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Adiabatic connection from accurate wave-function calculations
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An extremely easy method for accurately calculating the adiabatic connection of density functional
theory is presented, and its accuracy tested on both Hooke’s atom and the He atom. The method is
easy because calculations are needed only for different values of parameters in the external
potential, which can be achieved with almost any electronic structure code. Application of the
method to accurate calculations on small systems should lead to benchmark adiabatic connection
curves. © 2000 American Institute of Physics.@S0021-9606~00!30411-1#
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I. INTRODUCTION

Density functional theory has become a popular com
tational method in quantum chemistry, because of its ab
to handle large molecules accurately but relativ
inexpensively.1,2 This success is based on the availability
reliable accurate approximate functionals, and there is a c
stant need for still further accuracy. The goal of atomizat
energy errors being reliably less than 1 kcal/mol has not
been achieved.

An important step forward in this search for accura
came when Becke mixed a fraction of exact exchange wi
generalized gradient approximation~GGA!, and reduced er-
rors by a factor of 2 or 3.3 Such hybrid functionals, e.g.
B3LYP, are now in common use, but their underlying jus
fication comes from the adiabatic decomposition of den
functional theory. Initially, the mixing parameters used we
determined empirically. Later, it was shown that these
rameters could be derived nonempirically,4,5 and that a single
universal mixing coefficient~25%! could be rationalized
based on the performance of MP theory for molecules.6 Most
recently, new functionals have been proposed which use
adiabatic decomposition in much detail.7

The adiabatic decomposition of an electronic system
very simple conceptually. Imagine multiplying the electron
electron repulsion by a coupling constantl. Now imagine
varying l, while keeping the electron densityr(r ) fixed.
This differs from traditional perturbative methods, e.
Møller–Plesset,8 because the external potential must be
tered at eachl to keep the density fixed. Atl51, we have
the physical, interacting electronic system. But asl is re-
duced to zero, keeping the density fixed, the electrons
come those of the noninteracting, Kohn–Sham system,
the potential morphs into the Kohn–Sham potential.
Kohn–Sham DFT calculations are actually performed on
noninteracting system, and the physical ground-state en
deduced from it. The adiabatic connection provides a c
tinuous connection between the interacting system and
Kohn–Sham analog.

The only part of the total energy which must be appro
5290021-9606/2000/112(12)/5292/6/$17.00
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mated in such a Kohn–Sham calculation is the exchan
correlation energy,EXC@r#, as a functional of the~spin! den-
sity. A further value of the coupling constant is that, throu
the Hellmann–Feynman theorem, this energy can be wri
as an intergal over the purely potential contribution9,10

EXC5E
0

1

dlUXC~l!, UXC~l!5^CluV̂eeuCl&2U,

~1!

whereV̂ee is the Coulomb interaction between electrons,Cl

is the wave function at coupling constantl, and U is the
Hartree electrostatic energy. This integral is the adiab
connection formula. Hybrid functionals are based on the f
that this integrand, when applied to the exchange–correla
contribution to a bond dissociation energy, is oftennot well-
approximated by GGA’s, due to their lack of stat
correlation.11,12This can be partially corrected for most mo
ecules by mixing in a fraction of exact exchange. Constr
tion of functionals based on this insight is often referred to
the adiabatic connection method~ACM!.

Thus accurate approximation of this adiabatic conn
tion curve is extremely important to further progress in co
struction of approximate functionals, and benchmark ca
for small systems are always of interest and help in t
endeavor. However, this is, in principle, a very demand
task. For each value ofl, one must solve the interactin
electronic problem many times in order to find the exter
potential which reproduces thel51 density. Almbladh and
Pedroza13 made early attempts, but not with the accuracy
modern calculations. In the last several years, as the im
tance of these curves has become apparent, several grou
different areas have performed adiabatic decomposition
culations. Hoodet al.14 have calculated the curve for bulk S
Colonna and Savin15 have used the slightly different Harri
and Jones16 decomposition for both the He and Be isoele
tronic series. Joubert and Srivastava17 have used Hylleras-
type wave functions to calculate these curves for the He
electronic series.
2 © 2000 American Institute of Physics
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All these methods require solving the interacting ele
tronic problem with a potential that differs from the origin
external potential, e.g.,2Z/r for atoms. This typically
makes them difficult to transfer to other systems, radica
different from the original one, in which other codes a
approximations are being used. In this paper, we show h
to construct the adiabatic connection formula for any at
accurately by doing calculations simply for different valu
of Z, so that no modification need be made to an exist
wave-function code. A standard calculation is simply run
several different nuclear charges, running from the phys
value up toZ5`. The main focus of this paper is to dem
onstrate the accuracy of the method. The solid line in Fig
is an essentially exact curve forUXC(l) for Hooke’s atom
~two electrons in a harmonic potential!, for a spring constan
of k51/4 ~atomic units!, calculated from a series of exa
calculations for force constants greater than 1/4, but ne
requiring any calculation with a different external potenti
The method can be immediately applied to accurate calc
tions for larger atoms, and is currently being explored
molecules.

