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Can optimized effective potentials be determined uniquely?
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Local (multiplicative) effective exchange potentials obtained from the linear-combination-
of-atomic-orbital(LCAO) optimized effective potentidlOEP method are frequently unrealistic in

that they tend to exhibit wrong asymptotic behavi@ithough formally they should have the correct
asymptotic behavigrand also assume unphysical rapid oscillations around the nuclei. We give an
algebraic proof that, with an infinity of orbitals, the kernel of the OEP integral equation has one and
only one singularity associated with a constant and hence the OEP method determines a local
exchange potential uniquely, provided that we impose some appropriate boundary condition upon
the exchange potential. When the number of orbitals is finite, however, the OEP integral equation is
ill-posed in that it has an infinite number of solutions. We circumvent this problem by projecting the
equation and the exchange potential upon the function space accessible by the kernel and thereby
making the exchange potential unique. The observed numerical problems are, therefore, primarily
due to the slow convergence of the projected exchange potential with respect to the size of the
expansion basis set for orbitals. Nonetheless, by making a judicious choice of the basis sets, we
obtain accurate exchange potentials for atoms and molecules from an LCAO OEP procedure, which
are significant improvements over local or gradient-corrected exchange functionals or the Slater
potential. The Krieger—Li—lafrate scheme offers better approximations to the OEP method.
© 2001 American Institute of Physic§DOI: 10.1063/1.138101]3

I. INTRODUCTION and visualized, will be instrumental in developing accurate
and systematically improvable exchange functionals. This
There has been a resurrected interest in the optimizeghategy may also be extended to correlation functionals by
effective potential (OEP) method'z inconnection with  considering the question of finding energy independent and
Kohn—Sham(KS) density functional theWDFT)-S__S The  |ocal effective potentials associated with some correlation
OEP method, which involves a one-particle equation with anergy expressions established in the wave function
energy-independent and locahultiplicative) effective ex- theory!14-25This constitutes a paradigm o initio den-
change potential in contrast with a non-local Hartree—Focksity functional theory” advocated by one of the authdfs,
(HF) exchange integral operator, is inherently first principles A critical element in performingb initio density func-
in that it invokes an explicitly orbital-dependent EXpress iontional calculations and thereby obtaining accurate and sys-
of the exchange energy and hence offers a way to find ?ematically improvable exchange and correlation potentials

rigorous exchange potential ithin the KS DFT. - . .
flrgme\lljvorkﬁ';( The ?ocal pexch;ngevélot:antial obtained from 'S the ability to carry out the OEP calculations in the standard
' sis sets for quantum chemical applications, primarily

the OEP method possesses many of the analytical features %? ) . . : : ;
the exact KS potentidlIt has the correct-1/r asymptotic aussian basis sets, and this raises the issue of nu_mencal
behavior? cancels exactly the self-interaction contribution to l9°rithms.  Recently, we have developed a linear-
the Hartree potential, exhibits an integer discontifiity ~ combination-of-atomic-orbital(LCAO) algorithm for the
upon addition of an infinitesimal fraction of an electron to OEP calculations of atoms and mo'e_CLﬁéﬂ” the baS'SSlQOf

the highest occupied orbital, obeys the exchange viriaihe finite-basis-set OEP formalism of tiog and Levy.™
theorem213 yields the highest occupied orbital energy thatA closely re_:lgtedszCAO OEP algorithm has also been re-
satisfies Koopmans' theorem, and is exact in thePorted by Galing.~" These LCAO OEP methods permit OEP
homogeneous-electron-gas limit. The local exchange poterfalculations of atoms and molecules on an equal footing to

tials generated from the OEP method, which can be plottethe conventional molecular orbital or density functional cal-

culations, i.e., with conventional Gaussian-type basis sets,
dpermanent address: Institute of Physics, Nicholas Copernicus Universit;E)Ut V.VItth.jt any further approxmatlon_. Thus, they extend the
Toruh, Poland. applicability of the OEP method, which had only been fea-

D Author to whom correspondence should be addressed. sible for spherical (atomig systems with grid-based
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algorithm&82330-40gnd for crystalline solids with plane- sider any correlation treatment, although our analysis may be
wave-based algorithnf$=4® extended to a correlated OEP method straightforwa(ste,
With these LCAO OEP methods, it is in principle pos- however, Ref. 23 for a necessary condition for the existence
sible to extract local exchange potentials and other propertiesf a solution). The OEP equation, which projects a nonlocal
from the OEP calculations of atoms and molecules. HowHF exchange operator onto a variationally optimal local ex-
ever, in the course of doing so, we encountered some nwhange potential, was derived originally by Sharp and
merical problems that appeared to indicate the existence ddortont and by Talman and Shadwicknd rederived from a
either formal or computational problems in the LCAO OEPdifferent viewpoint by Sham and Scidut! and by Guling
method. For instance, the orbital energies directly obtainednd Levy'®!° For theo-spin component of an exchange po-
as the eigenvalues of the effective Fock matrix of the LCAOtential V)?EP(r) (note that the exchange energy is separable
OEP method are excessively displaced from those of the cointo the a- and 8-spin components and so is the exchange
rect OEP orbital energieévhen available The exchange potentia), the equation reads
potentials obtained from the LCAO OEP method are fre-
quently gnreallstl_c in that they tend to exhibit wrong Xg(rl,rz)VSEP(rz)drz
asymptotic behaviofalthough formally they should have the

correct asymptotic behaviprand also assume unphysical oce virt
rapid oscillations around the nuclei. Within the LCAO -3 (uisliea >z/xi(,(r1)z//a(,(r1) (1)
framework, these unphysical solutions satisfy the OEP equa- 1 T T €iv— €00

tion and self-consistency condition within reasonable nu- ) ) ) )
merical precision. where we designater-spin canonical OEP orbitals by

The purpose of this paper is to disclose and analyzé¥pc(r)}, Which we assume to be real for the sake of sim-
these computational difficulties in the LCAO OEP method.PliCity, o-spin one-electron energies bep,}, and two-
The analysis leads to the title question which we attempt t&!€Ctron integrals in Dirac’s notation,
answer from both formal and computational viewpoints. We<p 9,17 45y
give an algebraic proof that, with an infinity of orbitals, the = * 7 77
k_ernel qf the OE_P integ_ral equatio_n_ has one and only one Yoo (1) Yo (1 2) (1) P (12)
singularity associated with an additive constant and hence = f f =1
the OEP method determines a local exchange potential
uniquely up to a constant. This indeterminacy can be elimiEquation (1) is a Fredholm integral equation of the first
nated readily by imposing some appropriate boundary conkind,?®! and the numerical solution of such equations is
dition on the exchange potential. When the number of orbitnotoriously unstabldsee the next sectignin this section,
als is finite, however, the OEP integral equation is ill-posedve assume that the set of all the orbitals forms the complete
in that it has an infinite number of solutions. We circumventspace, i.e.,
this problem by projecting the equation and the exchange virt
potential upon the function space accessible by the kernel _
and thereby making the exchange potential unique. We as- 2,: Yio(ra) wi”(r2)+§a: Yao(11) hag(ra) = 8(ry=ra).
cribe the observed numerical problems primarily to the slow 3
convergence of the projected exchange potential with respect i i i
to the size of the expansion basis set for orbitals; the basidl (e above equations and in the following, we use the con-
set incompleteness has a much more profound effect on théntion thati,j,k label occupied orbitalsa,b label virtual
LCAO OEP method than on other SCF procedures such a%rbltalg, ancb,q,.r,s label eﬁher. The first factor in the inte-
the HF method. We demonstrate that, despite these compg—rand in Eq.(1) is the o-spin part of the kernel,

drydr,. (2

tational problems, by making a judicious choice of the basis occ virt Ui (F D) B (00 (T 2) ()
sets, we can obtain reasonably accurate exchange potentials X (r,r,)=2>, to} 1 Pach Vel 2/ Vao) 2 ,
for atoms and molecules from the LCAO OEP procedure, Poa €ic™ €ao

which are improvements over the exchange potentials ob- 4)

tained from some local or gradient-corrected functional orfyhich is symmetric and separabldegenerate®®®! We re-
the Slater potential¥, yet are .app{rgosﬁiggilﬁg well by the guire that the exchange potentig=H(r) satisfy Eq.(1) and
Krieger—Li-lafrate(KLI) potentials.®3*% the self-consistency condition between the canonical OEP

orbitals and the exchange potential, i.e.,
Il. FORMAL ASPECT

: ion i 1 p(ra)
Th_e purpose of _th|s section is to prove th_at an exchang%_ §V2+Vext(r1)+ f mdrz"'V%P r1){ Ypo(r)
potential of an atomic or molecular system with a nondegen 1712

erate ground state can pe uniquely determined up tq a con- = eppo(11) (V) (5)
stant by the OEP equation alone. The same conclusion was

drawn earlier by Gding and Levy'® who considered the simultaneously, wher®,,(r) represents an external poten-
same problem from a different perspectigee also Ref. 24 tial, which is typically an attractive potential produced by
for the uniqueness of the OEP orbitalslere we confine our nuclei, andp(r) is the electron density. We may formally
analysis to the exchange-only OEP method and do not consolate the exchange potential by rewriting Et). as
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occ virt

