exchange and least for full coupling strength,
and this effect becomes less significant as we approach the
high-density limit. This is consistent with our idea that the
deeper the on-top hole is, the more local is the correspond-

ing energy.
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FIG. 11. Enhancement factor over local exchange,

Fxc(rs, s), for spin-unpolarized systems in the PW91 GGA.
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FIG. 12. Full coupling-strength enhancement factor over
local exchange, Fxc,a=1(rs,s), for spin-unpolarized systems

in the PW91 GGA.

An alternative way to see this effect is to consider the
enhancement factor over local exchange in PW91. We may
write any GGA energy, for spin-unpolarized systems, as
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EGSN = [ nw) ex(r) Prealrais) (39)
where
s = |Vn|/2kpn, (34)
kp = (371'271)1/3 is the Fermi wavevector, and
Pron(res) = (14 1) ol s), (35)

ors

where the differentiation with respect to r; undoes the
coupling-constant integral implicit in Fyxc(rs,s). Eq. 35
at A = 1 was found in Ref. [64], and used to calculate T¢
in Ref. [65]. Then the enhancement factors for exchange,
exchange-correlation, and exchange-correlation at full cou-
pling strength are Fx(s) = Fxcazo(rs,s) = Fxca(rs =
0,s), Fxc(rs,s) = fol dX Fyc\(rs,s), and Fyxcazi(7s, ),
respectively. In Figures 11 and 12 we plot Fyxc(7s,s) and
Fyc azi(rs, s) for PW91. At the LSD level, we would have
Fyca(rs,8) = Fxca(rs,s = 0), i.e., horizontal lines. Since
the full coupling-strength curves change far less as a func-
tion of s, the full coupling-strength functional of Fig. 12 is
more local than its coupling-constant averaged counterpart
of Fig. 11. Furthermore, the greatest nonlocality occurs at
rs = 0, which is the exchange curve. These results further
confirm our intuitive idea that the degree of nonlocality is
strongly related to the spatial extent of the hole.

B. Hybrid functionals

Following the “B3" proposal of Becke [30], several
schemes for mixing Hartree-Fock into density functional
treatments have appeared in the literature [30,31]. To get
the correct energy for the slowly-varying electron gas, this
hybrid functional must simplify to [18]

Fxe = (1 — a)ES9A 4 qpIF 4 pGGA, (36)
This "B1" form has recently been proposed independently
by Becke [66], to reduce the number of empirical parameters
in the original “B3" form.

To determine how much HF is needed, we consider sys-
tems where s is significantly greater than 1, but where GGA
still works reasonably well. In Ref. [18], we examined the
ionization potentials, electron affinities, and electronegativi-
ties of a variety of atoms, as well as the atomization energies
of several closed-shell hydrocarbon molecules. By examin-
ing root-mean-square errors in the energies, we found results
consistent with those of Becke [30], namely that ¢ = 0.2
slightly improved the PW91 results. However, in Table IlI,
we list a variety of root-mean-square energy errors A, for
some other systems, for several values of the mixing parame-
ter a: a = 0 corresponds to no mixing (PW91), a = 0.2 cor-
responds to the amount of mixing recommended by Becke
(B1), @ = 1 corresponds to Hartree-Fock exchange and



TABLE III. Various properties evaluated using the hybrid
functional of Eq. 36. We report root-mean-square errors in
energies A, (in €V) as a function of the mixing parameter a,
and the optimum value of a. The properties and data sets on
which they are evaluated are described in the text. All results
were extracted from Tables V and VII of Ref. [13]. (1 eV =
23.06 kcal/mole.)

cnergy AO A0.2 A1 Amin Amin
X (term-conserving)  0.08  0.11 0.51 0.07 0.03
FEatom (open-shell) 0.19 0.66 4.08 0.02 0.04

