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Can optimized effective potentials be determined uniquely?
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Local ~multiplicative! effective exchange potentials obtained from the linear-combination-
of-atomic-orbital~LCAO! optimized effective potential~OEP! method are frequently unrealistic in
that they tend to exhibit wrong asymptotic behavior~although formally they should have the correct
asymptotic behavior! and also assume unphysical rapid oscillations around the nuclei. We give an
algebraic proof that, with an infinity of orbitals, the kernel of the OEP integral equation has one and
only one singularity associated with a constant and hence the OEP method determines a local
exchange potential uniquely, provided that we impose some appropriate boundary condition upon
the exchange potential. When the number of orbitals is finite, however, the OEP integral equation is
ill-posed in that it has an infinite number of solutions. We circumvent this problem by projecting the
equation and the exchange potential upon the function space accessible by the kernel and thereby
making the exchange potential unique. The observed numerical problems are, therefore, primarily
due to the slow convergence of the projected exchange potential with respect to the size of the
expansion basis set for orbitals. Nonetheless, by making a judicious choice of the basis sets, we
obtain accurate exchange potentials for atoms and molecules from an LCAO OEP procedure, which
are significant improvements over local or gradient-corrected exchange functionals or the Slater
potential. The Krieger–Li–Iafrate scheme offers better approximations to the OEP method.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1381013#
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I. INTRODUCTION

There has been a resurrected interest in the optim
effective potential ~OEP! method1,2 in connection with
Kohn–Sham~KS! density functional theory~DFT!.3–5 The
OEP method, which involves a one-particle equation with
energy-independent and local~multiplicative! effective ex-
change potential in contrast with a non-local Hartree–F
~HF! exchange integral operator, is inherently first princip
in that it invokes an explicitly orbital-dependent express
of the exchange energy and hence offers a way to fin
rigorous exchange potential within the KS DF
framework.6,7 The local exchange potential obtained fro
the OEP method possesses many of the analytical featur
the exact KS potential.8 It has the correct21/r asymptotic
behavior,2 cancels exactly the self-interaction contribution
the Hartree potential, exhibits an integer discontinuity9–11

upon addition of an infinitesimal fraction of an electron
the highest occupied orbital, obeys the exchange vi
theorem,12,13 yields the highest occupied orbital energy th
satisfies Koopmans’ theorem, and is exact in
homogeneous-electron-gas limit. The local exchange po
tials generated from the OEP method, which can be plo
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and visualized, will be instrumental in developing accura
and systematically improvable exchange functionals. T
strategy may also be extended to correlation functionals
considering the question of finding energy independent
local effective potentials associated with some correlat
energy expressions established in the wave func
theory.11,14–26This constitutes a paradigm of ‘‘ab initio den-
sity functional theory’’ advocated by one of the authors.27

A critical element in performingab initio density func-
tional calculations and thereby obtaining accurate and s
tematically improvable exchange and correlation potent
is the ability to carry out the OEP calculations in the stand
basis sets for quantum chemical applications, prima
Gaussian basis sets, and this raises the issue of nume
algorithms. Recently, we have developed a line
combination-of-atomic-orbital~LCAO! algorithm for the
OEP calculations of atoms and molecules,28 on the basis of
the finite-basis-set OEP formalism of Go¨rling and Levy.18,19

A closely related LCAO OEP algorithm has also been
ported by Go¨rling.29 These LCAO OEP methods permit OE
calculations of atoms and molecules on an equal footing
the conventional molecular orbital or density functional c
culations, i.e., with conventional Gaussian-type basis s
but without any further approximation. Thus, they extend
applicability of the OEP method, which had only been fe
sible for spherical ~atomic! systems with grid-based

ty,
5 © 2001 American Institute of Physics
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algorithms2,8,23,30–40and for crystalline solids with plane
wave-based algorithms.41–46

With these LCAO OEP methods, it is in principle po
sible to extract local exchange potentials and other prope
from the OEP calculations of atoms and molecules. Ho
ever, in the course of doing so, we encountered some
merical problems that appeared to indicate the existenc
either formal or computational problems in the LCAO OE
method. For instance, the orbital energies directly obtai
as the eigenvalues of the effective Fock matrix of the LCA
OEP method are excessively displaced from those of the
rect OEP orbital energies~when available!. The exchange
potentials obtained from the LCAO OEP method are f
quently unrealistic in that they tend to exhibit wron
asymptotic behavior~although formally they should have th
correct asymptotic behavior! and also assume unphysic
rapid oscillations around the nuclei. Within the LCA
framework, these unphysical solutions satisfy the OEP eq
tion and self-consistency condition within reasonable
merical precision.

The purpose of this paper is to disclose and anal
these computational difficulties in the LCAO OEP metho
The analysis leads to the title question which we attemp
answer from both formal and computational viewpoints. W
give an algebraic proof that, with an infinity of orbitals, th
kernel of the OEP integral equation has one and only
singularity associated with an additive constant and he
the OEP method determines a local exchange pote
uniquely up to a constant. This indeterminacy can be eli
nated readily by imposing some appropriate boundary c
dition on the exchange potential. When the number of or
als is finite, however, the OEP integral equation is ill-pos
in that it has an infinite number of solutions. We circumve
this problem by projecting the equation and the excha
potential upon the function space accessible by the ke
and thereby making the exchange potential unique. We
cribe the observed numerical problems primarily to the sl
convergence of the projected exchange potential with res
to the size of the expansion basis set for orbitals; the ba
set incompleteness has a much more profound effect on
LCAO OEP method than on other SCF procedures such
the HF method. We demonstrate that, despite these com
tational problems, by making a judicious choice of the ba
sets, we can obtain reasonably accurate exchange pote
for atoms and molecules from the LCAO OEP procedu
which are improvements over the exchange potentials
tained from some local or gradient-corrected functional
the Slater potentials,47 yet are approximated well by th
Krieger–Li–Iafrate~KLI ! potentials.1,8,34,35,48,49

II. FORMAL ASPECT

The purpose of this section is to prove that an excha
potential of an atomic or molecular system with a nondeg
erate ground state can be uniquely determined up to a
stant by the OEP equation alone. The same conclusion
drawn earlier by Go¨rling and Levy,18 who considered the
same problem from a different perspective~see also Ref. 24
for the uniqueness of the OEP orbitals!. Here we confine our
analysis to the exchange-only OEP method and do not c
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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sider any correlation treatment, although our analysis may
extended to a correlated OEP method straightforwardly~see,
however, Ref. 23 for a necessary condition for the existe
of a solution!. The OEP equation, which projects a nonloc
HF exchange operator onto a variationally optimal local e
change potential, was derived originally by Sharp a
Horton1 and by Talman and Shadwick2 and rederived from a
different viewpoint by Sham and Schlu¨ter11 and by Go¨rling
and Levy.18,19 For thes-spin component of an exchange p
tential VXs

OEP(r ) ~note that the exchange energy is separa
into the a- and b-spin components and so is the exchan
potential!, the equation reads

E Xs~r1 ,r2!VXs
OEP~r2!dr2

522(
i , j

occ

(
a

virt

^ i s j su j sas&
c is~r1!cas~r1!

e is2eas
, ~1!

where we designates-spin canonical OEP orbitals b
$cps(r )%, which we assume to be real for the sake of si
plicity, s-spin one-electron energies by$eps%, and two-
electron integrals in Dirac’s notation,

^psqsur sss&

5E E cps~r1!cqs~r2!c rs~r1!css~r2!

ur12r2u
dr1 dr2 . ~2!