V)C()(Ep(rl):_ziEj g f(ilrj(r“(ra(r)

% lrllia(rZ) lpao'(rZ)

X Y(ry,r,)dr,,
€0 €ng o (rq,rp)dry

(6)

by introducing the inverse of the kern)él;l(rl,rz), which
must satisfy

fX;l(rl,rz)Xo(rz,r3)dr2

=f Xo(r1,2)X (1, r3)dry=38(ry—rs), (7)

although, as we shall show in the following, E¢B). and(7)

Optimized effective potentials 1637

As we can safely assume that the lowest occupied orbital is
nodeless and has a nonvanishing amplitude everywhere, we
then divide both sides of Eq12) by ¢;,(r) to obtain

f(r)=c (constany. (13

More generally,;,(r)f(r) is expressed as a linear combi-
nation of all the occupied orbitals §f;,(r)},

f(r>wig(r>=; Cij¥io(r) (Vi) (14)
with

Cij:f i (DF(r) i (r)dr. (15

are mathematically ill-defined, as the kernel is not invertible As the coefficientsc;;} are symmetric ¢;=c;;), we can

The exchange potential?=(r) as defined by Eq(1)

find a symmetric transformation that brings these coefficients

alone is not necessarily unique, but there can be more thanto a diagonal form,

one such potential that satisfies this equation. This indeter-

minacy arises from the fact that the kerd€)(r,,r,) is sin-

gular and is hence not invertible. We mean by saying that .

X,(rq,ro) is singular that there are such functiofir)}
that satisfy the following condition pointwise:

f Xg(ry,rp)f(rp)dr,=0. (8)

We call the space spanned by all those functifi{s)} that
satisfy the above equation the null spaceXgfr,r,) and a

function that belongs to the null space is a null-space func-

tion. Suppose that we find a particular solutidg,(r) that
satisfies Eq.(1). When X(rq,r,) is singular and there is
such a functionf(r) that satisfies Eq(8), Vx,(r)+f(r) is

another solution of Eq(1). This is readily understood by

substitutingVy,(r) + f(r) into Eq.(1). In the following, we

occ

E ukicij:)\kukj' (16)

Multiplying u,; on both sides of Eq(14) and making the
summation over, we obtain

f(1) o (1) = Nt (1)
with

(Vk), 17

occ

Tﬂkg<r>=; U t;0(1). (18)

Since the transformed occupied orbit@l?ﬁ(,(r)} are nonva-
nishing everywhere except on two-dimensional nodal sur-
faces and an exchange potential is continuous, we can divide

shall demonstrate that,(r,,r,) has one and only one sin- the both sides of Eq(17) by ¥(r) and obtainf(r)
gularity with the associated null-space function being a con== ¢ (constant). Thus, we conclude that an exchange potential
stant, and hence that E@.) alone can uniquely determine an Of the OEP method can be uniquely determined up to an

exchange potential up to an additive constant. From(8y.
we find that any null-space function must satisfy

f f f(r)Xe(ry,ro)f(rp)drydr,=0. ©)
Substituting Eq(4) into Eqg. (9), we obtain
occ virt 2
S S [ rvertedn [ nr)

X hao(r2)f(r)dro=0 (Vi,Va). (10

additive constant from Eq. (1) alone. The sum of any par-
ticular solution of Eq(1) and a constant simultaneously sat-
isfies Eq.(1) and the self-consistency conditi@gb), and is
hence another legitimate solution of an OEP problem. The
additive constant can, however, be eliminated readily by im-
posing some appropriate boundary condition to the exchange
potential, e.g.,

lim VSER(r)=0.

r—o

(19

In this sense, the exchange potentials of the OEP method are
essentially unique. It should be emphasized, however, that

Since the denominatos;,,— €,,, iS negative, it is necessary sinceX,(rq,r») is singular and is not invertibl@lthough the

that

f hio(1) Pao(r)f(r)dr=0 (Vi,Va). (11
Suppose that there is only one occupied orbital,
i o(r)f(r) is orthogonal to all the virtual orbitalsy,,(r)}
and is therefore a multiple af;.(r),

f(r) o (1) =cihig(r). 12

nullity is just ong, such expressions as Eq8) and (7) are
mathematically ill-defined unless the domain in which
X, 1(r1,r2) is defined is chosen appropriately. Note also that
the mathematical proof of uniqueness of the potential in re-

thergions far from nuclei depends on division by orbitals which

are exponentially small.

In the next section, we shall invoke some properties that
the exchange potentials of the OEP method possess, to judge
how accurately the potentials obtained from the LCAO OEP
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calculations reproduce the true solutions of the OEP method.
First, for the highest occupied orbitaly,(r) of each spin f 0,.(r)0,(r)dr=35,,, (24)
symmetry, we have

oce and span the same space{ds,(r) ¢a,(r)},
f Ino(DVRe (Nne(Ndr == (NojylioN,). oce. vin
J 20 2 Br0B2)=2 D o1 dan(r) io(r2) Va2,
The derivation of this relationship, which we call the HOMO (25

condition in the following, can be found elsewhé&rBecond, te that th jector in Eq23) wributi
an exchange energy and potential of the OEP method obe}?o e that the projector in E OE%rases any contribution
om the null-space functions ¥y, (r,). Similarly, within

h ~call h irial th f Ghosh g2
the so-called exc ange viria theorem of Ghosh and-Parr the space spanned Q}ﬁ,a(r)l//ag(r)} X(r(rler) is consid-

and of Levy and Perdei ered nonsingular and invertible. Thus, the inverse of
FOER X,(r1,r2) within the space of ¢;,(r)¥.,(r)} can be de-
=- —2 (ioioliole) fined unambiguously by

= f Ve (D{3p(r) +1-Vp,(r)}dr, (21) f X, Hrr2)Xo(r2, ra)dro=2 B(r)0,(ra),  (26)

where p,(r) is the o-spin electron density. Third, for one- and

and spin-unpolarized two-electron systems, there is an ana-

lytical solution to the OEP problem, _ _ _
Xo(r1,r2)= 2, Dlra)By(r2)

po’(rZ) lﬂio(rZ)lﬂiU(rZ)

dr,=-—
[ri—rgf 2 [ri—rol

Ve =— dr,,

(22 Xf f@K(rg)x(r(r3,r4)§)\(r4)dr3dr4

which reflects the fact that for these systems the exchange

potential is just the self-interaction correction to the Hartree ~ ~ ~

potential. It is straightforward to reduce the OEP equation - % 0,(r) O (12)(Xo) s (27)
to the above simplified form for one- and spin-unpolarized

two-electron systems. ~_1 ~ ~
X, (rl,r2)=2 0,(ry)0,(rp)

Ill. COMPUTATIONAL ASPECT Xf f~0K(r3)X;1(r3,r4)"éx(r4)dr3dr4

A. The linear-combination-of-atomic-orbital optimized
effective potential method and its algorithms

=2 B(r) O (r) (XY - (28)

