Excitations and benchmark ensemble density functional theory for two electrons: Supplemental Material

Aurora Pribram-Jones,¹ Zeng-hui Yang,² John Trail,³ Kieron Burke,¹ Richard J. Needs,³ and Carsten A. Ullrich² ¹⁾Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA

²⁾Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211,

USA

³⁾ Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(Dated: 21 February 2014)

Numerical details, additional data, extended tables, and supplemental figures.

PACS numbers: 31.10.+z, 31.15.E-, 31.15.ee, 71.15.Qe

I. DISCRETIZATION SCHEMES

Using 1D systems as an example, the first scheme we tested is

$$-\frac{1}{2}\frac{d^2\phi(x)}{dx^2} \approx \frac{\phi(x_i)}{(x_i - x_{i-1})(x_{i+1} - x_i)}$$
$$-\frac{\phi(x_{i-1})}{(x_i - x_{i-1})(x_{i+1} - x_{i-1})} - \frac{\phi(x_{i+1})}{(x_{i+1} - x_i)(x_{i+1} - x_{i-1})}.$$
(1)

The second scheme is derived following Ref. 1, where

$$-\frac{1}{2}\frac{d^{2}\phi(x)}{dx^{2}} \approx \frac{\phi(x_{i})}{4} \left\{ \frac{1}{(x_{i+1}-x_{i})^{2}} \left[1 + \frac{x_{i+2}-x_{i}}{x_{i+1}-x_{i-1}} \right] + \frac{1}{(x_{i}-x_{i-1})^{2}} \left[1 + \frac{x_{i}-x_{i-2}}{x_{i+1}-x_{i-1}} \right] \right\} - \frac{\phi(x_{i-1})}{4(x_{i}-x_{i-1})^{2}} \left[\sqrt{\frac{x_{i}-x_{i-2}}{x_{i+1}-x_{i-1}}} + \sqrt{\frac{x_{i+1}-x_{i-1}}{x_{i}-x_{i-2}}} \right] - \frac{\phi(x_{i+1})}{4(x_{i+1}-x_{i})^{2}} \left[\sqrt{\frac{x_{i+1}-x_{i-1}}{x_{i+2}-x_{i}}} + \sqrt{\frac{x_{i+2}-x_{i}}{x_{i+1}-x_{i-1}}} \right].$$

$$(2)$$

On a uniform grid, both discretization schemes reduce to the same form, and the error is on the order of $(x_i - x_{i-1})^2 d^4 \phi(x)/dx^4$. On a nonuniform grid, Eq. (2) has smaller systematic error because its Hamiltonian matrix stays hermitian and simplifies diagonalization. On the other hand, the leading term of the inherent error of the discretization for Eq. (1) is

$$-\frac{h^2}{24}\frac{d^4\phi(x)}{dx^4} - \frac{a}{6}\frac{d^3\phi(x)}{dx^3},$$
 (3)

and that for Eq. (2) is

$$\left(-\frac{ab}{32h^4} - \frac{5ac}{16h^4} + \frac{-a+b+c}{8h^3}\right)\phi(x), \qquad (4)$$

where $h = x_i - x_{i-1}$, $a = x_{i+1} - 2x_i + x_{i-1}$, $b = -x_{i-2} + 2x_{i-1} - x_i$, $c = x_{i+2} - x_{i+1} - x_i + x_{i-1}$. The error (4) is larger than the error (3) in general.

Eqs. (1) and (2) were tested on all the systems studied in this paper. We find that both work well for the 1D box, but for atomic systems, Eq. (2) incurs noticable errors near r = 0 in the density. This error propagates, producing artificial dips in $v_{\rm XC}$. We also find the error in the density near r = 0 using Eq. (1) is larger than the error at other grid points, but is still orders of magnitude smaller than that of Eq. (2). All the results presented in this paper have therefore been obtained using Eq. (1).