Equation ~1! is a Fredholm integral equation of the fir
kind,50,51 and the numerical solution of such equations
notoriously unstable~see the next section!. In this section,
we assume that the set of all the orbitals forms the comp
space, i.e.,

(
i

occ

c is~r1!c is~r2!1(
a

virt

cas~r1!cas~r2!5d~r12r2!.

~3!

In the above equations and in the following, we use the c
vention thati , j ,k label occupied orbitals,a,b label virtual
orbitals, andp,q,r ,s label either. The first factor in the inte
grand in Eq.~1! is thes-spin part of the kernel,

Xs~r1 ,r2!52(
i

occ

(
a

virt
c is~r1!cas~r1!c is~r2!cas~r2!

e is2eas
,

~4!

which is symmetric and separable~degenerate!.50,51 We re-
quire that the exchange potentialVXs

OEP(r ) satisfy Eq.~1! and
the self-consistency condition between the canonical O
orbitals and the exchange potential, i.e.,

H 2
1

2
“

21Vext~r1!1E r~r2!

ur12r2u
dr21VXs

OEP~r1!J cps~r1!

5epcps~r1! ~;p!, ~5!

simultaneously, whereVext(r ) represents an external pote
tial, which is typically an attractive potential produced b
nuclei, andr(r ) is the electron density. We may formall
isolate the exchange potential by rewriting Eq.~1! as
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VXs
OEP~r1!522(

i , j

occ

(
a

virt E ^ i s j su j sas&

3
c is~r2!cas~r2!

e is2eas
Xs

21~r1 ,r2!dr2 , ~6!

by introducing the inverse of the kernelXs
21(r1 ,r2), which

must satisfy

E Xs
21~r1 ,r2!Xs~r2 ,r3!dr2

5E Xs~r1 ,r2!Xs
21~r2 ,r3!dr25d~r12r3!, ~7!

although, as we shall show in the following, Eqs.~6! and~7!
are mathematically ill-defined, as the kernel is not invertib

The exchange potentialVXs
OEP(r ) as defined by Eq.~1!

alone is not necessarily unique, but there can be more
one such potential that satisfies this equation. This inde
minacy arises from the fact that the kernelXs(r1 ,r2) is sin-
gular and is hence not invertible. We mean by saying t
Xs(r1 ,r2) is singular that there are such functions$ f (r )%
that satisfy the following condition pointwise:

E Xs~r1 ,r2! f ~r2!dr2[0. ~8!

We call the space spanned by all those functions$ f (r )% that
satisfy the above equation the null space ofXs(r1 ,r2) and a
function that belongs to the null space is a null-space fu
tion. Suppose that we find a particular solutionVXs(r ) that
satisfies Eq.~1!. When Xs(r1 ,r2) is singular and there is
such a functionf (r ) that satisfies Eq.~8!, VXs(r )1 f (r ) is
another solution of Eq.~1!. This is readily understood by
substitutingVXs(r )1 f (r ) into Eq. ~1!. In the following, we
shall demonstrate thatXs(r1 ,r2) has one and only one sin
gularity with the associated null-space function being a c
stant, and hence that Eq.~1! alone can uniquely determine a
exchange potential up to an additive constant. From Eq.~8!,
we find that any null-space function must satisfy

E E f ~r1!Xs~r1 ,r2! f ~r2!dr1 dr250. ~9!

Substituting Eq.~4! into Eq. ~9!, we obtain

(
i

occ

(
a

virt
2

e is2eas
E c is~r1!cas~r1! f ~r1!dr1E c is~r2!

3cas~r2! f ~r2!dr250 ~; i ,;a!. ~10!

Since the denominatore is2eas is negative, it is necessar
that

E c is~r !cas~r ! f ~r !dr50 ~; i ,;a!. ~11!

Suppose that there is only one occupied orbital, th
c is(r ) f (r ) is orthogonal to all the virtual orbitals$cas(r )%
and is therefore a multiple ofc is(r ),

f ~r !c is~r !5cc is~r !. ~12!
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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As we can safely assume that the lowest occupied orbita
nodeless and has a nonvanishing amplitude everywhere
then divide both sides of Eq.~12! by c is(r ) to obtain

f ~r !5c ~constant!. ~13!

More generally,c is(r ) f (r ) is expressed as a linear comb
nation of all the occupied orbitals of$c is(r )%,

f ~r !c is~r !5(
j

occ

ci j c j s~r ! ~; i !, ~14!

with

ci j 5E c j s~r ! f ~r !c is~r !dr . ~15!

As the coefficients$ci j % are symmetric (ci j 5cji ), we can
find a symmetric transformation that brings these coefficie
into a diagonal form,

(
i

occ

ukici j 5lkuk j . ~16!

Multiplying uki on both sides of Eq.~14! and making the
summation overi , we obtain

f ~r !c̃ks~r !5lkc̃ks~r ! ~;k!, ~17!

with

c̃ks~r !5(
j

occ

uk jc j s~r !. ~18!

Since the transformed occupied orbitals$c̃ is(r )% are nonva-
nishing everywhere except on two-dimensional nodal s
faces and an exchange potential is continuous, we can di
the both sides of Eq.~17! by c̃ks(r ) and obtain f (r )
5c (constant). Thus, we conclude that an exchange pote
of the OEP method can be uniquely determined up to
additive constantc from Eq. ~1! alone. The sum of any par
ticular solution of Eq.~1! and a constant simultaneously sa
isfies Eq.~1! and the self-consistency condition~5!, and is
hence another legitimate solution of an OEP problem. T
additive constant can, however, be eliminated readily by
posing some appropriate boundary condition to the excha
potential, e.g.,

lim
r→`

VXs
OEP~r !50. ~19!

In this sense, the exchange potentials of the OEP method
essentially unique. It should be emphasized, however,
sinceXs(r1 ,r2) is singular and is not invertible~although the
nullity is just one!, such expressions as Eqs.~6! and ~7! are
mathematically ill-defined unless the domain in whi
Xs

21(r1 ,r2) is defined is chosen appropriately. Note also th
the mathematical proof of uniqueness of the potential in
gions far from nuclei depends on division by orbitals whi
are exponentially small.

In the next section, we shall invoke some properties t
the exchange potentials of the OEP method possess, to j
how accurately the potentials obtained from the LCAO O
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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calculations reproduce the true solutions of the OEP meth
First, for the highest occupied orbitalcNs(r ) of each spin
symmetry, we have

E cNs~r !VXs
OEP~r !cNs~r !dr52(

j

occ

^Ns j su j sNs&.

~20!

The derivation of this relationship, which we call the HOM
condition in the following, can be found elsewhere.8 Second,
an exchange energy and potential of the OEP method o
the so-called exchange virial theorem of Ghosh and Pa12

and of Levy and Perdew,13

EXs
OEP[2

1

2 (
i , j

^ i s j su j si s&

5E VXs
OEP~r !$3rs~r !1r•“rs~r !%dr , ~21!

wherers(r ) is the s-spin electron density. Third, for one
and spin-unpolarized two-electron systems, there is an
lytical solution to the OEP problem,

VXs
OEP~r1!52E rs~r2!

ur12r2u
dr252E c is~r2!c is~r2!

ur12r2u
dr2 ,

~22!

which reflects the fact that for these systems the excha
potential is just the self-interaction correction to the Hart
potential. It is straightforward to reduce the OEP equation~1!
to the above simplified form for one- and spin-unpolariz
two-electron systems.