In the limit of an infinite basis set, the products of all the
occupied and virtual orbitalgs; ,(r) .,(r)} essentially span
the complete space with the only function that cannot beNote that X, Yry,rp) is an ill-defined quantity, but
expanded by this set being a constant, and hefge;,r;) X *(r,,r,) is not, and hence the matrix representation of the
has only one singularity. In an LCAO OEP calculation, |atter, X -*, can be obtained as the inverse of the kernel
which employs a basis set of finite size to expand Orb'talsmatnxx With the aid of this projector, we can recast Eq
{¢i(r)a,(r)} is generally far from being a complete set, ) o _ . < OEP, . '
and the finite-basis-set representationXgf(r,,r,), which (6) into a well-defined equation fory, (r) as
we call the kernel matrix, has singularities, whose corre- occ virt

sponding null-space functions are not necessarily an additive QB )= _22 2 f (i oiolivas)

constant. Consequently, Ed) alone can no longer uniquely

determine an exchange potential, but it generates a set of Ui (F2) han(12)

exchange potentials that differ from each other by null-space wa;lm,rz)drz_ (29
functions of the kernel matrixsee p. 302 of Ref. 51 €ic™ €as

Nonetheless, Eq1) alone can uniquely specify the pro- Equations(26)—(29) are the basis of what we call tt®al-

!{?;t'?rn) ;f tr(‘re)f ?gzzngezgoé?r;gsgomo the space spanned t6‘6rithm of the LCAO OEP methotf The exchange potential
o rar ' ' is, therefore, expanded Hy,} as

Ve (r) =2 B(ry) f Bura)Vie (ro)dry, (23 om y
x VRERn =2 d,8,(r), (30)
where{6,} denotes a set of basis functions that are ortho-
normal, where the expansion coefficierts,.} are
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occ virt

2222<M“%xm

lo ao
X f Yio(1) ha(1) By (r)dr . (3D)
Alternatively, we may define the projector by

V-3 | f

(1) 0,(ra)VRE(ra)

[ri—ryl

dr,drg,
(32)

where{#d,} are orthonormalized in such a fashion that
0,(r)0\(r5)

J] s

and also that they span the same spacéyas(r) .,(r)},
ie.,

0 (rZ) 0K(r3
2 f |r1—r2| drz

occ virt

=Ei ; Gio (1) Wag(T 1) Y1 o(13) Yan(T3). (34)

d 1dr2:5K)\, (33)

Optimized effective potentials 1639
r
Vet =2 dJ A1 g (39)
[ri—r
and the expansion coefficientd,} are
occ virt <| J |J a>
d=-23 3 3 SR ® 0,
lo ao
(T ) Pan (1) By (1
XJ $ig(T1) Pas(ry) O5( Z)drldrz. (39
[ri=ro

The above equations are the basis of thalgorithm of the

LCAO OEP method?

In practice, we obtain the matri)~(;1 in the following
procedure. We first expand the operaXg(r,r,) by a set of
orthonormal basis function®,} as

x(,(rl,rzw% 0,(r1) O0(12)(Xo) (40)

and

(Xa)m\:J J 0,(r1)Xy(rq,r2) 0,(rp)drydr, (41)

With these biorthogonal basis functions, a rational definition

of X,(rq,r;) and X (ry,r,) within the space of

{‘/Iia'(r) l//a(r(r)} WOUld be

K 0K
f (rl,rz)XU(rz,ra)drz—Z I% 2
(395
and
Xo‘(rlarZ):;\ ’ék(rl)p)\(rZ)
ffff (13)X(14,75) 0y (1)
[r3—rallrs—rgl
Xdrgdrydrsdrg
=2, 1) B ()Xo (36)

(r2)0
Kohrng=3, [ [ LB g g,

—rgf[r—ry

X f f~9K("5)X;1("57r6)Ex(r6)dr5 drg

B o
-3 | | e dra % Y

1= T3l[ro—r

occ virt
33— [ttt o,
Xf Uio(12) Yag(r2) Oy (rp)dr, (42)

in the S algorithm or

0, (r1)X,(r2,r3)0\(r4)

(XO')K)\:J’ f J J |r11_r2||2r3ir4)\| 4 drldrzdr3dr4
(43

occ virt 2

_E za: -
jf ¢Ia(rl)¢aa(rl)0K(r2)drldrz
[ri—rol
io’(r ) aa(r )0 (r )

XJJ i 3|Z_r43| AN dradry, (44

in theV algorithm. The basis s¢¥,} is created by a canoni-

cal orthogonalization of a set of auxiliary Gaussian-type ba-

sis functions(the potential basis sebn the basis of the nor-
malization defined either by E@24) or (33). Hence, at this

point, any linear dependence of the potential basis functions

can be eliminated. As the matriX, is symmetric, we can
find a symmetric matrixt that diagonalizeX,, i.e.,

X,=UWUT, (45)

whereW is a diagonal matrix antd is the transpose df.
Although X .

is negative-definite, generally the several least

(37) negative eigenvalues are computationally zero or very close

_ _ to zero, despite the fact that the potential basis set is not

Again, the matrixX; ' is simply the inverse oiX,. The  capable of expressing an additive constant. These singulari-
exchange potential is, in this case, represented as an electiiges of X, must not be confused with the linear dependence
static potential created by a charge density which is in turrpf the potential basis set. The singularities occur owing to the
expanded b){T9K}. Therefore, fact that the potential basis functions can represent functions
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in the null space of the matrix representationXgf(r,,r,). ments of the OEP method can be evaluated analytically. In

The basis se{@,(} that is orthogonal to the null space X¥f. the V algorithm, we compute analytically two- and three-
can be generated by center electron-repulsion integrals involving the auxiliary

Gaussian function$®* The effective Fock matrix elements
can be computed by these three-center electron repulsion in-
tegrals and the SCF procedure can be accomplished without
~ i ) o any numerical quadrature. The integral in E88) can also
whereU is a rectangular matrix obtained by eliminating any pe evaluated analytically with the recursion formulas for the
row of U whose corresponding eigenvalue is less negativecleus—electron attraction integras.

than a preset threshold. The matrix representation of |4 the next section we also consider the SHtend
X,(r1,r5) and X, *(ry,r,) within the basis sefd,} would  KLI potentials>®34354849hich are implemented in the

AéK: 2 D K\ 0)\ ’ (46)
N

simply be POLYMER program>? The Slater potentiaV52**{(r) is ob-
% _s 4 tained by averaging the nonlocal HF exchange potential in a
(Xg)n = SaWe, (47) certain manner and is given by
-1 _ -1
(XU' )K)\_ 5K)\WK . (48) V)S(L-atel(rl)
Note that the dimensions &, and X * are reduced to the oce
rank (the dimension minus the nullityof X, . This proce- __ s Vit ¥io(ry) [ #ig(ra) l//j”(rZ)drz. (55)
dure amounts to the singular value decompositioX pf i po(ra) [ri—rol

In the LCAO OEP method, the pointwise self-
consistency condition, E¢5), may not be satisfied. Instead,
we require that the following condition

For one- and spin-unpolarized two-electron systems, the
Slater potentials reduce to E@2) and hence to the analyti-
cal solutions of the OEP equation. However, except for the
1 ) p(ry) ~ 0P one- and spin-unpolarized two-electron systems, the Slater
j Ppolr)) — §V +Vex(r)+ J mdr2+v><0 (ry) potentials do not satisfy the HOMO condition expressed by
Eq. (20). The KLI potentialVk-'(r) is defined as the sum of