II. 1D FLAT BOX ENSEMBLES

The first excited state of the box is a triplet state, so the calculation of $E_{\rm HX}$ needs to reflect the triplet nature of the first excited states:

$$E_{\rm HX} = (1 - 3\mathfrak{w}) \left\langle \Psi_{\rm s,0} \left| \hat{V}_{\rm ee} \right| \Psi_{\rm s,0} \right\rangle + w \sum_{i=1}^{3} \left\langle \Psi_{\rm s,i} \left| \hat{V}_{\rm ee} \right| \Psi_{\rm s,i} \right\rangle,$$
(5)

where the multi-determinant wavefunctions are

$$\begin{split} \Psi_{\mathrm{s},1}(\mathbf{r},\mathbf{r}') &= \frac{1}{2} \left| \begin{array}{c} \phi_{1\uparrow}(\mathbf{r}) & \phi_{2\downarrow}(\mathbf{r}) \\ \phi_{1\uparrow}(\mathbf{r}') & \phi_{2\downarrow}(\mathbf{r}') \end{array} \right| + \frac{1}{2} \left| \begin{array}{c} \phi_{1\downarrow}(\mathbf{r}) & \phi_{2\uparrow}(\mathbf{r}) \\ \phi_{1\downarrow}(\mathbf{r}') & \phi_{2\uparrow}(\mathbf{r}') \end{array} \right|, \\ \Psi_{\mathrm{s},2}(\mathbf{r},\mathbf{r}') &= \frac{1}{\sqrt{2}} \left| \begin{array}{c} \phi_{1\uparrow}(\mathbf{r}) & \phi_{2\uparrow}(\mathbf{r}) \\ \phi_{1\uparrow}(\mathbf{r}') & \phi_{2\uparrow}(\mathbf{r}) \end{array} \right|, \\ \Psi_{\mathrm{s},3}(\mathbf{r},\mathbf{r}') &= \frac{1}{\sqrt{2}} \left| \begin{array}{c} \phi_{1\downarrow}(\mathbf{r}) & \phi_{2\downarrow}(\mathbf{r}) \\ \phi_{1\downarrow}(\mathbf{r}') & \phi_{2\downarrow}(\mathbf{r}) \end{array} \right|. \end{split}$$

$$\end{split}$$

$$(6)$$

Using this scheme, Table I shows calculated excitation energies for various w-values with high accuracy, including a double excitation energy. In Table II, we calculate energy components, which satisfy the exact conditions derived in the body of the paper and show the strong w-dependence of these quantities.

Exact ensemble densities (Fig. 1) and KS potentials (2) for the 1d box show that the bump up in the potentials near the center of the box are needed to ensure that the ensemble KS densities have characteristics of the excited states, with larger bumps corresponding to higher proportions of the excited states in the ensembles.

