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Adiabatic connection from accurate wave-function calculations
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An extremely easy method for accurately calculating the adiabatic connection of density functional
theory is presented, and its accuracy tested on both Hooke’s atom and the He atom. The method is
easy because calculations are needed only for different values of parameters in the external
potential, which can be achieved with almost any electronic structure code. Application of the
method to accurate calculations on small systems should lead to benchmark adiabatic connection
curves. ©2000 American Institute of Physid$S0021-960600)30411-1

I. INTRODUCTION mated in such a Kohn—Sham calculation is the exchange—
correlation energyExc[ p], as a functional of théspin den-
Density functional theory has become a popular compusity. A further value of the coupling constant is that, through
tational method in quantum chemistry, because of its abilitthe Hellmann—Feynman theorem, this energy can be written
to handle large molecules accurately but relativelyas an intergal over the purely potential contributith
inexpensively? This success is based on the availability of
reliable accurate approximate functionals, and there is a con- 1
stant need for still further accuracy. The goal of atomization EXC=J dAUyxc(N),  Uxc(\)=(¥TMNV ¥ -U,
energy errors being reliably less than 1 kcal/mol has not yet 0
been achieved. (@)
An important step forward in this search for accuracy
came when Becke mixed a fraction of exact exchange with avhereV,, is the Coulomb interaction between electrows,
generalized gradient approximatig8GA), and reduced er- is the wave function at coupling constaxt and U is the
rors by a factor of 2 or 8.Such hybrid functionals, e.g., Hartree electrostatic energy. This integral is the adiabatic
B3LYP, are now in common use, but their underlying justi- connection formula. Hybrid functionals are based on the fact
fication comes from the adiabatic decomposition of densitythat this integrand, when applied to the exchange—correlation
functional theory. Initially, the mixing parameters used werecontribution to a bond dissociation energy, is oftet well-
determined empirically. Later, it was shown that these paapproximated by GGA's, due to their lack of static
rameters could be derived nonempiricdifand that a single  correlation**? This can be partially corrected for most mol-
universal mixing coefficient(25%) could be rationalized ecules by mixing in a fraction of exact exchange. Construc-
based on the performance of MP theory for molecfilest  tion of functionals based on this insight is often referred to as
recently, new functionals have been proposed which use thige adiabatic connection methGdCM).
adiabatic decomposition in much detail. Thus accurate approximation of this adiabatic connec-
The adiabatic decomposition of an electronic system igion curve is extremely important to further progress in con-
very simple conceptually. Imagine multiplying the electron—struction of approximate functionals, and benchmark cases
electron repulsion by a coupling constant Now imagine for small systems are always of interest and help in this
varying \, while keeping the electron densig(r) fixed.  endeavor. However, this is, in principle, a very demanding
This differs from traditional perturbative methods, e.g.,task. For each value af, one must solve the interacting
Mgller—Plessel, because the external potential must be al-electronic problem many times in order to find the external
tered at each to keep the density fixed. At=1, we have potential which reproduces the=1 density. Alimbladh and
the physical, interacting electronic system. But)ags re-  Pedroz& made early attempts, but not with the accuracy of
duced to zero, keeping the density fixed, the electrons banodern calculations. In the last several years, as the impor-
come those of the noninteracting, Kohn—Sham system, annce of these curves has become apparent, several groups in
the potential morphs into the Kohn—Sham potential. Alldifferent areas have performed adiabatic decomposition cal-
Kohn—Sham DFT calculations are actually performed on thisulations. Hoodet al* have calculated the curve for bulk Si.
noninteracting system, and the physical ground-state energyolonna and Savii have used the slightly different Harris
deduced from it. The adiabatic connection provides a conand Jone¥ decomposition for both the He and Be isoelec-
tinuous connection between the interacting system and itsonic series. Joubert and Srivastdvaave used Hylleras-
Kohn—-Sham analog. type wave functions to calculate these curves for the He iso-
The only part of the total energy which must be approxi-electronic series.
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\ as differences between operators defined on correlated wave
functions and the Kohn—-Sham wave function. Thus the

FIG. 1. ExactUyc()\) curve for thek=1/4 Hooke’s aton(solid line) and  kinetic-correlation energy at is
within the PBE correlation functiondtlashed ling calculated as described

in the text(atomic units. T)(\;[p]:<‘1’}\|?|‘1’)\>_Ts[P]a (6)
while the potential-correlation energy atis