X go(r)dri=dpqep,  (YP,VQ), (49 the Slater potential and a correction term,
be fulfilled, with the constraint that the orbitglg,,,} remain N,—1
orthonormal VRH ()= Ve + > i AT U;r)(lfi)g(r) (Vi — Vi),
1 o
| a0 1= 4. (50 (56

hereVX! andVYF refer to the orbital expectation value of

As usual, we express each orbital as a linear combination c)[ﬁe respective potentials, i.e

atomic orbitals{ x .}
occ

Yoo =2 Coox,(r) (Vp), (51) Vi, = —Zj (ioioliolo), (57)
o
and we arrive at the Hartree—Fock—Roothaan-type matriand the summation in E¢56) excludes the highest occupied
eigenvalue equation for the expansion coefficients, orbital of each symmetryN,, is the number ofr-spin occu-
pied orbitalg. By also defining the orbital expectation value
ZV Fo, ‘,fp=€p02v s7,Co (Vp), (52)  of the Slater potential as
with VRino'= f Yo (VR g, (r)dr, (58)
T 1 p(rZ)
FM=J' X#(rl){ — §V2+Vex[(r1)+ mdrz we require thatvk- be given by
N,—1
+V§’§P(r1>}xy(rl>dr1, (59 Vi =VR 2 MV Vi), (59
- with
Si= | Xu(Nx,(r)dr. (54)
_ _ . i) (N (1) 4(1)
The LCAO OEP methods with th8 andV algorithms Mij= o) dr. (60)

are implemented in th@oLYMER program>? When theS
algorithm of the LCAO OEP method is employed, two- andThe KLI potentials reduce to Eq22) for one- and spin-
three-center overlap integrals involving the auxiliary Gaussunpolarized two-electron systems and also satisfy the
ian functions are needed. In our implementation, these inteHOMO condition for any systerhln the following, we plot
grals are evaluated analytically by virtue of the Obara—Saikahe Slater and KLI potentials as a function of the coordinates
recursion formulas® Thus, the effective Fock matrix ele- of space. The integral in EG55) can be evaluated analyti-
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cally at each point of a numerical grid by the recursion for- 05 T T T T T
mulas for the nucleus—electron attraction integfalBhe in- OEP S algorithm) ————
tegrals(58) and(60) and also the exchange matrix elements
of the LCAO KLI method are evaluated by numerical inte-
gration employing Becke’s methotfuzzy cell method®®
The numerical grid for this numerical quadrature is the same
grid®’ that we use for the conventional LCAO DFT calcula-
tions and it consists of a second-kind Gauss—Chebyshev ra-
dial grid and Lebedev angular grid%:° The divisions in
Egs. (55), (56), and(60) can be carried out safely until the
electron density decays and becomes computationally zero.
The right-hand side of Eq21) is evaluated by the nu-
merical quadrature employing the same grid and the shifted
exchange potentidvide pos}, electron density, and electron
density gradients obtained from the converged LCAO OEP
calculations.

Exchange potential / a.u.

B. Numerical results and discussion

. . -2
In this section, we compute and plot the exchange po- 0 1 2 3 4 5 6

tentials obtained from the LCAO OEP method with hand r/au.

V algorithms. We compare them against the Slater potentialz . . .
he KLI potential. and the exchanae potentials obtained fro IG. 2. The exchange potentials of the helium atom as a function of the
the p o . ] 9 p61 Myistance from the nucleus). The orbital basis sétmedium) consists of 20
the local density approximatiofLDA)"* to the exchange even-tempereds-type functions with the exponents given by 8.2"(0
functional and Becke’s gradient-corrected exchange func=n=19) and the potential basis set is the large basi¢sset the caption of
tional (Becke88.62 These potentials are Computed at eachFig- D. The exchange potential obtained from @algorithm of the LCAO

. - . . . . OEP method is shifted by 0.3018 a.u.
point of a numerical grid by using the orbitals, orbital ener-
gies, and electron densities obtained from the corresponding
converged LCAO OEP calculations. It should be noted that ) o o
the exchange potentials of the LCAO OEP method shown ithe figure captionsso that the HOMO condition is satisfied

all the figures in this paper are shifted by some constmets When the left-hand side of E¢20) is evaluated for the
shifted potentials. The potentials directly obtained from the

LCAO OEP calculations are substantially displaced from the

T T ones shown in the figurgglthough the shape of the poten-

OEP (§ algorithm) ——— tials remains the sameand generally the HOMO condition
- is not satisfied for them. The total energies, exchange ener-

gies, and the highest occupied orbital energies obtained from
these calculations are summarized in Table I, in which are
also included the results of self-consistent LCAO LDA,
LCAO Becke88, and LCAO KLI calculations.

As a first example, we choose the helium atom. For this
two-electron system, the Slater and KLI potentials are iden-
tical to each other and also reduce to the analytical solution
of the OEP equation. Thus, the comparison of the exchange
potentials of the LCAO OEP method and the Slater or KLI
potentials gives the definitive assessment of the quality of the
former potentials. In Figs. 1-3, we plot the exchange poten-
tials of the helium atom obtained from tigalgorithm as a
function of the distance from the nucleus) (employing
three different orbital basis sets, which we simply denote
small, medium, and large basis sets, respectively, according
to their size. We employ the large basis set for the potential

0 1 2 3 4 5 6 basis set in these three calculations. The small, medium, and
r/au. large basis sets consist, respectively, of 12, 20, and 25 even-
FIG. 1. The exchange potentials of the helium atom as a function of thdempereds-type functions, and since the helium atom has
distance from the nucleus. The orbital basis sesmal) consists of 12 spherical symmetry, the addition g-type functions and
even-tempereds-type functions with the exponents given by 820 fynctions with higher angular momenta to the orbital or po-

<n=<11) and the potential basis sgarge consists of 25 even-tempered . . . .
s-type functions with the exponents given by 0:B'(0<n<24). The tential basis set will not alter the shape of the potential or the

exchange potential obtained from tBalgorithm of the LCAO OEP method  total energy.
is shifted by—0.3118 a.u. We immediately notice from Fig. 1 that the exchange

05 T

Exchange potential / a.u.
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TABLE I. Total ground-state energie€), exchange energie€(), and the highest occupied orbital energies
(enomo) computed by the HF, OEP, KLI, LDA, and Becke88 methdiishartrees The exchange energies
given in the parentheses are obtained from the right-hand side dREq.

Theory Algorithnf E Ex €HOMO

Heb HF LCAQO/12s —2.8614 —1.0257 —-0.9179
OEP LCAO-S/12s —2.8614 —1.0257(-1.0277) —0.6061
OEP LCAO-V/12s —2.8614 —1.0257(-1.0257) —0.6981
KLI LCAQ/12s —2.8614 —1.0257 —-0.9179
LDA LCAQ/12s —2.7234 —0.8527 —0.5169
Becke88 LCAO/13 —2.8631 —1.0159 —0.5540
HF LCAQO/20s —2.8617 —1.0258 —0.9180
OEP LCAO-S/20s —2.8617 —1.0258(-1.0259) —0.6162
OEP LCAO-V/20s —2.8617 —1.0258(-1.0258) —0.7049
KLI LCAQO/20s —2.8617 —1.0258 —0.9180
LDA LCAOQO/20s —2.7236 —0.8528 —0.5169
Becke88 LCAQ/28 —2.8634 —1.0161 —0.5541
HF LCAO/25s —2.8617 —1.0258 —0.9180
OEP LCAO-S/25s —2.8617 —1.0258(-1.0258) —0.6991
OEP LCAO-V/25s —2.8617 —1.0258(-1.0258) —0.7647
KLI LCAQO/25s —2.8617 —1.0258 —0.9180
LDA LCAO/25s —2.7236 —0.8528 —0.5170
Becke88 LCAQ/25 —2.8634 —1.0160 —0.5541
OEP Grid —2.8617 —1.0258 —0.9180

sz HF LCAO —1.1336 —0.6586 —0.5946
OEP LCAO-S —1.1336 —0.6586(-0.6583) —0.3282
OEP LCAOV —1.1336 —0.6586(—0.6585) —0.4062
KLI LCAO —1.1336 —0.6586 —0.5946
LDA LCAO —1.0436 —0.5515 —-0.3311
Becke88 LCAO —-1.1321 —0.6547 —0.3560
KLI Grid —1.1336

Néf HF LCAO —128.5471 —12.1084 —0.8504
OEP LCAO-S —128.5454 —12.1050¢-12.1048) —0.6162
OEP LCAOV —128.5454 —12.1050¢ 12.1046) —0.7639
KLI LCAO —128.5448 —12.0991 —0.8494
LDA LCAO —127.4907 —10.9372 —0.4430
Becke88 LCAO —128.5901 —12.0864 —0.4545
OEP Grid —128.5455 —12.1050 —0.8507
KLI Grid —128.5448 —0.8494

N2h HF LCAO —108.9791 —13.0963 —0.6144
OEP LCAO-S —108.9741 —13.0859(-13.2857) —0.3818
OEP LCAOV —108.9738 —13.0858(13.2026) —1.0696
LDA LCAO —107.7438 —11.7839 —0.3348
Becke88 LCAO —109.0730 —13.1872 —0.3462
KLI Grid —108.9858

LiF! HF LCAO —106.9810 —11.9973 —0.4763
OEP LCAO-S —106.9790 —11.9940¢ 12.0289) —-0.3775
OEP LCAOV —106.9790 —11.9939( 11.9720) —0.6743
LDA LCAO —105.8667 —10.7172 —0.1894
Becke88 LCAO —107.0457 —-11.9719 —0.1946

8Grid-based numerical algorithms provide basis-set-limit results.

bSee the captions of Figs. 1—6 for the basis sets employed in the LCAO calculations.