2-multiplet ensemble: $E_1 - E_0 = 12.4399$ Hartree										
\mathtt{W}_2	0.25	0.21875	0.1875	0.15625	0.125	0.09375	0.0625	0.03125		
$E_{1,w_2}^{\rm KS} - E_{0,w_2}^{\rm KS}$	13.9402	13.9367	13.9322	13.9267	13.9201	13.9125	13.9036	13.8932		
$\partial E_{\mathrm{xc},\mathrm{w}_2}[I=2,n]/\partial \mathrm{w}_2 _{n=n_{\mathrm{w}_2}}$	-4.5010	-4.4905	-4.4769	-4.4604	-4.4407	-4.4178	-4.3910	-4.3598		
$(E_1 - E_0)_{w_2}$	12.4399	12.4399	12.4399	12.4399	12.4399	12.4399	12.4399	12.4399		
3-multiplet ensemble: E_2 –	$E_0 = 15.0$	6202 Hart	ree							
W3	0.2	0.175	0.15	0.125	0.1	0.075	0.05	0.025		
$E_{2,w_3}^{\rm KS} - E_{0,w_3}^{\rm KS}$	14.2179	14.1817	14.1460	14.1106	14.0757	14.0412	14.0072	13.9735		
$\partial E_{\mathrm{xc},\mathrm{w}_3}[I=3,n]/\partial \mathrm{w}_3 _{n=n_{\mathrm{w}_3}}$	2.7358	2.7448	2.7538	2.7626	2.7713	2.7799	2.7884	2.7969		
$(E_2 - E_0)_{\mathbf{w}_2,\mathbf{w}_3}$	15.6202	15.6202	15.6202	15.6202	15.6201	15.6201	15.6201	15.6202		
4-multiplet ensemble: E_3 –	$E_0 = 28.8$	8561 Hart	ree (doub	le-excitati	ion)					
\mathtt{W}_4	0.166666	0.145833	0.125	0.104166	0.083333	0.0625	0.041666	0.020833		
$E_{3,\mathtt{w}_4}^{\mathrm{KS}} - E_{0,\mathtt{w}_4}^{\mathrm{KS}}$	28.7534	28.7081	28.6646	28.6228	28.5826	28.5439	28.5066	28.4706		
$\partial E_{\mathrm{xc},\mathbf{w}_4}[I=4,n]/\partial \mathbf{w}_4 _{n=n_{\mathbf{w}_4}}$	1.1061	1.0433	1.0694	1.0945	1.1186	1.1418	1.1642	1.1858		
$(E_3 - E_0)_{w_2, w_3, w_4}$	28.8561	28.8561	28.8561	28.8561	28.8561	28.8561	28.8561	28.8561		
5-multiplet ensemble: E_4 –	$E_0 = 37.7$	7028 Hart	ree							
W_5	0.111111	0.097222	0.083333	0.069444	0.055555	0.041666	0.027777	0.013888		
$E_{4,w_5}^{\rm KS} - E_{0,w_5}^{\rm KS}$	38.8375	38.8436	38.8494	38.8550	38.8602	38.8652	38.8700	38.8746		
$\partial E_{\mathrm{xc},\mathbf{w}_{5}}[I=5,n]/\partial\mathbf{w}_{5} _{n=n_{\mathbf{w}_{5}}}$	-1.1279	-1.1529	-1.1766	-1.1991	-1.2205	-1.2408	-1.2602	-1.2787		

TABLE I. Excitation energies of the 1D box calculated at different w values using the exact ensemble KS systems. All energies are in Hartree. Accurate excitation energies are extracted for all values of w and M tested, including a double excitation.

W	0.25	0.21875	0.1875	0.15625	0.125	0.09375	0.0625	0.03125
$E_{\tt w}$	24.4525	23.2862	22.1200	20.9537	19.7875	18.6213	17.4550	16.2888
$T_{\rm S}$	21.0032	19.6171	18.2310	16.8450	15.4590	14.0730	12.6871	11.3013
$E_{\rm H}$	9.7265	9.8134	9.9084	10.0116	10.1230	10.2425	10.3702	10.5061
$E_{\rm XC}$	-6.2773	-6.1443	-6.0195	-5.9029	-5.7945	-5.6943	-5.6023	-5.5186
$E_{\rm HX}$	4.3150	4.4414	4.5678	4.6942	4.8205	4.9467	5.0729	5.1990
$E_{\rm X}$	-5.4115	-5.3720	-5.3406	-5.3175	-5.3025	-5.2958	-5.2973	-5.3070
$E_{\rm C}$	-0.8658	-0.7723	-0.6788	-0.5854	-0.4919	-0.3985	-0.3050	-0.2116
$T_{\rm C}$	0.0320	0.0422	0.0523	0.0623	0.0724	0.0823	0.0923	0.1021
$V_{\rm C}$	-0.8978	-0.8145	-0.7311	-0.6477	-0.5643	-0.4808	-0.3973	-0.3137

TABLE II. Energy decomposition of the two-multiplet ensemble of the 1D box at different w values. All energies are in Hartree. The Hartree and exchange energies are defined with respect to the soft-Coulomb interaction in Eq. (78). Listed $E_{\rm H}$ values are that of $E_{\rm H}^{\rm trad}$, and listed $E_{\rm XC}$ values are compatible with that.