AII these me.thods require soIvmg the mteractmg (_alec- U(”:[p]=)\<\lf"lvee|\1”>—E§[p], 7)
tronic problem with a potential that differs from the original
external potential, e.g.—Z/r for atoms. This typically so that the total correlation energy Xis
makes them difficult to transfer to other systems, radically Ar T 1A A
different from the original one, in which other codes and Eclp]=Uclpl+Tclpl. ®
approximations are being used. In this paper, we show hovt A=1, the system is the true interacting quantum-
to construct the adiabatic connection formula for any atommechanical system, and energies without superscripts refer to
accurately by doing calculations simply for different valuesh =1, e.g.,Exc=Exc"*, where the XC subscript implies the
of Z, so that no modification need be made to an existingsum of the exchange and correlation energies.
wave-function code. A standard calculation is simply run for  All quantities at coupling constants different from one
several different nuclear charges, running from the physicahre simply related to their full coupling strength counterparts,
value up toZ=c. The main focus of this paper is to dem- but evaluated on a scaled densfiyThe most important ex-
onstrate the accuracy of the method. The solid line in Fig. Jamples are the wave function
is an essentially exact curve faryc(\) for Hooke’s atom WM = 9
(two electrons in a harmonic potendialor a spring constant [p1=¥ilpinl ©)
of k=1/4 (atomic unit3, calculated from a series of exact and any exchange or correlation energies:
calculations for force constants greater than 1/4, but never _, )
requiring any calculation with a different external potential. ~ ExclP]1=AExclpinl, (10
The method can be immediately applied to accurate calculayhere p(r)= Yep(yr), and W o(ryeeTy)
tions for larger atoms, and is currently being explored for= y3/2q;7(7r1...er)_ Thus knowledge of how a quantity
molecules. varies as the density is scaled implies knowledge of its cou-
The paper is divided into several sections. In the neXpling constant dependence. These relations are trivial for en-

section, we outline the basic theory behind our calculationsergies evaluated on the Kohn—Sham wave function, since it
Following that, we present results, both using the exact funcis independent of the coupling constaft:

tional, and within a GGA, for both Hooke’s atom and the He \ ,

atom. Hooke’s atom consists of two electrons attached by TslP]1=Tdlp] or Tdp,]=y"Tdp], (11
springs to a center, but interacting via a Coulomb repulsionyhe Hartree electrostatic energy

We summarize our findings in the last section. Atomic units

(e2=fi=m,=1) are used throughout, and only spin-  Upl=AU[p] or U[p,]=~U[p], (12)

unpolarized systems are discussed. and the exchange energy

EXp]1=NEx[p] or Ex[p,]=vEx[p]. (13

Correlation is more sophisticated. Note, however, that
knowledge of any quantitygc[p, ], Tc[p,l, orUc[p,] as a

For convenience, we begin with a review of the adiabaticfunction of y for y between 1 ane, i.e., scaling to the high
connection formalism. We defin@*[p] to be that wave density limit, is sufficient to determine the adiabatic connec-

Il. THEORY

A. Formally exact results

function which has densitg(r) and minimizes tion for any of them, foiA between 0 and 1. The most well-
\ A - known relation is to extract the kinetic-correlation piece
F [\P]:<\P|T+)\Veel\lr> (2) from Ec[p]:IB

In particular, ¥~ p] is the noninteracting Kohn—Sham dEd[p.]
wave function, which we assume is a single Slater determi- T [p]=— Ec[P]JF#
nant. The noninteracting kinetic energy is dy y=1

(14
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To generalize this result tp,,, apply Eq.(14) to p,, and  must first choose a criterion for determiningin fact, either
make a change of variables in the derivative, to find of Egs.(11) and (12) could be used, since both would be
satisfied exactly ifo’ were truly a scaled density. For defi-