III. COMPUTATIONAL ASPECT

A. The linear-combination-of-atomic-orbital optimized
effective potential method and its algorithms

In the limit of an infinite basis set, the products of all th
occupied and virtual orbitals$c is(r )cas(r )% essentially span
the complete space with the only function that cannot
expanded by this set being a constant, and henceXs(r1 ,r2)
has only one singularity. In an LCAO OEP calculatio
which employs a basis set of finite size to expand orbit
$c is(r )cas(r )% is generally far from being a complete se
and the finite-basis-set representation ofXs(r1 ,r2), which
we call the kernel matrix, has singularities, whose cor
sponding null-space functions are not necessarily an add
constant. Consequently, Eq.~1! alone can no longer uniquel
determine an exchange potential, but it generates a se
exchange potentials that differ from each other by null-sp
functions of the kernel matrix~see p. 302 of Ref. 51!.

Nonetheless, Eq.~1! alone can uniquely specify the pro
jection of the exchange potentials onto the space spanne
$c is(r )cas(r )% ~see p. 23 of Ref. 50!,

ṼXs
OEP~r1!5(

k
ũk~r1!E ũk~r2!VXs

OEP~r2!dr2 , ~23!

where $ũk% denotes a set of basis functions that are ort
normal,
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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E ũk~r !ũl~r !dr5dkl , ~24!

and span the same space as$c is(r )cas(r )%,

(
k

ũk~r1!ũk~r2!5(
i

occ

(
a

virt

c is~r1!cas~r1!c is~r2!cas~r2!.

~25!

Note that the projector in Eq.~23! erases any contribution
from the null-space functions inVXs

OEP(r2). Similarly, within
the space spanned by$c is(r )cas(r )%, Xs(r1 ,r2) is consid-
ered nonsingular and invertible. Thus, the inverse
Xs(r1 ,r2) within the space of$c is(r )cas(r )% can be de-
fined unambiguously by

E X̃s
21~r1 ,r2!X̃s~r2 ,r3!dr25(

k
ũk~r1!ũk~r3!, ~26!

and

X̃s~r1 ,r2!5(
k,l

ũk~r1!ũl~r2!

3E E ũk~r3!Xs~r3 ,r4!ũl~r4!dr3 dr4

5(
k,l

ũk~r1!ũl~r2!~X̃s!kl , ~27!

X̃s
21~r1 ,r2!5(

k,l
ũk~r1!ũl~r2!

3E E ũk~r3!Xs
21~r3 ,r4!ũl~r4!dr3 dr4

5(
k,l

ũk~r1!ũl~r2!~X̃s
21!kl . ~28!

Note that Xs
21(r1 ,r2) is an ill-defined quantity, but

X̃s
21(r1 ,r2) is not, and hence the matrix representation of

latter, X̃s
21 , can be obtained as the inverse of the ker

matrix X̃s . With the aid of this projector, we can recast E
~6! into a well-defined equation forṼXs

OEP(r ) as

ṼXs
OEP~r1!522(

i , j

occ

(
a

virt E ^ i s j su j sas&

3
c is~r2!cas~r2!

e is2eas
X̃s

21~r1 ,r2!dr2 . ~29!

Equations~26!–~29! are the basis of what we call theS al-
gorithm of the LCAO OEP method.28 The exchange potentia
is, therefore, expanded by$ũk% as

ṼXs
OEP~r !5(

k
dkũk~r !, ~30!

where the expansion coefficients$dk% are
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dk522(
i , j

occ

(
a

virt

(
l

^ i s j su j sas&
e is2eas

~X̃s
21!kl

3E c is~r !cas~r !ũl~r !dr . ~31!

Alternatively, we may define the projector by

ṼXs
OEP~r1!5(

k
E E ũk~r2!ũk~r3!VXs

OEP~r3!

ur12r2u
dr2 dr3 ,

~32!

where$ũk% are orthonormalized in such a fashion that

E E ũk~r1!ũl~r2!

ur12r2u
dr1 dr25dkl , ~33!

and also that they span the same space as$c is(r )cas(r )%,
i.e.,

(
k
E ũk~r2!ũk~r3!

ur12r2u
dr2

5(
i

occ

(
a

virt

c is~r1!cas~r1!c is~r3!cas~r3!. ~34!

With these biorthogonal basis functions, a rational definit
of Xs(r1 ,r2) and Xs

21(r1 ,r2) within the space of
$c is(r )cas(r )% would be

E X̃s
21~r1 ,r2!X̃s~r2 ,r3!dr25(

k
E ũk~r2!ũk~r3!

ur12r2u
dr2

~35!

and

X̃s~r1 ,r2!5(
k,l

ũk~r1!ũl~r2!

3E E E E ũk~r3!Xs~r4 ,r5!ũl~r6!

ur32r4uur52r6u

3dr3 dr4 dr5 dr6

5(
k,l

ũk~r1!ũl~r2!~X̃s!kl , ~36!

X̃s
21~r1 ,r2!5(

k,l
E E ũk~r3!ũl~r4!

ur12r3uur22r4u
dr3 dr4

3E E ũk~r5!Xs
21~r5 ,r6!ũl~r6!dr5 dr6

5(
k,l

E E ũk~r3!ũl~r4!

ur12r3uur22r4u
dr3 dr4~X̃s

21!kl .

~37!

Again, the matrixX̃s
21 is simply the inverse ofX̃s . The

exchange potential is, in this case, represented as an ele
static potential created by a charge density which is in t
expanded by$ũk%. Therefore,
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
n

tro-
n

ṼXs
OEP~r1!5(

k
dkE ũk~r2!

ur12r2u
dr2 , ~38!

and the expansion coefficients$dk% are

dk522(
i , j

occ

(
a

virt

(
l

^ i s j su j sas&
e is2eas

~X̃s
21!kl

3E E c is~r1!cas~r1!ũl~r2!

ur12r2u
dr1 dr2 . ~39!

The above equations are the basis of theV algorithm of the
LCAO OEP method.29

In practice, we obtain the matrixX̃s
21 in the following

procedure. We first expand the operatorXs(r1 ,r2) by a set of
orthonormal basis functions$uk% as

Xs~r1 ,r2!'(
k,l

uk~r1!ul~r2!~Xs!kl ~40!

and

~Xs!kl5E E uk~r1!Xs~r1 ,r2!ul~r2!dr1 dr2 ~41!

5(
i

occ

(
a

virt
2

e is2eas
E c is~r1!cas~r1!uk~r1!dr1

3E c is~r2!cas~r2!ul~r2!dr2 ~42!

in the S algorithm or

~Xs!kl5E E E E uk~r1!Xs~r2 ,r3!ul~r4!

ur12r2uur32r4u
dr1 dr2 dr3 dr4

~43!