III. CHARGE-TRANSFER EXCITATION WITH 1D BOX

Charge-transfer excitations are notoriously difficult, as described in the main text. Here, using a charge-transfer 1d box model, we show that ensemble DFT has no difficulty extracting charge-transfer excitation energies.

IV. HOOKE'S ATOM

Figures 3 and 4 demonstrate how little densities and potentials for the Hooke's atom ensemble change with w. In addition, the numerical difficulties near r = 0 are obvious in the potential. Despite these differences from

the other examples, extracted excitation energies remain highly accurate.

V. HELIUM ENSEMBLES: STRICTLY SINGLET, MIXED SYMMETRY, AND STRICTLY TRIPLET

Helium's multiplet structure allows us to build a variety of ensembles from the first few excited states. This allows us to test the symmetry projected ensembles for singlets and triplets, as well as mixed symmetry biensembles and ensembles of mixed symmetry and multiple excited states. The 2-multiplet ensemble is constructed of the singlet ground state and the triplet first

3w	0.5	0.4	0.3	0.2	0.1	0.08	0.06	0.04	0.02
$E_{1,\mathrm{w}}^{\mathrm{KS}} - E_{0,\mathrm{w}}^{\mathrm{KS}}$	2.2048	2.2678	2.3221	2.3692	2.4092	2.4161	2.4225	2.4280	2.4317
$1/3\partial E_{\mathrm{xc},\mathrm{w}}[n]/\partial n _{n=n_\mathrm{w}}$	0.1993	0.1287	0.0748	0.0299	-0.0108	-0.0178	-0.0242	-0.0297	-0.0334
$(E_1 - E_0)_{w}$	2.4042	2.3965	2.3970	2.3990	2.3983	2.3983	2.3983	2.3983	2.3983
$E_{\mathtt{w}}$	139.453	139.214	138.974	138.734	138.494	138.446	138.398	138.350	138.302
$T_{ m S}$	82.6734	77.0316	71.4367	65.8806	60.3570	59.2558	58.1556	57.0564	55.9582
E_{H}	127.587	133.429	141.199	150.897	162.523	165.080	167.714	170.425	173.213
V	12.0170	11.1226	10.2281	9.3337	8.4393	8.2604	8.0815	7.9026	7.7237
$E_{\rm XC}$	-82.8238	-82.3694	-83.8900	-87.3775	-92.8258	-94.1503	-95.5529	-97.0338	-98.5927
$E_{\rm HX}$	51.2492	58.7052	66.1011	73.4495	80.7598	82.2179	83.6749	85.1307	86.5854
$E_{\mathbf{x}}$	-76.3375	-74.7235	-75.0977	-77.4475	-81.7637	-82.8622	-84.0391	-85.2942	-86.6275
$E_{\rm C}$	-6.4863	-7.6459	-8.7923	-9.9300	-11.0621	-11.2880	-11.5139	-11.7396	-11.9652
$T_{ m C}$	5.1280	5.9018	6.6288	7.3170	7.9726	8.1003	8.2269	8.3525	8.4770
$V_{\rm C}$	-11.6142	-13.5477	-15.4211	-17.2470	-19.0347	-19.3883	-19.7407	-20.0920	-20.4422

TABLE III. First excitation energy and energy decomposition of the two-multiplet ensemble of the 1D charge-transfer box at different \mathbf{w} values. All energies are in eV. Exact first excitation energy $E_1 - E_0 = 2.3983$ eV. The Hartree and exchange energies are defined with respect to the soft-Coulomb interaction in Eq. (78). Listed $E_{\rm H}$ values are that of $E_{\rm H}^{\rm trad}$, and listed $E_{\rm XC}$ values are compatible with that.