PW91 correlation, while A i, is the minimum root-mean-
square error, achieved at @ = ani,. The first row reports the
electronegativity errors calculated over a subset of atoms,
namely those in which the ground-state term of the nega-
tive ion is the same as that of the positive ion [13], the two
ionic configurations differing by (ns)?. Now a = 0 is clearly
better than a = 0.2, and only marginally worse than the
optimum value @ = 0.03. These results are consistent with
the suggestion that local (and semilocal) approximations to
ionization potentials and electron affinities suffer from in-
terterm and interconfigurational errors in their treatment
of exchange [1]. These 12 term-conserving s-process elec-
tronegativities should not suffer from this error, and indeed
need far less mixing with Hartree-Fock. However, this row
also shows that a = 0.2 is not optimal for these processes.

The last row of Table Il lists the error in the atomization
energy of a single hydrocarbon molecule, C5. This molecule
is “abnormal”, in the sense that no single determinant dom-
inates its wavefunction [67]. It has low-lying excited states
close to its ground-state. The HF atomization energy is se-
riously in error [13]. Hence the a = 0.2 error is far greater
than the PW91 (a = 0) error.

Although the adiabatic connection formula of Eq. 8 jus-
tifies a certain amount of Hartree-Fock mixing, there are
situations in which a should vanish. In a spin-restricted de-
scription of the molecule Hy at large bond length (section
IV) the Hartree-Fock or A = 0 hole is equally distributed
over both atoms, and is independent of the electron's posi-
tion. But the hole for any finite A, however small, is entirely
localized on the electron's atom, so no amount of Hartree-
Fock mixing is acceptable in this case.

Thus we have argued that the only hybrid form which is
correct for the slowly-varying densities is that of Eq. 36, with
a value of a between 0 and 0.2. Note that the approxima-
tion @ = 1, which reproduces exact exchange, ignores the
cancellation of nonlocalities between the exchange and cor-
relation energies, and the fourth column of Table Il shows
how poor the latter approximation is.

As discussed in the previous sections, LSD works well,
and GGA does better, by modelling the system-averaged
hole in a way which respects the sum rules, amongst other
things. A much better way to construct a hybrid functional
[54,68] would be to construct a hybrid hole, in which the
small-separation contributions would be modelled in LSD
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(or GGA), which works well here, and the large-separation
contributions would be modelled by some approximation de-
signed to work at large distances, e.g., the random phase
approximation [35], or the correct asymptotic limit [19].

C. Spin decomposition

Another way to separate short- and long-range effects is
via the spin decomposition. We may decompose Eq. 4 by
writing

Py(vo,x'e’) = N(N - 1) Z /d37’3 .../dBT’N
g3,...,ON

2

x[WUa(r,o,r', 0 ... rN,on)| (37)

where o =1 or |, which in turn leads to a spin-decomposed
hole:
Py(ro,xr'c’) = ny(r) (nal(r/) + nxe,(ro, r’a’)),

(38)

where n,(r) is the density of spin ¢, and to a spin-
decomposed energy:

oo 1 Py(ro,v'c) — n,(r)n,(r'
EX’C’A:§/d37’ /d3r’ ( |2‘—r’|() ( ),
P o/ _ . /
E;T(}:,x:/d?’r /d?’r' e ]2 |i)_ rT,T(l)nl(r). (39)

Note that both antiparallel holes (1| and |1) give the same
contribution to the energy, and are conventionally added
together into one antiparallel contribution, E)T(éA as defined
here.

We focus on the correlation energy only, as all the ex-
change energy is in the parallel-spin channels. Before we
consider the question of locality of the different spin con-
tributions, we first note that, contrary to assumptions in
the literature [69,70], while the antiparallel contribution is
typically most of the correlation energy, the parallel contri-
bution is often not negligible. For spin-unpolarized systems,
if N = 2, allthe correlation is antiparallel, while for N — oo
in the uniform gas, only 60% is antiparallel. As far as we
know, all other spin-unpolarized systems fall between these
two extremes. As we report below, for Ne, a full 24% of the
correlation energy is in the parallel-spin channels.