5(
i

occ

(
a

virt
2

e is2eas

3E E c is~r1!cas~r1!uk~r2!

ur12r2u
dr1 dr2

3E E c is~r3!cas~r3!ul~r4!

ur32r4u
dr3 dr4 , ~44!

in theV algorithm. The basis set$uk% is created by a canoni
cal orthogonalization of a set of auxiliary Gaussian-type
sis functions~the potential basis set! on the basis of the nor
malization defined either by Eq.~24! or ~33!. Hence, at this
point, any linear dependence of the potential basis functi
can be eliminated. As the matrixXs is symmetric, we can
find a symmetric matrixU that diagonalizesXs , i.e.,

Xs5UWUT, ~45!

whereW is a diagonal matrix andUT is the transpose ofU.
Although Xs is negative-definite, generally the several lea
negative eigenvalues are computationally zero or very cl
to zero, despite the fact that the potential basis set is
capable of expressing an additive constant. These singu
ties of Xs must not be confused with the linear dependen
of the potential basis set. The singularities occur owing to
fact that the potential basis functions can represent funct
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in the null space of the matrix representation ofXs(r1 ,r2).
The basis set$ũk% that is orthogonal to the null space ofXs

can be generated by

ũk5(
l

Ũklul , ~46!

whereŨ is a rectangular matrix obtained by eliminating a
row of U whose corresponding eigenvalue is less nega
than a preset threshold. The matrix representation
X̃s(r1 ,r2) and X̃s

21(r1 ,r2) within the basis set$ũk% would
simply be

~X̃s!kl5dklwk , ~47!

~X̃s
21!kl5dklwk

21 . ~48!

Note that the dimensions ofX̃s and X̃s
21 are reduced to the

rank ~the dimension minus the nullity! of Xs . This proce-
dure amounts to the singular value decomposition ofXs .

In the LCAO OEP method, the pointwise sel
consistency condition, Eq.~5!, may not be satisfied. Instead
we require that the following condition

E cps~r1!H 2
1

2
“

21Vext~r1!1E r~r2!

ur12r2u
dr21ṼXs

OEP~r1!J
3cqs~r1!dr15dpqeps ~;p,;q!, ~49!

be fulfilled, with the constraint that the orbitals$cps% remain
orthonormal

E cps~r !cqs~r !dr5dpq . ~50!

As usual, we express each orbital as a linear combinatio
atomic orbitals$xm%

cps~r !5(
m

Cmp
s xm~r ! ~;p!, ~51!

and we arrive at the Hartree–Fock–Roothaan-type ma
eigenvalue equation for the expansion coefficients,

(
n

Fmn
s Cnp

s 5eps(
n

Smn
s Cnp

s ~;p!, ~52!

with

Fmn
s 5E xm~r1!H 2

1

2
“

21Vext~r1!1E r~r2!

ur12r2u
dr2

1ṼXs
OEP~r1!J xn~r1!dr1 , ~53!

Smn
s 5E xm~r !xn~r !dr . ~54!

The LCAO OEP methods with theS and V algorithms
are implemented in thePOLYMER program.52 When theS
algorithm of the LCAO OEP method is employed, two- a
three-center overlap integrals involving the auxiliary Gau
ian functions are needed. In our implementation, these i
grals are evaluated analytically by virtue of the Obara–Sa
recursion formulas.53 Thus, the effective Fock matrix ele
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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ments of the OEP method can be evaluated analytically
the V algorithm, we compute analytically two- and thre
center electron-repulsion integrals involving the auxilia
Gaussian functions.53,54 The effective Fock matrix element
can be computed by these three-center electron repulsio
tegrals and the SCF procedure can be accomplished wit
any numerical quadrature. The integral in Eq.~38! can also
be evaluated analytically with the recursion formulas for t
nucleus–electron attraction integrals.55

In the next section we also consider the Slater47 and
KLI potentials,1,8,34,35,48,49which are implemented in the
POLYMER program.52 The Slater potentialVXs

Slater(r ) is ob-
tained by averaging the nonlocal HF exchange potential
certain manner and is given by

VXs
Slater~r1!

52(
i , j

occ
c is~r1!c j s~r1!

rs~r1!
E c is~r2!c j s~r2!

ur12r2u
dr2 . ~55!

For one- and spin-unpolarized two-electron systems,
Slater potentials reduce to Eq.~22! and hence to the analyti
cal solutions of the OEP equation. However, except for
one- and spin-unpolarized two-electron systems, the Sl
potentials do not satisfy the HOMO condition expressed
Eq. ~20!. The KLI potentialVXs

KLI (r ) is defined as the sum o
the Slater potential and a correction term,

VXs
KLI ~r !5VXs

Slater~r !1 (
i

Ns21
c is~r !c is~r !

rs~r !
~V̄Xis

KLI 2V̄Xis
HF !,

~56!

whereV̄Xis
KLI andV̄Xis

HF refer to the orbital expectation value o
the respective potentials, i.e.,

V̄Xis
HF 52(

j

occ

^ i s j su j si s&, ~57!

and the summation in Eq.~56! excludes the highest occupie
orbital of each symmetry~Ns is the number ofs-spin occu-
pied orbitals!. By also defining the orbital expectation valu
of the Slater potential as

V̄Xis
Slater5E c is~r !VXs

Slater~r !c is~r !dr , ~58!

we require thatV̄Xis
KLI be given by

V̄Xis
KLI 5V̄Xis

Slater1 (
j

Ns21

Mi j
s~V̄X js

KLI 2V̄X js
HF !, ~59!

with

Mi j
s 5E c is~r !c is~r !c j s~r !c j s~r !

rs~r !
dr . ~60!

The KLI potentials reduce to Eq.~22! for one- and spin-
unpolarized two-electron systems and also satisfy
HOMO condition for any system.8 In the following, we plot
the Slater and KLI potentials as a function of the coordina
of space. The integral in Eq.~55! can be evaluated analyti
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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cally at each point of a numerical grid by the recursion f
mulas for the nucleus–electron attraction integrals.55 The in-
tegrals~58! and ~60! and also the exchange matrix elemen
of the LCAO KLI method are evaluated by numerical int
gration employing Becke’s method~fuzzy cell method!.56

The numerical grid for this numerical quadrature is the sa
grid57 that we use for the conventional LCAO DFT calcul
tions and it consists of a second-kind Gauss–Chebyshe
dial grid and Lebedev angular grids.58–60 The divisions in
Eqs. ~55!, ~56!, and ~60! can be carried out safely until th
electron density decays and becomes computationally ze

The right-hand side of Eq.~21! is evaluated by the nu
merical quadrature employing the same grid and the shi
exchange potential~vide post!, electron density, and electro
density gradients obtained from the converged LCAO O
calculations.