W	0.5	0.4	0.3	0.2	0.1	0.08	0.06	0.04	0.02
$\epsilon_2^{(w)} - \epsilon_1^{(w)}$	11.774	11.713	11.653	11.595	11.536	11.524	11.512	11.499	11.487
$\partial E_{\mathrm{XC}}[w,n]/\partial w _{n=n^{(w)}}$	-1.988	-1.927	-1.868	-1.809	-1.750	-1.738	-1.726	-1.714	-1.701
ω	9.786	9.786	9.786	9.786	9.786	9.786	9.786	9.786	9.786
Relative error	8×10^{-6}	-3×10^{-6}	-3×10^{-6}	5×10^{-6}	-7×10^{-8}	-2×10^{-7}	-2×10^{-7}	-6×10^{-8}	-5×10^{-7}
E_{w}	59.310	58.331	57.353	56.374	55.396	55.200	55.004	54.808	54.613
T	21.564	20.864	20.164	19.465	18.765	18.625	18.485	18.345	18.205
$T_{ m S}$	21.084	20.323	19.563	18.804	18.046	17.894	17.743	17.592	17.440
$E_{\rm xc}$	-15.156	-15.123	-15.097	-15.079	-15.069	-15.068	-15.068	-15.067	-15.067
$E_{\rm HX}$	12.733	12.993	13.252	13.508	13.763	13.813	13.864	13.914	13.965
$E_{ m H}$	26.424	26.732	27.047	27.370	27.698	27.765	27.832	27.899	27.967
$E_{\mathbf{x}}$	-13.690	-13.739	-13.796	-13.861	-13.936	-13.952	-13.968	-13.985	-14.002
$E_{ m C}$	-1.466	-1.384	-1.301	-1.218	-1.134	-1.116	-1.100	-1.082	-1.066
$T_{ m C}$	0.480	0.541	0.602	0.661	0.719	0.731	0.742	0.754	0.765
$T_{ m C}^{ m virial}$	0.496	0.557	0.617	0.676	0.734	0.746	0.757	0.769	0.780
$V_{\rm C}$	-1.945	-1.925	-1.903	-1.879	-1.853	-1.847	-1.842	-1.836	-1.830

TABLE IV. First excitation energy and energy decomposition of the Hooke's atom at different w values. All energies are in eV. $T = -E + 3V_{\text{ext}}$ according to the virial theorem for Hooke's atom with interacting electrons. The xc virial theorem still holds, but due to the numerical convergence problem of v_{xc} , the error is bigger than those of the helium atom.

excited state. The 3-multiplet ensemble includes ground, triplet first excited, and singlet second excited states. The singlet ensemble, the focus of our previous work, is built from the ground and second excited states. Finally, a triplet ensemble is constructed from the triplet 1s2s first excited state and the triplet 1s3s excited state.

A. Singlet Helium Ensemble

Table VII shows the variation in exchange and exchange-correlation energy components with w for the approximations analyzed in the main text. None of these

approximations produce exchange-correlation potentials with the bumps recovered by our work's symmetryeigenstate Hartree-exchange (SEHX) approximation.

B. Singlet-Triplet Helium Ensemble

C. Singlet-triplet-singlet ensemble

The singlet-triplet-singlet ensemble allows us to compare excitation energies extracting for the second excited state in two different ensembles: the singlet ensemble and