Tclpl=—Eclp,]+ ydEg—[;Jy]_ (15) niteness, we choose
This can be considered a first-order differential equatiof in A=1y=UlplUlp"). 22
for Ec[p,]. Solution of this equation yields We can then consideEc[p’|~Ec[p,], Tclp'1=Tclp,l,
4 etc., which we call the bare estimates. As we shall show in
Eclp,]=— ),f —Iszc[Py']: (16)  theresults section, these energies usually yield quite accurate
approximations to the exact quantities. However, since we

are not working with the true scaled density, these energies

where we have used the fact thag[ p,] has vanished as i , , . i Al
do not satisfy the relations involving scaling derivatives

y—02° Via Eq. (10), these can be turned into coupling-

constant relationsee Eq(5) of Ref. 20 above, such as Eq16). _
N To make a better estimate, we note that, in the case of
TAoEM )\ dEc 1 the correlation energy, we can calculate the leading correc-
c—=c d\ 17) tion to Ec[p,], using the correlation potential. This can be

constructed by finding the exact Kohn—Sham potential which
generates the density, and subtracting from it the external,

\ NAN Hartree, and exchange contributions. Then,
Er=—\ J TS . (18)

and

E ~Ec[p’ +f d3r "1(r N—p'(r
Similarly, we can extract)c from E¢[p,], sinceUc=Ec clpyl=Eclr’] vel P I (py(r)=p (1)

—T¢. Thus Eq.(15) leads td°

+0(8p)2. (23
Uclp,]=2Eclp.]— YM (19)  As will be shown below, inclusion of this correction leads to
7 7 dy extremely accurate adiabatic connection curves. We generate
which, inverted, is Tclp,] using Eq.(16), and therldc=Ec—Tc. In particular,
v’ asy—1, p’'—p, and Eq.(23) becomes exact to first order in
Ec[Py]:Yzf ?’ Udlp, 1. (20) the difference betweep’ and p. Thus Eq.(14) is satisfied
y Y exactly.

Lastly, we apply the same principles 1@, as a test of
the closeness of the approximate densjy, The Euler
equation for the Kohn—Sham system says that

Combining Eqgs(19) and(16) then leads to simple relations
betweenU. and T . Lastly, the coupling-constant relation
that follows from Eq.(20), by applying Eq.(10) to E¢ and

Voo oTs N (24
— 5 —vd(D),
- fld)\ o . sp(n) S
clp]= o A clpl @) where u is a constant, andg(r) is the Kohn—Sham poten-

andUXC()\)=U§<C/)\ of Fig. 1 is just the integrand when this tial. Thus, we can also correct the barg estimate, to

expression is applied to both exchange and correlation. Thus, , 3 , ,
the above reasoning may be considered a derivation of Eq. 'sLPy]=Tdp ]_f d°rodp’1(r)(py(r)—p'(r))
(1). We emphasize that all these relations follow from the 5
well-known Egs.(10) and(14), and Refs. 21 and 22 provide +0(6p)*. (25
useful reviews.
Ill. RESULTS

B. Highly accurate approximations We present results for two systems, Hooke’s atom and
We begin this section by noting how, when some param{he He atom. Hooke'’s atom contains two electrons in a har-

eter in an external potential is altered, the density changg®onic potential, interacting via a Coulomb repulsion:
scale, but often does not change shape very much. For ex- 1
ample, for the two-electron ion, going fro@=2 to Z=4 H=-— E{Ver Va+ TR
will roughly multiply the density by 8, and reduce its length roe
scale by a factor of 2. We use this fact to very accuratelyand provides a valid test case for density functional theory,
approximate scaling the density. Then, through the relationbecause of the Coulomb repulsion between electrons. It is
derived above, we can convert this into the coupling-constardlso an easy system to perform calculations on, because the
dependence. center-of-mass and relative coordinates separate, leaving
Let p(r) be the density of the system we are interesteconly a one-dimension differential equation to solve
in. Suppose we alter some parameter in the external potemumerically?® Even this equation has an analytic solution for
tial, and solve the interacting problem, finding some densityforce constank= 1/42* which is the system on which we
p'(r). If we want to treap’ as an approximation tp,,, we  will demonstrate most of our results.

1 2 2
+§k(rl+r2), (26)
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FIG. 2. Densities used for=1 [leastp(0)], 0.75, 0.5, 0.25, and Pargest FIG. 4. Correlation energies for the=1/4 Hooke's atom, calculated both
p(0)]. with (solid lineg and without(dashed linesthe correction term.

similarity of densities, as shown in Fig. 2, leading to very
small corrections.