‘Reference 36.

dSee the captions of Figs. 7 and 8 for the geometry and the basis sets employed in the LCAO calculations.
°Reference 68.

fSee the captions of Figs. 9 and 10 for the basis sets employed.

9Reference 49.

"See the captions of Figs. 11 and 12 for the geometry and the basis sets employed in the LCAO calculations.
iSee the captions of Figs. 13 and 14 for the geometry and the basis sets employed in the LCAO calculations.

Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Optimized effective potentials 1643

0.5 T T T 0.5 T T

I T I T
OEP (S algorithm) OEP (V algorithm)
Slater or KLI ------ Slater or KLI ——-—--

Exchange potential / a.u.
Exchange potential / a.u.

1 1 ] ] ]
0 1 2 3 4 5 6
r/au. r/au.

FIG. 3. The exchange potentials of the helium atom as a function of thé=1G. 4. The exchange potentials of the helium atom as a function of the
distance from the nucleus). We employ the large basis set for the orbitals distance from the nucleus). We employ the small basis set for the orbitals
and the potentialsee the caption of Fig.)1The exchange potential obtained and the large basis set for the poteniisée the caption of Fig.)1The
from the S algorithm of the LCAO OEP method is shifted by0.2189 a.u.  exchange potential obtained from thé algorithm of the LCAO OEP
The OEP potential and the Slater or KLI potential are hardly discernible. method is shifted by-0.2198 a.u.

potential of the LCAO OEP method obtained with a ratherconstant valuéwhich is equal to the value of the shift given
small orbital basis set has several unrealistic characteristicko the potential at larger, while the latter potential decays

It wildly oscillates around the nucleus and it does not haveslowly as— 1/r. This is inevitable because in tigalgorithm

the correct—1/r asymptotic behavior. This is in contrast to the potential is expanded as a linear combination of Gaussian
the Slater or KLI potential that is exaétithin the given functions and it exhibits the Gaussian decay.

orbital basis setfor this system and also smoothly merges In Figs. 4—6, we repeat the calculations for the helium
into the curve of—1/r at larger. Although the exchange atom using the small, medium, and large orbital basis sets,
potential of the LCAO OEP method in Fig. 1 is shifted respectively, with theé/ algorithm. We observe qualitatively
downwards from the original by 0.31 a.u., the shifted potenthe same trend that we have observed in Figs. 1-3, but in a
tial appears to follow the trend of the Slater or KLI potential much less dramatic way. As we increase the size of the or-
in the range of 0.5r<4. The shape of the LDA and bital basis set from small to medium, medium to large, the
Becke88 exchange potentialbut not the magnitude of quality of the exchange potential of the LCAO OEP method
them is in reasonable agreement with that of the correcimproves systematically. For instance, in Fig. 4, an unphysi-
potential in the range of €r <2, but the former potentials cal wiggle of the potential is visible at around the nucleus
decay too rapidly, not having the correetl/r asymptotic and the potential starts to deviate from the correct/r
behavior. Due to this lack of the correct asymptotic behaviorasymptotic behavior at around=3. In Fig. 5, the wiggle at

the LDA and Becke88 exchange potentials are too shallow ithe nucleus is suppressed significantly, and the potential fol-
the whole range of as compared with the correct potential. lows the —1/r behavior untilr reaches 4.5. In Fig. 6, we
As we increase the size of the orbital basis set from smalagain obtain excellent agreement between the exchange po-
(Fig. 1) to medium(Fig. 2), the exchange potential of the tential of the LCAO OEP method and the correct potential.
LCAO OEP method becomes remarkably better in the sens&lthough the potential is expressed as a Coulomb potential
that the potential closely resembles the correct potentials ioreated by a charge in thé algorithm and hence it can
the range of 0.8r<2. However, we can still observe a potentially have the correct 1/r behavior throughout the
rapid oscillation of the potential around the nucleus and thespace, it does not generally do so in the regions wheee
wrong asymptotic behavior in the rangerof2. In Fig. 3, large. As a consequence, to obtain a perfect fit between the
where we employed the large basis sets for both the orbitalsalculated and analytical solution of the OEP equation, we
and potential, we accomplish perfect agreement between theeed to add a significantly large constant(.15a.u.) to the
exchange potential of the LCAO OEP method and the corredibormer potential. It must not be misinterpreted, however, that
potential in the range of @r<4. Although it is not evident the origin of this seemingly constant displacement is the sin-
from the figure, the exchange potential of the LCAO OEPgularity of X,(r,r5,) in the infinite basis set limit. This dis-
method starts to deviate from the correct potential at arounglacement arises primarily from computational effects, more
r=4 as the former potential decays rapidly and stays at apecifically, from the fact that the potential at langés not
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portion tor in the asymptotic region, but the prefactor may
differ from —1. It may also be noticed that the deviation
from the exchange virial theorem or E@®1) (Table |) re-
flects the quality of the calculated exchange potentials across
the S andV algorithms and it decreases systematically with
increasing the size of the orbital basis $&t23

We summarize the numerical problems that we encoun-
tered in the calculations of the helium atom potential as fol-
lows. (1) The exchange potentials obtained from both $he
andV algorithms do not have the correetl/r behavior. As
r becomes larger, the potentials tend to distort from the cor-
rect shape(2) The exchange potentials obtained from both
the S and V algorithms tend to have the unphysical rapid
oscillation around the nucleu&3) The potentials, and hence
the orbital energies als@able |), are substantially displaced
from the correct potentials and orbital energies. When we
apply a constant shift to the potential so that the HOMO
condition is satisfied, the potential also matches the correct
potential in the intermediate rangemf(4) The use of larger
and larger orbital basis sets tends to alleviate the above-
mentioned problems systematically. In contrast, the use of

FIG. 5. The exchange potentials of the helium atom as a function of thdarger and larger basis sets for the potential itself does not
distance from the nucleus’). We employ the medium basis set for the normally alleviate the situation, but can often aggravate the

orbitals and the large basis set for the poterisake the captions of Figs. 1
and 2. The exchange potential obtained from #algorithm of the LCAO

OEP method is shifted by 0.2131 a.u.

problem.(5) The total energyand in this two-electron case,
the occupied orbital as wells hardly affected by the shape
of the potential or the size of the orbital basis €Edble ).
This is true even when the potential looks disastrously unre-

sampled when the exchange matrix elements are evaluatedistic as in Fig. 1.
because of the vanishingly small amplitudes of all the orbit-  As we have shown in the preceding section, mathemati-
als, and hence it tends to have a distorted shape atla@e cally the OEP equation alone can uniquely specify the ex-

achieve the minimal total enerdyide posj. Note that thev

change potential, with the only indeterminacy being an addi-

algorithm guarantees that the potential decays in inverse praive constant. This means that in the limit of an infinitely

Exchange potential / a.u.