B. Numerical results and discussion

In this section, we compute and plot the exchange
tentials obtained from the LCAO OEP method with theS and
V algorithms. We compare them against the Slater poten
the KLI potential, and the exchange potentials obtained fr
the local density approximation~LDA !61 to the exchange
functional and Becke’s gradient-corrected exchange fu
tional ~Becke88!.62 These potentials are computed at ea
point of a numerical grid by using the orbitals, orbital en
gies, and electron densities obtained from the correspon
converged LCAO OEP calculations. It should be noted t
the exchange potentials of the LCAO OEP method shown
all the figures in this paper are shifted by some constants~see

FIG. 1. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). The orbital basis set~small! consists of 12
even-tempereds-type functions with the exponents given by 0.132n(0
<n<11) and the potential basis set~large! consists of 25 even-tempere
s-type functions with the exponents given by 0.0532n(0<n<24). The
exchange potential obtained from theS algorithm of the LCAO OEP method
is shifted by20.3118 a.u.
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
-

e

ra-

o.

d

P

-

l,

c-
h
-
ng
t

inthe figure captions! so that the HOMO condition is satisfie
when the left-hand side of Eq.~20! is evaluated for the
shifted potentials. The potentials directly obtained from t
LCAO OEP calculations are substantially displaced from
ones shown in the figures~although the shape of the poten
tials remains the same!, and generally the HOMO condition
is not satisfied for them. The total energies, exchange e
gies, and the highest occupied orbital energies obtained f
these calculations are summarized in Table I, in which
also included the results of self-consistent LCAO LD
LCAO Becke88, and LCAO KLI calculations.

As a first example, we choose the helium atom. For t
two-electron system, the Slater and KLI potentials are id
tical to each other and also reduce to the analytical solu
of the OEP equation. Thus, the comparison of the excha
potentials of the LCAO OEP method and the Slater or K
potentials gives the definitive assessment of the quality of
former potentials. In Figs. 1–3, we plot the exchange pot
tials of the helium atom obtained from theS algorithm as a
function of the distance from the nucleus (r ) employing
three different orbital basis sets, which we simply den
small, medium, and large basis sets, respectively, accor
to their size. We employ the large basis set for the poten
basis set in these three calculations. The small, medium,
large basis sets consist, respectively, of 12, 20, and 25 e
tempereds-type functions, and since the helium atom h
spherical symmetry, the addition ofp-type functions and
functions with higher angular momenta to the orbital or p
tential basis set will not alter the shape of the potential or
total energy.

We immediately notice from Fig. 1 that the exchan

e

FIG. 2. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). The orbital basis set~medium! consists of 20
even-tempereds-type functions with the exponents given by 0.132n(0
<n<19) and the potential basis set is the large basis set~see the caption of
Fig. 1!. The exchange potential obtained from theS algorithm of the LCAO
OEP method is shifted by20.3018 a.u.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Total ground-state energies (E), exchange energies (EX), and the highest occupied orbital energi
(eHOMO) computed by the HF, OEP, KLI, LDA, and Becke88 methods~in hartrees!. The exchange energie
given in the parentheses are obtained from the right-hand side of Eq.~21!.

Theory Algorithma E EX eHOMO

Heb HF LCAO/12s 22.8614 21.0257 20.9179
OEP LCAO-S/12s 22.8614 21.0257(21.0277) 20.6061
OEP LCAO-V/12s 22.8614 21.0257(21.0257) 20.6981
KLI LCAO/12s 22.8614 21.0257 20.9179
LDA LCAO/12s 22.7234 20.8527 20.5169
Becke88 LCAO/12s 22.8631 21.0159 20.5540

HF LCAO/20s 22.8617 21.0258 20.9180
OEP LCAO-S/20s 22.8617 21.0258(21.0259) 20.6162
OEP LCAO-V/20s 22.8617 21.0258(21.0258) 20.7049
KLI LCAO/20s 22.8617 21.0258 20.9180
LDA LCAO/20s 22.7236 20.8528 20.5169
Becke88 LCAO/20s 22.8634 21.0161 20.5541

HF LCAO/25s 22.8617 21.0258 20.9180
OEP LCAO-S/25s 22.8617 21.0258(21.0258) 20.6991
OEP LCAO-V/25s 22.8617 21.0258(21.0258) 20.7647
KLI LCAO/25s 22.8617 21.0258 20.9180
LDA LCAO/25s 22.7236 20.8528 20.5170
Becke88 LCAO/25s 22.8634 21.0160 20.5541

OEP Grid 22.8617c 21.0258c 20.9180c

H2
d HF LCAO 21.1336 20.6586 20.5946

OEP LCAO-S 21.1336 20.6586(20.6583) 20.3282
OEP LCAO-V 21.1336 20.6586(20.6585) 20.4062
KLI LCAO 21.1336 20.6586 20.5946
LDA LCAO 21.0436 20.5515 20.3311
Becke88 LCAO 21.1321 20.6547 20.3560

KLI Grid 21.1336e

Nef HF LCAO 2128.5471 212.1084 20.8504
OEP LCAO-S 2128.5454 212.1050(212.1048) 20.6162
OEP LCAO-V 2128.5454 212.1050(212.1046) 20.7639
KLI LCAO 2128.5448 212.0991 20.8494
LDA LCAO 2127.4907 210.9372 20.4430
Becke88 LCAO 2128.5901 212.0864 20.4545

OEP Grid 2128.5455c 212.1050c 20.8507c

KLI Grid 2128.5448g 20.8494g

N2
h HF LCAO 2108.9791 213.0963 20.6144

OEP LCAO-S 2108.9741 213.0859(213.2857) 20.3818
OEP LCAO-V 2108.9738 213.0858(213.2026) 21.0696
LDA LCAO 2107.7438 211.7839 20.3348
Becke88 LCAO 2109.0730 213.1872 20.3462

KLI Grid 2108.9853e

LiFi HF LCAO 2106.9810 211.9973 20.4763
OEP LCAO-S 2106.9790 211.9940(212.0289) 20.3775
OEP LCAO-V 2106.9790 211.9939(211.9720) 20.6743
LDA LCAO 2105.8667 210.7172 20.1894
Becke88 LCAO 2107.0457 211.9719 20.1946

aGrid-based numerical algorithms provide basis-set-limit results.
bSee the captions of Figs. 1–6 for the basis sets employed in the LCAO calculations.
cReference 36.
dSee the captions of Figs. 7 and 8 for the geometry and the basis sets employed in the LCAO calculat
eReference 68.
fSee the captions of Figs. 9 and 10 for the basis sets employed.
gReference 49.
hSee the captions of Figs. 11 and 12 for the geometry and the basis sets employed in the LCAO calcu
iSee the captions of Figs. 13 and 14 for the geometry and the basis sets employed in the LCAO calcu
 Jan 2002 to 128.6.1.88. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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potential of the LCAO OEP method obtained with a rath
small orbital basis set has several unrealistic characteris
It wildly oscillates around the nucleus and it does not ha
the correct21/r asymptotic behavior. This is in contrast
the Slater or KLI potential that is exact~within the given
orbital basis set! for this system and also smoothly merg
into the curve of21/r at large r . Although the exchange
potential of the LCAO OEP method in Fig. 1 is shifte
downwards from the original by 0.31 a.u., the shifted pot
tial appears to follow the trend of the Slater or KLI potent
in the range of 0.5,r ,4. The shape of the LDA and
Becke88 exchange potentials~but not the magnitude o
them! is in reasonable agreement with that of the corr
potential in the range of 0,r ,2, but the former potentials
decay too rapidly, not having the correct21/r asymptotic
behavior. Due to this lack of the correct asymptotic behav
the LDA and Becke88 exchange potentials are too shallow
the whole range ofr as compared with the correct potentia
As we increase the size of the orbital basis set from sm
~Fig. 1! to medium~Fig. 2!, the exchange potential of th
LCAO OEP method becomes remarkably better in the se
that the potential closely resembles the correct potential
the range of 0.3,r ,2. However, we can still observe
rapid oscillation of the potential around the nucleus and
wrong asymptotic behavior in the range ofr .2. In Fig. 3,
where we employed the large basis sets for both the orb
and potential, we accomplish perfect agreement between
exchange potential of the LCAO OEP method and the cor
potential in the range of 0,r ,4. Although it is not evident
from the figure, the exchange potential of the LCAO O
method starts to deviate from the correct potential at aro
r 54 as the former potential decays rapidly and stays a

FIG. 3. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). We employ the large basis set for the orbita
and the potential~see the caption of Fig. 1!. The exchange potential obtaine
from theS algorithm of the LCAO OEP method is shifted by20.2189 a.u.
The OEP potential and the Slater or KLI potential are hardly discernibl
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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constant value~which is equal to the value of the shift give
to the potential! at larger , while the latter potential decay
slowly as21/r . This is inevitable because in theS algorithm
the potential is expanded as a linear combination of Gaus
functions and it exhibits the Gaussian decay.