We now consider the locality of the antiparallel-spin con-
tribution to the correlation energy, relative to the total cor-
relation energy. The holes corresponding to both these
contributions obey the zero sum rule, Eq. 17. However,
the parallel-spin on-top correlation hole vanishes, suggest-
ing that this hole will extend further out from the electron's
position, and therefore be less well-approximated by LSD.
In Table IV we compare the full correlation energy with just
the antiparallel-spin contribution. We used the approximate



TABLE IV. Errors in LSD correlation energies, relative to
PWO1, for several atoms (%). The results were calculated
from the entries in Table IIT of Ref. [35].

Atom AEc AEN
H 236 0
He 145 58
Li 162 60
N 114 37
Ne 94 42
Ar 85 37
Kr 71 32
Xe 64 30

GGA for antiparallel spin described in Ref. [35], which pre-
dicts that 20% of the correlation energy of Ne is from an-
tiparallel spin. Clearly, the antiparallel contribution is much
more local than the total.

D. Hybrid density functional-wavefunction methods

The results of the previous section suggest that a good
hybrid method might treat antiparallel spin using a GGA,
while using a wavefunction treatment for parallel-spin [54].
Since the parallel-spin hole has no cusp and is of greater
spatial extent, this contribution should be more accesible to
a wavefunction method beginning from one-particle wave
functions, such as ClI.

To test this idea, we performed a Moller-Plesset (MP2)
[71] perturbation calculation for the Ne atom, in which we
spin-decomposed the correlation energy. The details of the
calculation are given in Appendix B. These results are very
close to values which may be extracted from Ref. [72], which
we discovered after completing this work. We chose Ne be-
cause it is well known that MP2 gives an accurate account
of the correlation energy of this atom. The parallel- and
antiparallel-spin contribution to the MP2 correlation energy
(E3) for a number of different gaussian basis sets are given
in Table V. As expected, the MP2 correlation energy is very
close in almost all cases to the correlation energy obtained
from multireference configuration-interaction (Cl) calcula-
tions. We assume that the MP2 spin-decomposed correla-
tion contributions are as close to the spin-decomposed cor-

and

TABLE V. Gaussian basis

spin-decomposed correlation energies (in hartree) for the Ne

sets corresponding

atom.
] or gt gl
Basis set E; Ey ET L gt gpul 2T22
4s2p -0.12204 -0.12390 -0.03127 -0.09263 0.25
3s2pld -0.14852 -0.14892 -0.04231 -0.10661 0.28
5s3pld -0.22420 -0.22795 -0.05998 -0.16797 0.26
1459p4d3 f -0.34936 -0.34556 -0.08297 -0.26258 0.24
1459p4d3 flg -0.35822 -0.35476 -0.08365 -0.27111 0.24
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relation energies of the elaborated Cl calculations as the to-
tal correlation energies are. Comparison of the parallel- and
antiparallel-spin correlation contributions obtained with the
14s9p4d3flg basis set (which gives a Cl correlation energy
close to the exact value of -0.3917 (hartree) [73]) shows
that the parallel-spin contribution is a significant fraction
(24%) of the total correlation energy.

From the last column of the table, we see that the ratio
of the parallel-spin to the total correlation energy is remark-
ably independent of the size of the basis set. Contrary to
expectation, the parallel-spin correlation contribution ap-
pears to be about as difficult to account for within a finite
basis-set approach as the antiparallel-spin correlation. Qur
investigation does not provide a careful study of the basis-
set saturation behavior in MP2 calculations, such as given
in Refs. [74,72,75,33]. However, our results show that, with
small- and moderate-sized basis sets which are sufficiently
flexible for most purposes and computationaly tractable in
calculations on larger systems, there is no evidence that the
parallel-spin correlation contribution converges more rapidly
than the antiparallel-spin contribution. A plausible explana-
tion for this effect is that, for small interelectronic separa-
tions, the wavefunction becomes a function of the separa-
tion, which is difficult to represent in a finite basis-set ap-
proach for either spin channel. The cusp condition of Eq. 19
is a noticeable manifestation of this dependence, but does
not imply that the antiparallel-spin channel is more difficult
to describe with a moderate-sized basis set than the parallel
channel. In fact, in the parallel correlation hole, there is a
higher-order cusp condition, relating the second and third
derivatives with respect to u [76].