0.5

T T
OEP (V algorithm)

Slater or KLI
A

3 4
r/au.

large orbital basis set, the LCAO OEP method should pro-
vide the true solution of the OEP equation for the exchange
potential. Thus, we can ascribe the above-mentioned numeri-
cal problems in the calculated exchange potentials primarily
to the incompleteness of the orbital basis set, although, as we
shall discuss in the following, there are also other computa-
tional effects involved. This explains the observatignthat

the use of larger orbital basis sets renders the calculated ex-
change potential to resemble the correct potential more
closely. It is the size of the orbital basis sets, but not the size
of the potential basis sets, that plays an essential role in
obtaining reliable potentials, because the larger the orbital
basis set, the more complete the products of all the occupied
and virtual orbitals, and the more closely the projected ex-
change potentiaVQ='(r) as defined by Eq(23) or (32) re-
sembles the true solutio‘vlggp(r). In contrast, the require-
ment for the size of the potential basis set appears to be
rather modest, as it is much easier to expand the potentials
than the orbitals, the latter being much more complex than
the former. Indeed, we find that by using a slightly smaller
basis set for potentials than for orbitals, we obtain rather
well-balanced results; particularly the unphysical rapid oscil-
lation around the nucleus can be suppressed by using smaller

FIG. 6. The exchange potentials of the helium atom as a function of thepotential basis sets that do not contain very tight Gaussian

distance from the nucleus ). We employ the large basis set for the orbitals
and the potentialsee the caption of Fig.)1The exchange potential obtained
from theV algorithm of the LCAO OEP method is shifted by0.1533 a.u.

functions(i.e., Gaussian functions with large expongnEor
the same reason, théalgorithm suffers much less from the

The OEP potential and the Slater or KLI potential are hardly discerible. rapid oscillation around the nucleus; the potential basis func-
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tions in theV algorithm are the Coulomb potentials createdwhile they can reproduce the shape of the potentials reason-
by Gaussian functions and are more diffuse and slowly varyably accurately for the intermediate valuesr oWhen theS
ing than the Gaussian functions themselves, and they are natgorithm is employed, the exchange potentials are too shal-
necessarily capable of representing the rapid oscillationdow as compared with the correct potentials in the whole
Thus, from a practical viewpoint, it is recommended to userange ofr, owing to the rapid Gaussian falloff of the former
as large a basis set as possible for the orbital basis set andpatentials. Thus, the exchange potentials obtained frorsthe
slightly smaller basis set for the potential basis set. algorithm are normally displaced upwards from the correct
For a spherical system such as the helium atom, the inpotentials. The magnitude of the displacement decreases sys-
completeness of the orbital basis set has two major sourcetematically as the orbital basis set increases, but it is not
the lack of very tight functions that have nonvanishing am-generally possible to achieve the limit in which the displace-
plitudes only around the nucleus and of very diffuse func-ment vanishes. The exchange potentials obtained fronv the
tions that have large spatial spread. We consider that the lagdgorithm, on the other hand, may be displaced either up-
of tight functions is the primary cause of the unphysicalwards or downwards from the correct potentials and it is
rapid oscillation around the nucleus. Therefore, we expecgometimes possible to achieve the limit in which the dis-
that adding more and more tight Gaussian functions to th@lacement practically vanishes. It should be emphasized that
orbital basis set would alleviate this problem, and the result&he origin of this artifactual displacement, which is approxi-
shown in Figs. 1-6 support this view; as we increase thénated well by a constant, is not the formal indeterminacy of
orbital basis set size, the unphysical oscillation around théhe exchange potentials of the OEP equation established in
nucleus becomes less prominent. The lack of diffuse functhe preceding section. Indeed, the difference between the cal-
tions in the orbital basis set may partly be responsible for th&ulated and correct exchange potentials is not strictly a con-
distortion of the potential at large However, this problem stant but a function which is flat in the intermediate region of
occurs primarily because all the occupied orbitals decay antl but decays to zero at largeand is one of the null-space
their amplitudes become computationally zero at large€he functions of the kernel matrix. The exchange potential and
exchange potential can have any arbitrary shape in the regidhe orbitals must satisfy not only Eqdl) and(29) but also
where all the occupied orbitals vanish computationally, with-the self-consistency conditio(6) simultaneously. The ex-
out deteriorating the total energy or occupied orbitals, bechange potential that differs from the true solution of the
cause the potential is not sampled at largehen the ex- OEP equation by such a null-space function obviously satis-
change matrix elements are evaluated. Thus, the LCAO OEftes the self-consistency condition for the same set of orbit-
method tends to optimize the exchange potential so that thals.
total energy is minimal, but at the sacrifice of distorting the ~ Equations(29) and (49) further indicate a primary dif-
potential in the asymptotic region as such a distortion has nference between the LCAO OEP method and other LCAO
effect on the total energy or the occupied orbitals. One optioCF methods such as the HF method and various approxi-
to rectify this problem was proposed by (Bng,2 who im- mate DFT methods. In the Igtter SCF procedures, thg po.ten-
posed the condition upon thé algorithm that the exchange fials _that are needed to define the_ Fock or KS Hamiltonian
potential was created by a charge distribution that integratefiatrix elements are given unambiguously in terms of some

to — 1. This condition guarantees that the potentials observENoWn quantities(orbitals, density, etg.in each cycle of

the correct—1/r asymptotic behavior, but the total energy SCF- In the LCAO OEEE method, on the other hand, only the
and occupied orbitals may not be optimal. We do not use thi@rojection of the Vi *(r) onto the space spanned by

additional condition because we prefer to obtain accurate ex-Vio(") ¥as(r)} is unambiguously given in tgprms of orbitals
change potentials in the region where the occupied orbital@nd orbital energies, but the projection U (r) onto the
have nonvanishing amplitudes and to achieve the minimdull space is not provided by the OEP equation. Therefore,
total energies at the sacrifice of the correct asymptotic behaghe exchange matrix elements evaluated wWiff;"(r) and
ior, which may be recovered by grafting thel/r curve to  those withVR5H(r) may be substantially different when the
the exchange potentigﬁ. lvanov et al® also proposed a orbital basis set is small. However, the exchange matrix ele-
scheme in which the HOMO condition was imposed uponments that involve an occupied orbital and a virtual orbital
either theS or V algorithm in each SCF cycle with the aid of remain the same, i.e.,
the Lagrange multiplier method. However, in this study, we
do not consider this option, either, for the same reason ment y; (r)VRCT (1) g, (1)dr
tioned above.

When the orbital basis sets are sufficiently large, an ex-
change potential calculated from the LCAO OEP method =f i (DVLET) o (1) dr, (61)
agrees reasonably well with the correct potential for the in-
termediate values af when the former potential is shifted by because any null-space function is orthogonal to all the prod-
an appropriate constant. Likewise, the differences betweencts of occupied and virtual orbitals. Equati@1) indicates
the orbital energies computed by the LCAO OEP method anthat the null-space function introduced in the exchange po-
the correct values are usuallgut not always approximated tentials may rotate the occupied orbitals among themselves
well by the same constariTable ). This additive constant and the virtual orbitals among themselves, but does not mix
arises primarily from the fact that generally neither her  the occupied and virtual orbitals. As the OEP total energy
V algorithm observes the correetl/r behavior at large, expression, which is the same as the HF total energy expres-
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FIG. 7. The exchange potentials of the hydrogen moletié41 A) along FIG. 8. The exchange potentials of the hydrogen moletig41 A along

the C,, axis. The orbital basis set and the potential basis set both consist dhe C., axis. The basis sets employed are the same as in Fig. 7. The ex-
even-tempered 14-type, 5p-type, and 2(6-component Cartesiam-type change potential obtained from thealgorithm of the LCAO OEP method
functions with the exponents given by &2"(0<n=<13), 0.4<4"(0<n is shifted by—0.1884 a.u. The OEP potential and the Slater or KLI potential
<4), and 1.&<4"(0=n=1), respectively. The exchange potential obtained are hardly discernible.

from the S algorithm of the LCAO OEP method is shifted by0.2664 a.u.

responding exchange potential is an electrostatic potential

sion, is invariant to the rotation among just the occupiedcreated by an approximate functional of the electron density.
orbitals and the rotation among just the virtual orbitals, the N Figs. 9 and 10, we plot the exchange potentials of the
null-space function does not alter the total energy. This exieon atom computed by th® and V algorithms, respec-
plains the above-mentioned observation that even when tH&/€ly, as a function of the distance from the nucletis (For
exchange potential obtained from the LCAO OEP method ighis 10-electron system, the Slater potential and the KLI po-
unrealistic as in Fig. 1, the total energy tends to remain ac-
curate and reliable. For the helium atom, where there is only

: . . L 4
one occupied orbital, the shape of the occupied orbital is also OEP (S a|gorith:n)
hardly affected by the distortion of the exchange potential, sw:g T
while the orbital energy may be substantially displaced. 2 |- Y -
Becke88 —-—-—-

As a second example, we choose the hydrogen molecule,
for which the Slater and KLI potentials again amount to the
correct OEP potential. Figures 7 and 8 are the plot of the
exchange potentials computed by tBeand V algorithms,
respectively, along th€,, axis. We find that the exchange
potential obtained from th& algorithm has unphysical os-
cillations around the nuclei but overall it closely approxi-
mates the correct potential. These oscillations are suppressed
by using theV algorithm(Fig. 8). In the region shown in the
figure, the calculated potential also has the correttr be-
havior, although at large it starts to deviate from-1/r. It
may be noticed that the LDA and Becke88 potentials have
cusps at the nuclei and are qualitatively different from the
correct potential that does not have such cusps. This reflects
the fact that the correct potential is an electrostatic potential

RUSAEEEE

Exchange potential / a.u.