In Figs. 4–6, we repeat the calculations for the heliu
atom using the small, medium, and large orbital basis s
respectively, with theV algorithm. We observe qualitatively
the same trend that we have observed in Figs. 1–3, but
much less dramatic way. As we increase the size of the
bital basis set from small to medium, medium to large,
quality of the exchange potential of the LCAO OEP meth
improves systematically. For instance, in Fig. 4, an unphy
cal wiggle of the potential is visible at around the nucle
and the potential starts to deviate from the correct21/r
asymptotic behavior at aroundr 53. In Fig. 5, the wiggle at
the nucleus is suppressed significantly, and the potential
lows the 21/r behavior untilr reaches 4.5. In Fig. 6, we
again obtain excellent agreement between the exchange
tential of the LCAO OEP method and the correct potent
Although the potential is expressed as a Coulomb poten
created by a charge in theV algorithm and hence it can
potentially have the correct21/r behavior throughout the
space, it does not generally do so in the regions wherer is
large. As a consequence, to obtain a perfect fit between
calculated and analytical solution of the OEP equation,
need to add a significantly large constant (20.15 a.u.) to the
former potential. It must not be misinterpreted, however, t
the origin of this seemingly constant displacement is the s
gularity of Xs(r1 ,r2) in the infinite basis set limit. This dis
placement arises primarily from computational effects, m
specifically, from the fact that the potential at larger is not

eFIG. 4. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). We employ the small basis set for the orbita
and the large basis set for the potential~see the caption of Fig. 1!. The
exchange potential obtained from theV algorithm of the LCAO OEP
method is shifted by20.2198 a.u.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sampled when the exchange matrix elements are evalu
because of the vanishingly small amplitudes of all the or
als, and hence it tends to have a distorted shape at larger to
achieve the minimal total energy~vide post!. Note that theV
algorithm guarantees that the potential decays in inverse

FIG. 5. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). We employ the medium basis set for th
orbitals and the large basis set for the potential~see the captions of Figs. 1
and 2!. The exchange potential obtained from theV algorithm of the LCAO
OEP method is shifted by20.2131 a.u.

FIG. 6. The exchange potentials of the helium atom as a function of
distance from the nucleus (r ). We employ the large basis set for the orbita
and the potential~see the caption of Fig. 1!. The exchange potential obtaine
from theV algorithm of the LCAO OEP method is shifted by20.1533 a.u.
The OEP potential and the Slater or KLI potential are hardly discernibl
Downloaded 06 Jan 2002 to 128.6.1.88. Redistribution subject to AIP
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portion to r in the asymptotic region, but the prefactor ma
differ from 21. It may also be noticed that the deviatio
from the exchange virial theorem or Eq.~21! ~Table I! re-
flects the quality of the calculated exchange potentials ac
the S andV algorithms and it decreases systematically w
increasing the size of the orbital basis set.33,36,37

We summarize the numerical problems that we enco
tered in the calculations of the helium atom potential as f
lows. ~1! The exchange potentials obtained from both theS
andV algorithms do not have the correct21/r behavior. As
r becomes larger, the potentials tend to distort from the c
rect shape.~2! The exchange potentials obtained from bo
the S and V algorithms tend to have the unphysical rap
oscillation around the nucleus.~3! The potentials, and henc
the orbital energies also~Table I!, are substantially displace
from the correct potentials and orbital energies. When
apply a constant shift to the potential so that the HOM
condition is satisfied, the potential also matches the cor
potential in the intermediate range ofr . ~4! The use of larger
and larger orbital basis sets tends to alleviate the abo
mentioned problems systematically. In contrast, the use
larger and larger basis sets for the potential itself does
normally alleviate the situation, but can often aggravate
problem.~5! The total energy~and in this two-electron case
the occupied orbital as well! is hardly affected by the shap
of the potential or the size of the orbital basis set~Table I!.
This is true even when the potential looks disastrously un
alistic as in Fig. 1.

As we have shown in the preceding section, mathem
cally the OEP equation alone can uniquely specify the
change potential, with the only indeterminacy being an ad
tive constant. This means that in the limit of an infinite
large orbital basis set, the LCAO OEP method should p
vide the true solution of the OEP equation for the exchan
potential. Thus, we can ascribe the above-mentioned num
cal problems in the calculated exchange potentials prima
to the incompleteness of the orbital basis set, although, as
shall discuss in the following, there are also other compu
tional effects involved. This explains the observation~4! that
the use of larger orbital basis sets renders the calculated
change potential to resemble the correct potential m
closely. It is the size of the orbital basis sets, but not the s
of the potential basis sets, that plays an essential role
obtaining reliable potentials, because the larger the orb
basis set, the more complete the products of all the occu
and virtual orbitals, and the more closely the projected
change potentialṼXs

OEP(r ) as defined by Eq.~23! or ~32! re-
sembles the true solutionVXs

OEP(r ). In contrast, the require
ment for the size of the potential basis set appears to
rather modest, as it is much easier to expand the poten
than the orbitals, the latter being much more complex th
the former. Indeed, we find that by using a slightly smal
basis set for potentials than for orbitals, we obtain rat
well-balanced results; particularly the unphysical rapid os
lation around the nucleus can be suppressed by using sm
potential basis sets that do not contain very tight Gauss
functions~i.e., Gaussian functions with large exponents!. For
the same reason, theV algorithm suffers much less from th
rapid oscillation around the nucleus; the potential basis fu

e

e
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tions in theV algorithm are the Coulomb potentials creat
by Gaussian functions and are more diffuse and slowly va
ing than the Gaussian functions themselves, and they are
necessarily capable of representing the rapid oscillatio
Thus, from a practical viewpoint, it is recommended to u
as large a basis set as possible for the orbital basis set a
slightly smaller basis set for the potential basis set.