It is also clear from Table V that the absolute basis-set
truncation error in Ne is about three times bigger for the
antiparallel-spin correlation energy than for parallel. Thus
the proposed spin-analysis hybrid of Ref. [35] may yet have
some (limited) utility.

IV. ABNORMAL SYSTEMS AND EXTREME
NONLOCALITY

We define a “normal” system as one in which the
hole density at the weakly-interacting end of the coupling-
constant integration is close to that of a single Slater deter-
minant. In such a system, the local and gradient-corrected
holes, evaluated for the exact spin-densities, are nearly ex-
act near the position of the electron they surround. As a
result, the exchange-correlation energy is approximately a
local functional of the exact spin densities. In this section,
we show that accurate on-top hole densities in “abnormal”
systems like stretched H; are found for a quite different
reason: the self-consistent spin magnetization density goes
wrong, in order to make the on-top hole density (and the
associated energy) right [36].

At the equilibrium bond length of Hy, the LSD or GGA

equations have a single self-consistent ground-state solution



with m(r) = 0. But, at a larger internuclear separation,
this solution bifurcates and a second solution of "broken
symmetry” and lower energy appears. In the limit of infi-
nite separation, this second solution describes one hydrogen
atom with an electron of spin up on the left, and another
with an electron of spin down on the right. The molecular
dissociation energies calculated for these two solutions pose
a dilemma: The LSD or GGA energy is nearly exact for the
broken-symmetry solution with qualitatively incorrect spin
densities, and seriously in error if the correct physical spin
symmetry (singlet [77]) is imposed on the spin densities, as
shown in Table 1 of Ref. [36]. (This symmetry- breaking
also occurs in Hartree-Fock theory.)

Evidently, the LSD and GGA approximations are work-
ing, but not in the way the standard spin-density functional
theory would lead us to expect. In Ref. [36], a nearly-exact
alternative theory, to which LSD and GGA are also approxi-
mations, is constructed, which yields an alternative physical
interpretation in the absence of a strong external magnetic
field. In this theory, nq(r) and n|(r) are not the physical
spin densities, but are only intermediate objects (like the
Kohn-Sham orbitals or Fermi surface) used to construct two
physical predictions: the total electron density n(r) from

a(r) = ny(r) 4 ny(r), (40)
and the full-coupling strength on-top electron pair density
Py=1(r,r) from its LSD or GGA approximation

2 (ny (2), my (x); w = 0),

where PP (ny ny;u = 0) is the full coupling-strength on-
top pair density for an electron gas with uniform spin den-
sities ny and nj.

Since (for fixed ny + n)) P (ny,nj;u = 0) is an
even function of ny — n|, this alternative interpretation en-
counters no LSD or GGA spin-symmetry dilemma. In the
separated-atom limit for Ha, it correctly makes Py=;(r,r) =
0 for r in the vicinity of either atom, since (by the Pauli ex-
clusion principle) P2 (ng, ny;u = 0) vanishes when either
ny or nj vanishes.

The two physical interpretations of LSD and GGA are
about equally plausible in a "normal” system. But, espe-
cially in “abnormal” systems, these approximations may be
more faithful to the alternative theory, because of the close
relationship between Py—i(r,r) and the electron-electron
potential energy of Eq. 5. Thus, accurate total energies
are expected to accompany accurate on-top pair densities.
Indeed, the new interpretation helps to explain why LSD
and GGA yield accurate total energies, and why in prac-
tice spin-density functional calculations of the energy are
more accurate than total-density ones even in the absence
of an external magnetic field, where formally n(r) by it-
self suffices. Of course, when there is a strong external
magnetic field coupled to the physical spin magnetization
density m(r), the alternative interpretation (which makes
no prediction for m(r)) is inappropriate.