2-multiplet ensemble: $E_1 - E_0 = 19.8231 eV$										
\mathtt{W}_2	0.25	0.21875	0.1875	0.15625	0.125	0.09375	0.0625	0.03125		
$E_{1,\mathbf{w}_2}^{\mathrm{KS}} - E_{0,\mathbf{w}_2}^{\mathrm{KS}}$	25.1035	24.0231	23.3161	22.8269	22.4676	22.1832	21.9303	21.6502		
$\partial E_{\mathrm{xc},\mathbf{w}_2}[n]/\partial \mathbf{w}_2 _{n=n_{\mathbf{w}_2}}$	-15.8099	-12.6093	-10.4842	-9.0146	-7.9358	-7.0819	-6.3458	-5.4351		
$(E_1 - E_0)_{w_2}$	19.8336	19.8200	19.8213	19.8220	19.8224	19.8226	19.8150	19.8385		
3-multiplet ensemble:	$E_2 - E_0$	= 20.619	01 eV							
W3	0.2	0.175	0.15	0.125	0.1	0.075	0.05	0.025		
$E_{2,w_3}^{\mathrm{KS}} - E_{0,w_3}^{\mathrm{KS}}$	26.8457	26.5886	26.3440	26.1112	25.8895	25.6783	25.4770	25.2853		
$\partial E_{\mathrm{xc},\mathbf{w}_3}[n]/\partial\mathbf{w}_3 _{n=n_{\mathbf{w}_3}}$	-0.9596	-0.8954	-0.8342	-0.7761	-0.7207	-0.6680	-0.6176	-0.5696		
$(E_2 - E_0)_{\mathbf{w}_2,\mathbf{w}_3}$	20.6270	20.6168	20.6178	20.6182	20.6184	20.6185	20.6129	20.6306		

TABLE V. Excitation energies of the helium atom at different w values using the exact ensemble KS systems. All energies are in eV.

W	0.5	0.4	0.3	0.2	0.1	0.08	0.06	0.04	0.02
$E_{\mathtt{w}}$	-68.70	-70.76	-72.83	-74.89	-76.95	-77.36	-77.78	-78.19	-78.60
T	68.70	70.76	72.83	74.89	76.95	77.36	77.78	78.19	78.60
$T_{\rm S}$	67.74	69.75	71.79	73.84	75.92	76.33	76.75	77.17	77.58
$V_{\rm ext}$	-153.66	-159.68	-165.70	-171.72	-177.73	-178.94	-180.14	-181.34	-182.55
$E_{\rm XC}$	-21.86	-22.96	-24.23	-25.66	-27.26	-27.60	-27.94	-28.30	-28.65
$E_{\rm HX}$	18.36	20.37	22.31	24.21	26.06	26.42	26.79	27.15	27.51
$E_{\rm H}$	39.09	42.13	45.32	48.65	52.13	52.84	53.56	54.29	55.02
$E_{\rm X}$	-20.73	-21.76	-23.00	-24.44	-26.07	-26.42	-26.77	-27.14	-27.50
$E_{\rm C}$	-1.134	-1.200	-1.226	-1.220	-1.189	-1.180	-1.171	-1.161	-1.150
$T_{\rm C}$	0.965	1.016	1.041	1.046	1.034	1.030	1.026	1.021	1.015
$T_{\rm C}^{\rm virial}$	0.963	1.014	1.039	1.044	1.032	1.028	1.023	1.018	1.013
$V_{\rm C}$	-2.100	-2.216	-2.267	-2.266	-2.223	-2.211	-2.196	-2.182	-2.165

TABLE VI. Exact ensemble energy components of the singlet ensemble of helium atom. All the energies are in eV. T = -E according to the virial theorem for atoms. $E_{\rm H}$ is defined in Eq. (29). $T_{\rm C}^{\rm virial}$ is obtained by the virial theorem Eq. (62). The differences between $T_{\rm C}$'s and $T_{\rm C}^{\rm virial}$'s are due to numerical errors.

FIG. 1. Exact ensemble densities of the 1D box with two electrons. The ensemble contains the ground state and the first (triplet) excited state.

the 3-multiplet ensemble shown below. The incredibly accurate results given in our previous work, compared to those of the main text, show that symmetry projec-

FIG. 2. Exact ensemble KS potentials of the 1D box with two electrons. The ensemble contains the ground state and the first (triplet) excited state.

tion can provide more accurate calculations of excitation energies.