The paper is divided into several sections. In the n
section, we outline the basic theory behind our calculatio
Following that, we present results, both using the exact fu
tional, and within a GGA, for both Hooke’s atom and the H
atom. Hooke’s atom consists of two electrons attached
springs to a center, but interacting via a Coulomb repuls
We summarize our findings in the last section. Atomic un
(e25\5me51) are used throughout, and only spi
unpolarized systems are discussed.

II. THEORY

A. Formally exact results

For convenience, we begin with a review of the adiaba
connection formalism. We defineCl@r# to be that wave
function which has densityr(r ) and minimizes

Fl@C#5^CuT̂1lV̂eeuC&. ~2!

In particular, Cl50@r# is the noninteracting Kohn–Sham
wave function, which we assume is a single Slater deter
nant. The noninteracting kinetic energy is

FIG. 1. ExactUXC(l) curve for thek51/4 Hooke’s atom~solid line! and
within the PBE correlation functional~dashed line!, calculated as describe
in the text~atomic units!.
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TS@r#5^Cl50uT̂uCl50&, ~3!

the Hartree electrostatic energy,

U@r#5
1

2 E d3r E d3r 8
r~r !r~r 8!

ur2r 8u
, ~4!

and the exchange energy at coupling constantl is

EX
l@r#5l^Cl50uV̂eeuCl50&2lU@r#. ~5!

In density functional theory, correlation energies are defin
as differences between operators defined on correlated w
functions and the Kohn–Sham wave function. Thus
kinetic-correlation energy atl is

TC
l @r#5^CluT̂uCl&2TS@r#, ~6!

while the potential-correlation energy atl is

UC
l @r#5l^CluV̂eeuCl&2EX

l@r#, ~7!

so that the total correlation energy atl is

EC
l @r#5UC

l @r#1TC
l @r#. ~8!

At l51, the system is the true interacting quantu
mechanical system, and energies without superscripts ref
l51, e.g.,EXC5EXC

l51, where the XC subscript implies th
sum of the exchange and correlation energies.

All quantities at coupling constants different from on
are simply related to their full coupling strength counterpa
but evaluated on a scaled density.18 The most important ex-
amples are the wave function

Cl@r#5Cl@r1/l# ~9!

and any exchange or correlation energies:

EXC
l @r#5l2EXC@r1/l#, ~10!

where rg(r )5g3r(gr ), and Cg(r1¯rN)
5g3/2Cg(gr1¯grN). Thus knowledge of how a quantit
varies as the density is scaled implies knowledge of its c
pling constant dependence. These relations are trivial for
ergies evaluated on the Kohn–Sham wave function, sinc
is independent of the coupling constant:18

TS
l@r#5TS@r# or TS@rg#5g2TS@r#, ~11!

the Hartree electrostatic energy

Ul@r#5lU@r# or U@rg#5gU@r#, ~12!

and the exchange energy

EX
l@r#5lEX@r# or EX@rg#5gEX@r#. ~13!

Correlation is more sophisticated. Note, however, t
knowledge of any quantity,EC@rg#, TC@rg#, or UC@rg# as a
function ofg for g between 1 and̀ , i.e., scaling to the high
density limit, is sufficient to determine the adiabatic conne
tion for any of them, forl between 0 and 1. The most wel
known relation is to extract the kinetic-correlation pie
from EC@r#:18

TC@r#52EC@r#1
dEC@rg#

dg U
g51

. ~14!
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To generalize this result torg , apply Eq.~14! to rg , and
make a change of variables in the derivative, to find

TC@r#52EC@rg#1g
dEC@rg#

dg
. ~15!