We also tested other possible prescriptions for choosing
'\, such as from the square root of the ratio of noninteracting

To implement our method for the= 1/4 Hooke’s atom,
we run many calculations at different valueskof 1/4, up to
k=108 using the method of Ref. 23. For each calculation

we scale the density so that it looks like the origikal 1/4 kinetic energy densities, as in Bd.1). This gives values for

density, using Eq(22) to define the scale factor. Several
such densities are shown in Fig. 2, which illustrates how)‘ very close to those of Eq12), and leads to no measurable

close these densities are. Note that the largest error is for Cha';?eu'rr; ZUI; fﬁ;‘gg;?ofic}[gim]é it o calelated usin
=0, the noninteracting Gaussian density. 9 9 9. 2, 9

Figure 3 is a plot of the three quantitieS]piy], exact correlation energies and potentials. Based on the re-

Te ). andUcl ).l ound using he POE coreiaton TEINE A0y of g 3, ve i e cures e e
functional. We choose these quantities to plot, as they remai?‘ect'ony's m c.h smaII’er for thege act case th%n for PBE
finite in the range\ =0 to 1. For each quantity, there are two lon 1 u X '

curves. The dashed curve is the bare result of the calculationzérjngglee Srtlq’%etgztia:)haetice&or:/en:)??:? ml 5?53)(16\’;'\'/'6:';&:?“%
at different values of the force constant, i.e., uskjgp’] ' 9-

. . ; curves.

alone. The solid curve foEc[p4, ] includes the correction . .

due to the potential, in accordance with E2@3). TheU and the \s/\t/; aésgfril Ziﬁsﬁalf:gr?t::%gsnfoer L?V\;]ei;ig;nrlf't'\ziﬁ% here
Tc curves are then extracted from this one, using E&S) P Y ge sig y W

. _ _4 . -
and (19). Both the value and first derivative at=1 are find that even as low as=10"", there is a maximum error

exactfor this curve. What is more remarkable is that theseOf only 1 millihartree in the correcteic[py,] curve. Be-

curves coincide essentially exactly with the correct result%fonddth:_sl point, th; ;gl!ablhty of our metlhod .m'ght(g; q]ches-
which we can deduce by directly applying Ed.0) to the loned. However, defining an averagevalue via £q1oa o

PBE correlation energy functional. Careful numerical calcu-zR%f7' Z'Eh at fthrls pr?:pn(rrsm)\f |19, thetrﬁ asd fc::k; 1/t£:1’<rs>rrlsr in
lations indicate that the maximum error in our curve issat ="~ us for co on values of the densily, the errors

=0, and is less than 810~ Hartrees. This is due to the our procedure are minute. .
As a final test of our method, we return to the noninter-

acting kinetic energy. If the scaling were exact, the noninter-
acting kinetic energy would scale quadratically, as in Eq.

01 g (11). In Fig. 5, we pIoth[py]/y2 exactly, approximating
0.05 Tclpy /] Tdp,] by Tdp'], and including the correction of E¢5).
Note that the maximum absolute errorjat 0, is only about
0 —1.6%, in the bare estimate. The correction makes the de-
2 005 Ec[m/,\] rivative with respect to. exact as\ — 1, and overall reduces
g . the error by about a factor of 5, to abou0.3%.
& 01 Finally, we discuss our results for the two-electron ion
series, simply to demonstrate that there is nothing special
015, , . about Hooke’s atom which makes these techniques accurate.
correlation energies for k=1/4 (PBE) . . . .
02 We may make bare estimates of the adiabatic curves directly
02 04 06 08 1 from energy data already in the literature. Thus by calculat-
A ing \ by Eq. (22) using the data in Table | of Ref. 26, and

G 3 Corel or thee 1/ ) culated both assigning to each the barel - value from the table, we find
FIG. 3. Correlation energies for the=1/4 Hooke’s atom, calculated botl ; ; : ; ;
with (solid lineg and without(dashed linesthe correction term, using the the correspondlng adiabatic connection curve Integrates to

PBE correlation functional. The solid lines are indistinguishable from exactEC: —41.5mH, as Cc.)m.pared with an exaCt. value-0f2.1
results, calculated by scaling the PBE correlation functional. mH for He. We can similarly use thg; data in Eq.(16) to
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FIG. 7. Correlation energy for the He atom, calculated both withdis-

FIG. 5. Noninteracting kinetic energy as a function of coupling (:onstant.monds and with (crossesthe correction term.