For a spherical system such as the helium atom, the
completeness of the orbital basis set has two major sour
the lack of very tight functions that have nonvanishing a
plitudes only around the nucleus and of very diffuse fun
tions that have large spatial spread. We consider that the
of tight functions is the primary cause of the unphysic
rapid oscillation around the nucleus. Therefore, we exp
that adding more and more tight Gaussian functions to
orbital basis set would alleviate this problem, and the res
shown in Figs. 1–6 support this view; as we increase
orbital basis set size, the unphysical oscillation around
nucleus becomes less prominent. The lack of diffuse fu
tions in the orbital basis set may partly be responsible for
distortion of the potential at larger . However, this problem
occurs primarily because all the occupied orbitals decay
their amplitudes become computationally zero at larger . The
exchange potential can have any arbitrary shape in the re
where all the occupied orbitals vanish computationally, wi
out deteriorating the total energy or occupied orbitals,
cause the potential is not sampled at larger when the ex-
change matrix elements are evaluated. Thus, the LCAO O
method tends to optimize the exchange potential so that
total energy is minimal, but at the sacrifice of distorting t
potential in the asymptotic region as such a distortion has
effect on the total energy or the occupied orbitals. One op
to rectify this problem was proposed by Go¨rling,29 who im-
posed the condition upon theV algorithm that the exchang
potential was created by a charge distribution that integra
to 21. This condition guarantees that the potentials obse
the correct21/r asymptotic behavior, but the total energ
and occupied orbitals may not be optimal. We do not use
additional condition because we prefer to obtain accurate
change potentials in the region where the occupied orb
have nonvanishing amplitudes and to achieve the mini
total energies at the sacrifice of the correct asymptotic beh
ior, which may be recovered by grafting the21/r curve to
the exchange potential.63 Ivanov et al.64 also proposed a
scheme in which the HOMO condition was imposed up
either theS or V algorithm in each SCF cycle with the aid o
the Lagrange multiplier method. However, in this study,
do not consider this option, either, for the same reason m
tioned above.

When the orbital basis sets are sufficiently large, an
change potential calculated from the LCAO OEP meth
agrees reasonably well with the correct potential for the
termediate values ofr when the former potential is shifted b
an appropriate constant. Likewise, the differences betw
the orbital energies computed by the LCAO OEP method
the correct values are usually~but not always! approximated
well by the same constant~Table I!. This additive constan
arises primarily from the fact that generally neither theS or
V algorithm observes the correct21/r behavior at larger ,
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while they can reproduce the shape of the potentials rea
ably accurately for the intermediate values ofr . When theS
algorithm is employed, the exchange potentials are too s
low as compared with the correct potentials in the wh
range ofr , owing to the rapid Gaussian falloff of the forme
potentials. Thus, the exchange potentials obtained from thS
algorithm are normally displaced upwards from the corr
potentials. The magnitude of the displacement decreases
tematically as the orbital basis set increases, but it is
generally possible to achieve the limit in which the displac
ment vanishes. The exchange potentials obtained from thV
algorithm, on the other hand, may be displaced either
wards or downwards from the correct potentials and it
sometimes possible to achieve the limit in which the d
placement practically vanishes. It should be emphasized
the origin of this artifactual displacement, which is appro
mated well by a constant, is not the formal indeterminacy
the exchange potentials of the OEP equation establishe
the preceding section. Indeed, the difference between the
culated and correct exchange potentials is not strictly a c
stant but a function which is flat in the intermediate region
r but decays to zero at larger and is one of the null-spac
functions of the kernel matrix. The exchange potential a
the orbitals must satisfy not only Eqs.~1! and ~29! but also
the self-consistency condition~5! simultaneously. The ex-
change potential that differs from the true solution of t
OEP equation by such a null-space function obviously sa
fies the self-consistency condition for the same set of or
als.

Equations~29! and ~49! further indicate a primary dif-
ference between the LCAO OEP method and other LC
SCF methods such as the HF method and various appr
mate DFT methods. In the latter SCF procedures, the po
tials that are needed to define the Fock or KS Hamilton
matrix elements are given unambiguously in terms of so
known quantities~orbitals, density, etc.! in each cycle of
SCF. In the LCAO OEP method, on the other hand, only
projection of the VXs

OEP(r ) onto the space spanned b
$c is(r )cas(r )% is unambiguously given in terms of orbita
and orbital energies, but the projection ofVXs

OEP(r ) onto the
null space is not provided by the OEP equation. Therefo
the exchange matrix elements evaluated withṼXs

OEP(r ) and
those withVXs

OEP(r ) may be substantially different when th
orbital basis set is small. However, the exchange matrix
ments that involve an occupied orbital and a virtual orbi
remain the same, i.e.,

E c is~r !VXs
OEP~r !cas~r !dr

5E c is~r !ṼXs
OEP~r !cas~r !dr , ~61!

because any null-space function is orthogonal to all the pr
ucts of occupied and virtual orbitals. Equation~61! indicates
that the null-space function introduced in the exchange
tentials may rotate the occupied orbitals among themse
and the virtual orbitals among themselves, but does not
the occupied and virtual orbitals. As the OEP total ene
expression, which is the same as the HF total energy exp
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sion, is invariant to the rotation among just the occup
orbitals and the rotation among just the virtual orbitals,
null-space function does not alter the total energy. This
plains the above-mentioned observation that even when
exchange potential obtained from the LCAO OEP method
unrealistic as in Fig. 1, the total energy tends to remain
curate and reliable. For the helium atom, where there is o
one occupied orbital, the shape of the occupied orbital is a
hardly affected by the distortion of the exchange potent
while the orbital energy may be substantially displaced.

As a second example, we choose the hydrogen molec
for which the Slater and KLI potentials again amount to t
correct OEP potential. Figures 7 and 8 are the plot of
exchange potentials computed by theS and V algorithms,
respectively, along theC` axis. We find that the exchang
potential obtained from theS algorithm has unphysical os
cillations around the nuclei but overall it closely approx
mates the correct potential. These oscillations are suppre
by using theV algorithm~Fig. 8!. In the region shown in the
figure, the calculated potential also has the correct21/r be-
havior, although at larger it starts to deviate from21/r . It
may be noticed that the LDA and Becke88 potentials h
cusps at the nuclei and are qualitatively different from
correct potential that does not have such cusps. This refl
the fact that the correct potential is an electrostatic poten
created by the electron density, Eq.~22!, and is a more
slowly varying function than the electron density itself.
this light and also remembering that the21/r asymptotic
behavior is essential in the accurate prediction of the p
tions of Rydberg excited states by time-dependent den
functional theory,63,65 we consider it an important and inte
esting problem to develop an exchange functional whose

FIG. 7. The exchange potentials of the hydrogen molecule~0.741 Å! along
the C` axis. The orbital basis set and the potential basis set both consi
even-tempered 14s-type, 5p-type, and 2~6-component Cartesian! d-type
functions with the exponents given by 0.132n(0<n<13), 0.434n(0<n
<4), and 1.634n(0<n<1), respectively. The exchange potential obtain
from theS algorithm of the LCAO OEP method is shifted by20.2664 a.u.
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responding exchange potential is an electrostatic poten
created by an approximate functional of the electron dens

In Figs. 9 and 10, we plot the exchange potentials of
neon atom computed by theS and V algorithms, respec-
tively, as a function of the distance from the nucleus (r ). For
this 10-electron system, the Slater potential and the KLI

of
FIG. 8. The exchange potentials of the hydrogen molecule~0.741 Å! along
the C` axis. The basis sets employed are the same as in Fig. 7. The
change potential obtained from theV algorithm of the LCAO OEP method
is shifted by20.1884 a.u. The OEP potential and the Slater or KLI poten
are hardly discernible.