This can be considered a first-order differential equation ig
for EC@rg#. Solution of this equation yields

EC@rg#52gE
g

` dg8

g82 TC@rg8#, ~16!

where we have used the fact thatEC@rg# has vanished as
g→0.19 Via Eq. ~10!, these can be turned into coupling
constant relations@see Eq.~5! of Ref. 20#:

TC
l 5EC

l 2l
dEC

l

dl
~17!

and

EC
l 52lE

0

l dl8

l82 TC
l8 . ~18!

Similarly, we can extractUC from EC@rg#, sinceUC5EC

2TC . Thus Eq.~15! leads to19

UC@rg#52EC@rg#2g
dEC@rg#

dg
~19!

which, inverted, is

EC@rg#5g2E
g

` dg8

g83 UC@rg8#. ~20!

Combining Eqs.~19! and~16! then leads to simple relation
betweenUC and TC . Lastly, the coupling-constant relatio
that follows from Eq.~20!, by applying Eq.~10! to EC and
UC , is

EC@r#5E
0

1 dl

l
UC

l @r#, ~21!

andUXC(l)5UXC
l /l of Fig. 1 is just the integrand when thi

expression is applied to both exchange and correlation. T
the above reasoning may be considered a derivation of
~1!. We emphasize that all these relations follow from t
well-known Eqs.~10! and~14!, and Refs. 21 and 22 provid
useful reviews.

B. Highly accurate approximations

We begin this section by noting how, when some para
eter in an external potential is altered, the density chan
scale, but often does not change shape very much. For
ample, for the two-electron ion, going fromZ52 to Z54
will roughly multiply the density by 8, and reduce its leng
scale by a factor of 2. We use this fact to very accurat
approximate scaling the density. Then, through the relati
derived above, we can convert this into the coupling-cons
dependence.

Let r(r ) be the density of the system we are interes
in. Suppose we alter some parameter in the external po
tial, and solve the interacting problem, finding some den
r8(r ). If we want to treatr8 as an approximation torg , we
s,
q.

-
es
x-

y
s

nt

d
n-
y

must first choose a criterion for determiningg. In fact, either
of Eqs. ~11! and ~12! could be used, since both would b
satisfied exactly ifr8 were truly a scaled density. For defi
niteness, we choose

l51/g5U@r#/U@r8#. ~22!

We can then considerEC@r8#'EC@rg#, TC@r8#'TC@rg#,
etc., which we call the bare estimates. As we shall show
the results section, these energies usually yield quite accu
approximations to the exact quantities. However, since
are not working with the true scaled density, these energ
do not satisfy the relations involving scaling derivativ
above, such as Eq.~16!.

To make a better estimate, we note that, in the case
the correlation energy, we can calculate the leading cor
tion to EC@rg#, using the correlation potential. This can b
constructed by finding the exact Kohn–Sham potential wh
generates the density, and subtracting from it the exter
Hartree, and exchange contributions. Then,

EC@rg#'EC@r8#1E d3r vC@r8#~r !~rg~r !2r8~r !!

1O~dr!2. ~23!

As will be shown below, inclusion of this correction leads
extremely accurate adiabatic connection curves. We gene
TC@rg# using Eq.~16!, and thenUC5EC2TC . In particular,
asg→1, r8→r, and Eq.~23! becomes exact to first order i
the difference betweenr8 and r. Thus Eq.~14! is satisfied
exactly.

Lastly, we apply the same principles toTS , as a test of
the closeness of the approximate density,r8. The Euler
equation for the Kohn–Sham system says that

dTS

dr~r !
5m2vS~r !, ~24!

wherem is a constant, andvS(r ) is the Kohn–Sham poten
tial. Thus, we can also correct the bareTS estimate, to

TS@rg#5TS@r8#2E d3r vS@r8#~r !~rg~r !2r8~r !!

1O~dr!2. ~25!