Exact quantity(solid line) is independent ok. Dashed line is bare estimate
of Tg, the dotted line includes the correction.

Figure 7 repeats Fig. 6, but for the exact case. Here the
corrected curve is much straighter than for PBE, and has no

get an estimate of-41.2 mH, so that the difference between ~- . . .
gninimum. The lines are drawn merely to aid the eye. Note

these two results is a good indicator of the error in both o

) ,1=1i
them. Again, we can calculaf®, and find the largest error th.at. the value ofEg [p]__l'mv—m EC[pv] drops about 1
at \=0, with a value of 2.916, as compared to the exaclmnhhartree, due to the difference in shape between the He
value of 2.867 ' atom and a pure exponential deddare estimate We find

E® = — 47 9 millihartree, in reasonable agreement with the
yalue of Colonna and Savih (~47.5 from Table V), of
poubert and Srivastat/a(—47.2 froma, in Table I), and of
Engel and Dreizléf (—48.2 from Table V. The value
—50.3, reported in Ref. 31, was evaluated on the PBE self-

In Fig. 6, we plot PBE calculations d&¢[ p4, ] for the

He atom, both exactly and using the adiabatic connectio
method described here, both with and without the correctio
term of Eq.(23). We use the highly accurate densities of
Umrigar and Gonzé&’ Unfortunately, not enough data points : _
are available to make smooth plots for this system. AlreadyOnSistent density.

at Z=3X=0.62, so that results for noninteger valuesZof

(betweenZ=2 and 3 are needed. However, enough data islV. CONCLUSIONS AND IMPLICATIONS

present to see the clear correction the potential makes. We  \ye have shown how. with accurate ground-state results

note several interesting features of this curve. First, the desg 3 function of the external potential, an accurate adiabatic

pendence on scaling is much less for He than for khe onnection curve can be calculated for both Hooke'’s atom at
=1/4 Hooke’s atom. Second, the PBE curve contains a minig— 1/4 and the He atom. We see no reason why similar re-

mum, so Eq(15) implies Ec+Tc becomes positive for this  gits could not be obtained for larger atoms, especially those
scaled density. While it has never been rigorously provensyr \which the Kohn—Sham potential has already been

. . 8'28 . .
every known case oEc+Tc is negative.”*® Thus this is  caiculated?? There also exist methods for isolating the cor-
probably a(very slighy limitation of PBE, which does not q|ation potentiaf®

occur in PW91, and may be related to the differencesat In the event that the exchange contribution cannot be

=p in Fig. _7 of Ref. 29. Thi(d, the potential correction BVeN gasily isolated, the scheme can still be applied, but now to
picks up this feature, and still only has errors of a fraction ofine combined exchange—correlation energy at each value of

a millihartree. the external parameter. The correction is now evaluated us-
ing the exchange—correlation potential. On Hooke's atom,
0041 this yields results almost as accurate as those descriped for
o 0a|correlation energy for He atom (PBE) ) the correlation energy alone. Important differences are in the
0.042 regime\—0, as here the exchange contribution to the cor-
-0.043 rection blows up, since/=1/\—o. This effect causes no-
0044 ticeable errors only fok <0.2 inE¢[ pq, ], but not inU or
S 0045 exact Tc. It also means that neithéi[p] or T¢[p], as derived
= 0046 o from the resultingEc[ p,] curve via Egs(19) and(15), is
M -0.047 exact ath = 1. However, these differences are of the order of
008l o . 0.1 millihartree. _
R © bare estimate Our method should work well for any system for which
'0‘0490 02 04 06 08 1 sufficiently accurate wave-function calculations are possible,
A and whose Kohn—-Sham wave function is nondegenerate. We

_ - are currently investigating if this method can be used to cal-
FIG. 6. Correlation energy for the He atom, calculated both withidid- ¢ 1at6 accurate adiabatic connection curves for other sys-
monds and with (crosses the correction term, using the PBE correlation . . .
functional. The solid line is the exact result, calculated by scaling the PBE€MS. Of pamCUI_ar 'Qte_reSt would be_a Calcu_la“()n fora Iarge
correlation functional. Z four-electron ior?* since the noninteracting hydrogenic
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