FIG. 9. The exchange potentials of the neon atom as a function of
distance from the nucleus (r ). We employ the Partridge-3 basis set for th
orbitals and thes-type functions of the same basis set for potential. T
exchange potential obtained from theS algorithm of the LCAO OEP method
is shifted by20.2345 a.u.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tential are appreciably different from each other in the vic
ity of the nucleus, although they converge at the same21/r
asymptotic curve at larger . The exchange potentials, th
total energies, and the orbital energies obtained from thS
and V algorithms of the LCAO OEP method are consiste
with each other, and hence are reliable except for the
physical oscillations at the nucleus. They both have the
rect21/r asymptotic behavior in the range ofr shown in the
figure, and the total energy is also in agreement with
result of the grid-based numerical OEP calculation of En
and Vosko36 ~Table I!. The KLI scheme approximates th
exchange potential and exchange energy of the LCAO O
method remarkably well. The only visible difference in th
exchange potential is that the structure~bump! at 0.2,r
,0.6 in the intershell region is more pronounced in LCA
OEP than in KLI. Note also that the LCAO KLI calculatio
reproduces the total energy and the highest occupied or
energy computed by the grid-based numerical K
calculation49 ~Table I!. The LDA and Becke88 potentials a
well as the Slater potential exhibit a marked change in
slope atr'0.3, but they do not have the structure in t
intershell region, which is known to be importa
energetically.33 The LDA and Becke88 predict the potentia
that are too shallow almost everywhere in the space as c
pared with LCAO OEP and KLI, while the Slater potential
too deep in the range of 0,r ,0.4, which is documented
already.8

Figures 11–14 plot the exchange potentials of the ni
gen molecule and lithium fluoride computed by theS andV
algorithms along theC` axis of the respective molecule
The requirement for the size of orbital basis set is mu
greater for these molecules than for spherical systems,
the uncontracted 6-31111G(2d,2p) basis set that we em

FIG. 10. The exchange potentials of the neon atom as a function of
distance from the nucleus (r ). The basis sets employed are the same a
Fig. 9. The exchange potential obtained from theV algorithm of the LCAO
OEP method is shifted by20.0868 a.u.
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ploy is perhaps among the minimal basis sets for which r
sonably reliable exchange potentials can be obtained. Fo
nitrogen molecule, however, the result of theS algorithm
~Fig. 11! slightly differs from that of theV algorithm ~Fig.
12! in the depth of the potential at aroundx50, and accord-
ingly, the deviations from the exchange virial theorem a
substantial. For lithium fluoride, we achieve exchange pot
tials, total energies, and orbital energies that are consis

e
n

FIG. 11. The exchange potentials of nitrogen molecule~1.098 Å! along the
C` axis. We employ an uncontracted 6-31111G(2d,2p) basis set for the
orbitals and an uncontracted 6-31G basis set supplemented with a s
s-type, p-type, and 6-component Cartesiand-type functions with a shared
exponent of 0.8 for the potential. The exchange potential obtained from
S algorithm of the LCAO OEP method is shifted by20.2523 a.u.

FIG. 12. The exchange potentials of nitrogen molecule~1.098 Å! along the
C` axis. The basis sets employed are the same as in Fig. 11. The exch
potential obtained from theV algorithm of the LCAO OEP method is shifted
by 0.4362 a.u.
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between theS and V algorithms, and hence we consid
them to be reasonably accurate. In practice, it is difficult
remove the spikes in the exchange potentials of the LC
OEP method at the nuclei, which are the artifacts aris
from the basis-set incompleteness. The KLI potentials ag

FIG. 13. The exchange potentials of lithium fluoride molecule~1.564 Å!
along theC` axis. We employ an uncontracted 6-31111G(2d,2p) basis
set for the orbitals and an uncontracted 6-31G basis set supplemented
set of s-type, p-type, and 6-component Cartesiand-type functions with a
shared exponent of 0.2~lithium! and a set of s-type, p-type, and
6-component Cartesiand-type functions with a shared exponent of 0
~fluorine! for the potential. The exchange potential obtained from theS
algorithm of the LCAO OEP method is shifted by20.0986 a.u.

FIG. 14. The exchange potentials of lithium fluoride molecule~1.564 Å!
along theC` axis. The basis sets employed are the same as in Fig. 13.
exchange potential obtained from theV algorithm of the LCAO OEP
method is shifted by 0.1984 a.u.
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approximate the potentials of the LCAO OEP method
both the molecules well. The potentials of the KLI an
LCAO OEP methods are indistinguishable from each ot
in the vicinity of the nuclei and also in the asymptotic regi
shown in the figures. The KLI potentials have less p
nounced structures~bumps! in the intershell regions than th
potentials of the LCAO OEP method, and the former app
to smooth the structures of the latter. The comparison of
total energies computed by the LCAO OEP and grid-ba
numerical KLI methods~Table I! indicates that the basis-se
dependence of the total energies is much greater than
errors introduced by the KLI approximation~Ref. 68!.

IV. CONCLUSION

We have illustrated the computational difficulties in th
LCAO OEP method that we28 and Görling29 have developed
recently and identified the source of these difficulties. W
have proved that in the limit of an infinite basis set an e
change potential of the OEP method can be uniquely de
mined up to an additive constant by the OEP equation alo
substantiating the conclusion drawn earlier by Go¨rling and
Levy.18 Therefore, the above-mentioned computational di
culties are primarily due to the incompleteness of the orb
basis set. These effects are more profound on the O
method than on other SCF procedure such as the LCAO
or LCAO DFT methods, owing to the fact that the OE
equation unambiguously defines the exchange potentia
the space spanned by the product of occupied and vir
orbitals but not in the entire Hilbert space. Nonetheless,
making a judicious choice of the orbital and potential ba
sets, we can obtain reasonably accurate exchange pote
for atoms and molecules. Generally, a large uncontracted
sis set must be employed for orbitals, whereas for the po
tial, a basis set that is smaller than the orbital basis se
recommended. Even when the orbital basis set is sufficie
large to accurately reproduce the exchange potential in
vicinity of the nuclei, it is usually difficult to achieve the
correct21/r decay throughout the asymptotic region, as t
occupied orbitals vanish computationally at larger . Conse-
quently, we must shift the calculated exchange potentials
that the HOMO condition is satisfied for the shifted pote
tials. We have observed that, for the systems where the
rect exchange potentials are analytically known, this pro
dure provides us with an exchange potential of the O
method that is indistinguishable from the correct potentia
the vicinity of the nuclei and in a respectable portion of t
asymptotic region. For larger atomic and molecular syste
two different algorithms provide exchange potentials that
consistent with each other when sufficiently large orbital b
sis sets are employed, and hence we consider that they
reasonably converged. Not only for atoms but also for m
ecules, the KLI approximation has turned out to be accur
and robust, although it misses some structures in the in
shell regions, and is a pragmatic means of generating re
ence exchange potentials against which approximate
change functionals can be tested and calibrated.66–70

However, the OEP method itself, as well as the KLI schem
will continue to serve as a universal technique for mappin
nonlocal potential onto a local potential and is essentia
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obtaining accurate correlation potentials from some exp
itly orbital-dependent correlation functionals established
the complementary wave function theory.26
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