III. RESULTS

We present results for two systems, Hooke’s atom a
the He atom. Hooke’s atom contains two electrons in a h
monic potential, interacting via a Coulomb repulsion:

Ĥ52
1

2
$“1

21“2
2%1

1

ur12r2u
1

1

2
k~r1

21r2
2!, ~26!

and provides a valid test case for density functional theo
because of the Coulomb repulsion between electrons.
also an easy system to perform calculations on, because
center-of-mass and relative coordinates separate, lea
only a one-dimension differential equation to sol
numerically.23 Even this equation has an analytic solution f
force constantk51/4,24 which is the system on which we
will demonstrate most of our results.
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To implement our method for thek51/4 Hooke’s atom,
we run many calculations at different values ofk.1/4, up to
k510,6 using the method of Ref. 23. For each calculatio
we scale the density so that it looks like the originalk51/4
density, using Eq.~22! to define the scale factor. Sever
such densities are shown in Fig. 2, which illustrates h
close these densities are. Note that the largest error is fl
50, the noninteracting Gaussian density.

Figure 3 is a plot of the three quantitiesEC@r1/l#,
TC@r1/l#, andUC@r1/l#, all found using the PBE correlatio
functional. We choose these quantities to plot, as they rem
finite in the rangel50 to 1. For each quantity, there are tw
curves. The dashed curve is the bare result of the calculat
at different values of the force constant, i.e., usingE@r8#
alone. The solid curve forEC@r1/l# includes the correction
due to the potential, in accordance with Eq.~23!. TheUC and
TC curves are then extracted from this one, using Eqs.~15!
and ~19!. Both the value and first derivative atl51 are
exact for this curve. What is more remarkable is that the
curves coincide essentially exactly with the correct res
which we can deduce by directly applying Eq.~10! to the
PBE correlation energy functional. Careful numerical calc
lations indicate that the maximum error in our curve is al
50, and is less than 331024 Hartrees. This is due to th

FIG. 2. Densities used forl51 @leastr(0)#, 0.75, 0.5, 0.25, and 0@largest
r(0)#.

FIG. 3. Correlation energies for thek51/4 Hooke’s atom, calculated bot
with ~solid lines! and without~dashed lines! the correction term, using the
PBE correlation functional. The solid lines are indistinguishable from ex
results, calculated by scaling the PBE correlation functional.
,
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similarity of densities, as shown in Fig. 2, leading to ve
small corrections.

We also tested other possible prescriptions for choos
l, such as from the square root of the ratio of noninteract
kinetic energy densities, as in Eq.~11!. This gives values for
l very close to those of Eq.~12!, and leads to no measurab
change in our estimate forEC@r1/l#.

Figure 4 is the analog of Fig. 3, but now calculated us
exact correlation energies and potentials. Based on the
markable accuracy of Fig. 3, we claim these curves are
sentially exact. In fact, the change due to the potential c
rection is much smaller for the exact case than for PB
suggesting that the error made in Eq.~23! will also be
smaller. The adiabatic curve of Fig. 1 was derived from th
curves.

We also ran PBE calculations for lower densities, whe
the shape of the density can change significantly withk. We
find that even as low ask51024, there is a maximum erro
of only 1 millihartree in the correctedEC@r1/l# curve. Be-
yond this point, the reliability of our method might be que
tioned. However, defining an averager s value via Eq.~6a! of
Ref. 25, at this point̂ r s&519, whereas fork51/4,̂ r s& is
2.07. Thus for common values of the density, the errors
our procedure are minute.

As a final test of our method, we return to the noninte
acting kinetic energy. If the scaling were exact, the nonint
acting kinetic energy would scale quadratically, as in E
~11!. In Fig. 5, we plotTS@rg#/g2 exactly, approximating
TS@rg# by TS@r8#, and including the correction of Eq.~25!.
Note that the maximum absolute error, atl50, is only about
21.6%, in the bare estimate. The correction makes the
rivative with respect tol exact asl→1, and overall reduces
the error by about a factor of 5, to about20.3%.

Finally, we discuss our results for the two-electron i
series, simply to demonstrate that there is nothing spe
about Hooke’s atom which makes these techniques accu
We may make bare estimates of the adiabatic curves dire
from energy data already in the literature. Thus by calcu
ing l by Eq. ~22! using the data in Table I of Ref. 26, an
assigning to eachl the bareUC value from the table, we find
the corresponding adiabatic connection curve integrate
EC5241.5 mH, as compared with an exact value of242.1
mH for He. We can similarly use theTC data in Eq.~16! to
t

FIG. 4. Correlation energies for thek51/4 Hooke’s atom, calculated both
with ~solid lines! and without~dashed lines! the correction term.
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get an estimate of241.2 mH, so that the difference betwee
these two results is a good indicator of the error in both
them. Again, we can calculateTS

l , and find the largest erro
at l50, with a value of 2.916, as compared to the ex
value of 2.867.