. . 1 | |
created by the electron density, EQR2), and is a more 0 05 1 15 >

slowly varying function than the electron density itself. In
this light and also remembering that thel/r asymptotic
behavior is essential in the accurate prediction of the pOSiEIG' 9. The exchange potentials of the neon atom as a function of the

r/a.u.

. . . - distance from the nucleus ). We employ the Partridge-3 basis set for the
tions of Rydberg excited states by tlme-dependent denSItXrbitals and thes-type functions of the same basis set for potential. The

funptlonal theory,>**we consider it an |mport.ant and inter- exchange potential obtained from t8@lgorithm of the LCAO OEP method
esting problem to develop an exchange functional whose cois shifted by—0.2345 a.u.
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r/a.u. FIG. 11. The exchange potentials of nitrogen mole€tle98 A along the

C., axis. We employ an uncontracted 6-311 G(2d,2p) basis set for the
FIG. 10. The exchange potentials of the neon atom as a function of therbitals and an uncontracted 6-31G basis set supplemented with a set of
distance from the nucleus). The basis sets employed are the same as ins-type, p-type, and 6-component Cartesidrtype functions with a shared
Fig. 9. The exchange potential obtained from Yhalgorithm of the LCAO exponent of 0.8 for the potential. The exchange potential obtained from the
OEP method is shifted by 0.0868 a.u. S algorithm of the LCAO OEP method is shifted by0.2523 a.u.

tential are appreciably different from each other in the vicin—p|0y is perhaps among the minimal basis sets for which rea-
ity of the nucleus, although they converge at the saniér  sonaply reliable exchange potentials can be obtained. For the
asymptotic curve at large. The exchange potentials, the nitrogen molecule, however, the result of tBealgorithm
total energies, and the orbital energies obtained fromShe (Fig. 11 slightly differs from that of thev algorithm (Fig.
andV algorithms of the LCAO OEP method are consistentlz) in the depth of the potential at aroure-0, and accord-
with each other, and hence are reliable except for the unpgly, the deviations from the exchange virial theorem are
physical oscillations at the nucleus. They both have the corgypstantial. For lithium fluoride, we achieve exchange poten-

rect — 1/r asymptotic behavior in the rangeoshown inthe  tia|s, total energies, and orbital energies that are consistent
figure, and the total energy is also in agreement with the

result of the grid-based numerical OEP calculation of Engel

and Voskd® (Table ). The KLI scheme approximates the 4 : : : : :
exchange potential and exchange energy of the LCAO OEP OEP (v algorthm)
method remarkably well. The only visible difference in the KLI -
exchange potential is that the structuteump at 0.2<r 2F Becki%’g S

< 0.6 in the intershell region is more pronounced in LCAO
OEP than in KLI. Note also that the LCAO KLI calculation
reproduces the total energy and the highest occupied orbital
energy computed by the grid-based numerical KLI
calculatiof® (Table ). The LDA and Becke88 potentials as
well as the Slater potential exhibit a marked change in the
slope atr~0.3, but they do not have the structure in the
intershell region, which is known to be important
energetically’®> The LDA and Becke88 predict the potentials
that are too shallow almost everywhere in the space as com-
pared with LCAO OEP and KLI, while the Slater potential is
too deep in the range of<Or<0.4, which is documented

Exchange potential / a u.

already?
Figures 11-14 plot the exchange potentials of the nitro-
gen molecule and lithium fluoride computed by thandV x/a.u.

algorithms along theC,, axis of the respective molecules. , _
FIG. 12. The exchange potentials of nitrogen mole¢wle98 A along the

The requirement for the size of orbital bQSIS set Is mucl‘b axis. The basis sets employed are the same as in Fig. 11. The exchange
greater for these molecules than for spherlcal systems, arﬁgtential obtained from th¥ algorithm of the LCAO OEP method is shifted
the uncontracted 6-3¥11+ G(2d,2p) basis set that we em- by 0.4362 a.u.
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T approximate the potentials of the LCAO OEP method for
Slater ———-— both the molecules well. The potentials of the KLI and
LCAO OEP methods are indistinguishable from each other
in the vicinity of the nuclei and also in the asymptotic region
shown in the figures. The KLI potentials have less pro-
nounced structuredumps in the intershell regions than the
potentials of the LCAO OEP method, and the former appear
to smooth the structures of the latter. The comparison of the
total energies computed by the LCAO OEP and grid-based
numerical KLI methodgTable ) indicates that the basis-set
dependence of the total energies is much greater than the
errors introduced by the KLI approximatidRRef. 68.

T T
OEP (S algorithm)

. Exchange potent.ial /a.u.

IV. CONCLUSION

We have illustrated the computational difficulties in the
LCAO OEP method that w& and Galing®® have developed
recently and identified the source of these difficulties. We
o A 0 9 2 3 4 5 have proved that in the limit of an infinite basis set an ex-
change potential of the OEP method can be uniquely deter-
mined up to an additive constant by the OEP equation alone,
FI'G- 13;]- (T:he eXCr:Z‘/”ge P‘Tte”“a's of lithium gugr;f’ie}rgo'zedcglées A substantiating the conclusion drawn earlier byrkdg and
2ec;r;grtthz (;Orgi(alllss-; an% Zrﬁr?goi?r;cr:ggnggitg basis set s(uprl)lgr)ner?tz(si withl‘aev,y'18 There,fore’, the above_m,entloned computatlonal dlfﬂ_
set of s-type, p-type, and 6-component Cartesidrtype functions with a  culties are primarily due to the incompleteness of the orbital
shared exponent of 0.2lithium) and a set ofstype, ptype, and basis set. These effects are more profound on the OEP
e o v e e s B s o o IO e on oher SCF procedure such as the LCAO HF
;Igorithm of the LOAG OEP method fs Shifted by0.0986 A or LCAO DFT methods, owing to the fact that the OEP

equation unambiguously defines the exchange potential in
the space spanned by the product of occupied and virtual

orbitals but not in the entire Hilbert space. Nonetheless, by

between theS and V algorithms, and hence we consider , oo . . . ;
them to be reasonably accurate. In practice, it is difficult tomakmg a judicious choice of the orbital and potential basis

remove the spikes in the exchange potentials of the LCAGE!S: we can obtain reasonably accurate exchange potentials

OEP method at the nuclei, which are the artifacts arisindc_’r atoms and molecules. Generally, a large uncontracted ba-

from the basis-set incompleteness. The KLI potentials agaiﬁIS set must be emplqyed for orbitals, Whereas for th_e poten-
tlal, a basis set that is smaller than the orbital basis set is

recommended. Even when the orbital basis set is sufficiently
large to accurately reproduce the exchange potential in the
vicinity of the nuclei, it is usually difficult to achieve the
correct— 1/r decay throughout the asymptotic region, as the
occupied orbitals vanish computationally at largeConse-
quently, we must shift the calculated exchange potentials so
that the HOMO condition is satisfied for the shifted poten-
tials. We have observed that, for the systems where the cor-
rect exchange potentials are analytically known, this proce-
dure provides us with an exchange potential of the OEP
method that is indistinguishable from the correct potential in
the vicinity of the nuclei and in a respectable portion of the
asymptotic region. For larger atomic and molecular systems,
two different algorithms provide exchange potentials that are
consistent with each other when sufficiently large orbital ba-
sis sets are employed, and hence we consider that they are
reasonably converged. Not only for atoms but also for mol-
ecules, the KLI approximation has turned out to be accurate
10 1 1 1 1 1 1 and robust, although it misses some structures in the inter-
2 -1 0 1 2 3 4 5 shell regions, and is a pragmatic means of generating refer-
x/a.. ence exchange potentials against which approximate ex-
FIG. 14. The exchange potentials of lithium fluoride molec(iles64 A change functionals can .be tested and calibrétett
along theC,, axis. The basis sets employed are the same as in Fig. 13. Th'é'owever’ the OEP method itself, as well as the KLI scheme,

exchange potential obtained from the algorithm of the LcAO Ogp  Will continue to serve as a universal teghnique.for mapp'ing.a
method is shifted by 0.1984 a.u. nonlocal potential onto a local potential and is essential in

x/au.