Pr—i(r,r) = (41)
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APPENDIX A: DETAILS OF CONFIGURATION
INTERACTION (CI) CALCULATIONS.

The wave functions for the Ne and Be atoms which we
used in this work are described in detail in Ref. [19].

The Cl wave function for the He atom was calculated with
the COLUMBUS program system [78,79], which contains a
program for the generation of the one- and two-particle den-
sity matrix of multireference single- and double-excited Cl
wave functions [79]. The gaussian basis set used for this
calculation was an uncontracted 9s4p3d basis, as contained
in the MOLCAS basis set library [80]. The correlation en-
ergy obtained with this basis set was -0.04014 Hartree. To
generate the data used in Figure 2 the gaussian basis set
was further augmented with two f functions with exponents
1.5 and 0.6. The resulting wave function gives a correlation
energy of -0.04101 Hartree.

APPENDIX B: DETAILS OF MP2
CALCULATION OF SPIN-DECOMPOSITION.

The total correlation energy, as obtained from a second-
order Moller-Plesset (MP2) [71] calculation, can easily be
split into parallel- and antiparallel-spin contributions. The
MP2 energy E- is given by [81]

_%Z

ijab

(ij|V1]ab) ((ig|V|ab) — (ij|V |ba))

ea—i—eg—e;—e;

, (BD

where ¢ and j are the indices of the spin orbitals
which are occupied at the Hartree-Fock level, and a
and b are indices of unoccupied spin orbitals.  The
orbitals ¢; are obtained from a Hartree-Fock calcula-
tion and the ¢; denote the orbital energies. The ex-
pectation values (ij|V|ab) are given by (ij|V|ab) =
[ dPrydPr, 30;(1“1)3%(1“1)4(0;'&?)_:;05—30;(1“2)305(1“2)- The
sum in Eq. B1 will now be decomposed into sums over all
possible spin combinations. With this aim in view we split
off the spin component | or | of the spin orbitals and obtain

2= 2 F > D>+ )

Gab  alblilyT  albliljl  alblitil  albTilit
Y+ > (B2)
alblilit  albTiljl



The first two terms on the right hand side of this equation
involve only parallel-spin electrons and therefore give rise to
parallel-spin correlation contributions of the form

S 4 bt = 3 V10 (il 1) = i1V o)

€ €p —€; — €5
ijab at € ) 7

3

(B3)

with

(zy|V|ab) = fdsl'ldSI'z goi(rl)goa(rl)m%(rg)cpb(rg).
The third and fourth terms describe the interaction of elec-
trons with antiparallel spin.
terms is given by

The contribution from these

i3]V |ab)|*

gt =S VIO
€q T €y — € — €

(B4)

D

ijab

Note that the exchange integral (i | j T |V]b 1 a |) vanishes
in this case. The last two terms of Eq. B2 show a spin flip of
the electrons as they are excited from orbital 7 to orbital a
and from orbital 5 to orbital b. This contribution vanishes,
since the Coulomb interaction between the particles does
not cause a spin flip.

The contracted 4s2p, 3s2pld, and 5s3pld basis sets in
Table IV are the double-zeta, double-zeta plus polarization,
and triple-zeta plus polarization basis sets from the TUR-
BOMOLE [82] basis-set library. The Cl calculations with
these gaussian basis-sets were of single-reference single- and
double-excited Cl type. The multireference Cl calculation
for the Ne atom with the uncontracted 14s9p4d3f basis is
described in Ref. [19]. This calculation was repeated with
an additional g function with the exponent 2.88 leading to
the results for the 14s9p4d3flg basis set reported in Table
V.

* To be reprinted in Density Functional Methods in Chem-
istry, eds. B.B. Laird, R. Ross, and T. Ziegler, American
Chemical Society Symposium Series.
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