In Fig. 6, we plot PBE calculations ofEC@r1/l# for the
He atom, both exactly and using the adiabatic connec
method described here, both with and without the correc
term of Eq. ~23!. We use the highly accurate densities
Umrigar and Gonze.27 Unfortunately, not enough data poin
are available to make smooth plots for this system. Alrea
at Z53,l50.62, so that results for noninteger values ofZ
~betweenZ52 and 3! are needed. However, enough data
present to see the clear correction the potential makes.
note several interesting features of this curve. First, the
pendence on scaling is much less for He than for thek
51/4 Hooke’s atom. Second, the PBE curve contains a m
mum, so Eq.~15! implies EC1TC becomes positive for this
scaled density. While it has never been rigorously prov
every known case ofEC1TC is negative.18,28 Thus this is
probably a~very slight! limitation of PBE, which does no
occur in PW91, and may be related to the difference ar s

50 in Fig. 7 of Ref. 29. Third, the potential correction ev
picks up this feature, and still only has errors of a fraction
a millihartree.

FIG. 5. Noninteracting kinetic energy as a function of coupling consta
Exact quantity~solid line! is independent ofl. Dashed line is bare estimat
of TS , the dotted line includes the correction.

FIG. 6. Correlation energy for the He atom, calculated both without~dia-
monds! and with ~crosses! the correction term, using the PBE correlatio
functional. The solid line is the exact result, calculated by scaling the P
correlation functional.
f

t

n
n

f

y

e
e-
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,

f

Figure 7 repeats Fig. 6, but for the exact case. Here
corrected curve is much straighter than for PBE, and has
minimum. The lines are drawn merely to aid the eye. N
that the value ofEC

(2)@r#5 limg→` EC@rg# drops about 1
millihartree, due to the difference in shape between the
atom and a pure exponential decay~bare estimate!. We find
EC

(2)5247.9 millihartree, in reasonable agreement with t
value of Colonna and Savin15 ~247.5 from Table VI!, of
Joubert and Srivastava17 ~247.2 fromap in Table II!, and of
Engel and Dreizler30 ~248.2 from Table V!. The value
250.3, reported in Ref. 31, was evaluated on the PBE s
consistent density.

IV. CONCLUSIONS AND IMPLICATIONS

We have shown how, with accurate ground-state res
as a function of the external potential, an accurate adiab
connection curve can be calculated for both Hooke’s atom
k51/4 and the He atom. We see no reason why similar
sults could not be obtained for larger atoms, especially th
for which the Kohn–Sham potential has already be
calculated.32 There also exist methods for isolating the co
relation potential.33

In the event that the exchange contribution cannot
easily isolated, the scheme can still be applied, but now
the combined exchange–correlation energy at each valu
the external parameter. The correction is now evaluated
ing the exchange–correlation potential. On Hooke’s ato
this yields results almost as accurate as those describe
the correlation energy alone. Important differences are in
regimel→0, as here the exchange contribution to the c
rection blows up, sinceg51/l→`. This effect causes no
ticeable errors only forl,0.2 in EC@r1/l#, but not inUC or
TC . It also means that neitherUC@r# or TC@r#, as derived
from the resultingEC@rg# curve via Eqs.~19! and ~15!, is
exact atl51. However, these differences are of the order
0.1 millihartree.

Our method should work well for any system for whic
sufficiently accurate wave-function calculations are possib
and whose Kohn–Sham wave function is nondegenerate.
are currently investigating if this method can be used to c
culate accurate adiabatic connection curves for other
tems. Of particular interest would be a calculation for a lar
Z four-electron ion,34 since the noninteracting hydrogen

t.

E

FIG. 7. Correlation energy for the He atom, calculated both without~dia-
monds! and with ~crosses! the correction term.
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limit is degenerate in this case.35 Also of great interest are
adiabatic connection curves for the binding energies
molecules,12 in which static correlation effects can be see
and for which hybrid functionals can be justified.4,6 Due to
the increased number of degrees of freedom, further inve
gation will be needed to determine the best procedure
approximating the scaled density in these cases.
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