T T T
OEP (V algorithm)

. Exchange potent.ial /a.u.

Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 4, 22 July 2001

obtaining accurate correlation potentials from some explic#s

Optimized effective potentials 1649

. lvanoy, S. Hirata, and R. J. Bartlett, Phys. Rev. L&%.5455(1999.

itly orbital-dependent correlation functionals established inzzA- Gorling, Phys. Rev. Lett83, 5459(1999.

the complementary wave function thedPy.

K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables
22, 443(1978.
3IM. R. Norman and D. D. Koelling, Phys. Rev. 3, 5530(1984).

ACKNOWLEDGMENTS

The authors gratefully acknowledge Professor Mel Le
(Tulane University, Professor Robert K. NesbéBM Al-

323, D. Talman, Comput. Phys. Commu&#, 85 (1989.
33y, Wang, J. P. Perdew, J. A. Chevary, L. D. Macdonald, and S. H. Vosko,

VY Phys. Rev. A1, 78 (1990.

34J

35.]

maden Research Ceniebr. S. Ajith PereraUniversity of -
Florida), and Professor Weitao Yan@uke University for 37E
illuminating discussions. This work has been supported bysg
the U.S. Air Force Office of Scientific Research under Grant°r
No. F49620-98-0116 and the Natural Sciences and EngineeﬁR
ing Research Council of Canada. One of the autlikirB.) D

42
was supported by the National Science Foundation unde@?

. B. Krieger, Y. Li, and G. J. lafrate, Phys. Lett.146 256 (1990.
. B. Krieger, Y. Li, and G. J. lafrate, Phys. Rev48, 5453(1992.

. Engel and S. H. Vosko, Phys. Rev4&, 2800(1993.

. Engel and S. H. Vosko, Phys. Rev.4B, 13164(1993.

. K. Nesbet and R. Colle, Phys. Rev6A, 012503(1999.

. K. Nesbet and R. Colle, J. Math. Che&6, 233(1999.

. Colle and R. K. Nesbegunpublishedl

. C. Langreth and M. J. Mehl, Phys. Rev.2B, 1809(1983.
Kotani, Phys. Rev. B50, 14816(1994); 51, 13903E) (1995.

Grant No. CHE-9875091.

IR. T. Sharp and G. K. Horton, Phys. R&@, 317 (1953.

2J. D. Talman and W. F. Shadwick, Phys. Revi4 36 (1976.

3P. Hohenberg and W. Kohn, Phys. R&@6, B864 (1964).

4W. Kohn and L. J. Sham, Phys. Red40, A1133(1965.

5R. G. Parr and W. Yangpensity-Functional Theory of Atoms and Mol-
ecules(Oxford University Press, New York, 198%nd references therein.
V. Sahni, J. Gruenebaum, and J. P. Perdew, Phys. R26, 8371(1982.

7J. P. Perdew and M. R. Norman, Phys. Re\2® 5445(1982.

8J. B. Krieger, Y. Li, and G. J. lafrate, Phys. Rev45, 101(1992.

. Kotani, Phys. Rev. Letfr4, 2989(1995.

4T, Kotani and H. Akai, Phys. Rev. B4, 16502(1996.

4SM. Stadele, J. A. Majewski, P. Vogl, and A. ®ing, Phys. Rev. Lett79,
2089(1997).

M. Stadele, M. Moukara, J. A. Majewski, P. Vogl, and A."fling, Phys.
Rev. B59, 10031(1999.

473, C. Slater, Phys. Re81, 385(1951).

48y, Li, J. B. Krieger, M. R. Norman, and G. J. lafrate, Phys. Rev®
10437(199)).

49y, Li, J. B. Krieger, and G. J. lafrate, Phys. Rev4& 165 (1993.

%0R. P. Kanwal Linear Integral Equations: Theory and Techniq@nd ed.
(Birkhauser, Boston, 1997

9J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev. Lett. L. M. Delves and J. L. MohamedComputational Methods for Integral

49, 1691(1982.
103, P. Perdew and M. Levy, Phys. Rev. L&, 1884(1983.
11 J. Sham and M. Schier, Phys. Rev. Let51, 1888(1983.
125, K. Ghosh and R. G. Parr, J. Chem. P83.3307(1985.
13M. Levy and J. P. Perdew, Phys. Rev3& 2010(1985.
K. Aashamar, T. M. Luke, and J. D. Talman, J. Physl®B 3455(1979.
15K. Aashamar, T. M. Luke, and J. D. Talman, J. Physl43 803 (1981).
18N, E. Zein, J. Phys. @7, 2107(1984.
171, J. Sham, Phys. Rev. B2, 3876(1985.
18A. Gorling and M. Levy, Phys. Rev. A0, 196 (1994.
A, Gorling and M. Levy, Int. J. Quantum Chem., Syn9, 93 (1995.
20M. E. Casida, Phys. Rev. A1, 2005(1995.
2M. E. Casida, Phys. Rev. B9, 4694(1999.
223, Ivanov, K. Burke, and M. Levy, J. Chem. Phyd0, 10262(1999.
ZE. Engel and R. M. Dreizler, J. Comput. Che?f), 31 (1999.

Equations(Cambridge University Press, Cambridge, 1985

523, Hirata, M. Tasumi, H. Torii, S. Iwata, M. Head-Gordon, and R. J.
Bartlett, PoLYmMER Version 1.0, 1999.

533, Obara and A. Saika, J. Chem. Ph§4, 3963(1986.

54J. Andzelm and E. Wimmer, J. Chem. Phg§, 1280(1992.

%5V. Termath and N. C. Handy, Chem. Phys. L&®0, 17 (1994.

56A. D. Becke, J. Chem. Phy88, 2547(1988.

57S. Hirata, H. Torii, and M. Tasumi, Phys. Rev.58, 11994(1998.

%8\, I. Lebedev, Zh. Wchisl. Mat. Mat. Fizl5, 48 (1975.

59V, I. Lebedev, Zh. Wechisl. Mat. Mat. Fiz16, 293 (1976.

80\ |. Lebedev, Sibirsk. Mat. Zh18, 132(1977.

613. C. SlaterQuantum Theory of Molecules and Solids, Vol. 4: The Self-

Consistent Field for Molecules and SolidscGraw-Hill, New York,
1974).

%2A. D. Becke, Phys. Rev. &8, 3098(1988.

24T Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, Orbital functionals in %D. J. Tozer and N. C. Handy, J. Chem. Phy89, 10180(1998.
density functional theory: the optimized effective potential method, in ®*S. Ivanovet al. (unpublished

Strong Coulomb Correlations and Electronic Structure Calculatjcets
ited by V. I. Anisimov(Gordon and Breach, London, 1999

253, Ivanov and R. J. Bartlett, J. Chem. Phy$4, 1952 (2001).

26|, Grabowskiet al. (unpublishedl

%M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem.

Phys.108 4439(1998.

86T, Grabo and E. K. U. Gross, Chem. Phys. L&#0, 141 (1995.
57T. Grabo and E. K. U. Gross, Int. J. Quantum Ché.95 (1997).

27R. J. Bartlett, Quantum Chemistry in the New Millennium: The Next Step, ®8E. Engel, A. Hak, and R. M. Dreizler, Phys. Rev. 82, 042502(2000.
in Chemistry for the 21st Centyrgdited by E. Keinan and 1. Schechter ®°P. Sile, S. Kurth, and V. Van Doren, J. Chem. Phg42, 7355(2000.

(Wiley-VCH, Weinheim, 200D

703, Garza, J. A. Nichols, and D. A. Dixon, J. Chem. Phyi2, 7880(2000.

Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