W	0.5	0.4	0.3	0.2	0.1	0.08	0.06	0.04	0.02
$E_{\rm XC}^{\rm qLDA}$	-20.96	-22.10	-23.28	-24.50	-25.76	-26.02	-26.28	-26.54	-26.81
$E_{\rm X}^{\rm Nagy}$	-19.39	-20.46	-21.85	-23.55	-25.56	-26.00	-26.45	-26.92	-27.39
$E_{\rm x}^{\rm EXX}$	-20.91	-21.91	-23.12	-24.52	-26.11	-26.45	-26.80	-27.15	-27.51
$G_{\rm H}$	1.604	1.547	1.359	1.039	0.587	0.481	0.369	0.252	0.129
$G_{\mathbf{X}}$	-0.090	-0.093	-0.086	-0.069	-0.041	-0.034	-0.026	-0.018	-0.009

TABLE VII. qLDA and EXX energy components of the singlet ensemble of helium atom. $G_{\rm H}$ and $G_{\rm X}$ are the ghost terms in $E_{\rm H}$ and $E_{\rm X}^{\rm Nagy}$, respectively.

W	0.25	0.21875	0.1875	0.15625	0.125	0.09375	0.0625	0.03125
$\overline{E_{1,w}^{\mathrm{KS}} - E_{0,w}^{\mathrm{KS}}}$	25.1035	24.0231	23.3161	22.8269	22.4676	22.1832	21.9303	21.6502
$\partial E_{\mathrm{xc},\mathrm{w}}[n]/\partial w _{n=n_{\mathrm{w}}}$	-15.8099	-12.6093	-10.4842	-9.0146	-7.9358	-7.0819	-6.3458	-5.4351
$(E_1 - E_0)_{w}$	19.8336	19.8200	19.8213	19.8220	19.8224	19.8226	19.8150	19.8385
$E_{\mathtt{w}}$	-64.1459	-66.0043	-67.8628	-69.7212	-71.5796	-73.4380	-75.2964	-77.1548
$T_{ m S}$	63.5171	65.2586	67.0297	68.8232	70.6343	72.4595	74.2966	76.1437
$E_{\rm H}$	33.3604	35.7433	38.2452	40.8662	43.6061	46.4652	49.4432	52.5403
V	-140.190	-145.635	-151.080	-156.525	-161.970	-167.416	-172.861	-178.306
$E_{\rm XC}$	-20.8332	-21.3709	-22.0573	-22.8851	-23.8495	-24.9472	-26.1757	-27.5333
$E_{\rm HX}$	13.5945	15.5612	17.4468	19.2723	21.0520	22.7959	24.5113	26.2033
$E_{\rm X}$	-19.7658	-20.1821	-20.7984	-21.5938	-22.5541	-23.6692	-24.9319	-26.3369
$E_{\rm C}$	-1.0673	-1.1889	-1.2590	-1.2913	-1.2954	-1.2780	-1.2438	-1.1963
$T_{\rm C}$	0.6289	0.7457	0.8330	0.8980	0.9453	0.9785	0.9998	1.0112
$T_{\rm C}^{\rm virial}$	0.6232	0.7399	0.8270	0.8918	0.9390	0.9719	0.9931	1.0043
$V_{\rm C}$	-1.6962	-1.9346	-2.0920	-2.1893	-2.2408	-2.2564	-2.2436	-2.2075

TABLE VIII. First excitation energy and energy components of He. All the energies are in eV. Exact first excitation energy $E_1 - E_0 = 19.8231$ eV. T = -E according to the virial theorem for atoms. $E_{\rm H}$ is defined using the traditional definition given in the main text. $T_{\rm C}^{\rm virial}$ is obtained by the virial theorem derived in this work.

FIG. 3. Exact ensemble radial densities $[r^2 n^{(w)}(r)]$ of the Hooke's atom.

FIG. 4. Exact ensemble xc potentials of the Hooke's atom, with additive constants adjusted to align the potential curves.

of the 1s2s and 1s3s triplet states are

$$E_0^{\text{triplet}} = -59.1902 \,\text{eV},$$

 $E_1^{\text{triplet}} = -56.2911 \,\text{eV}.$

The triplet ensemble provides an alternative symmetry-projected ensemble to test. The energies

D.

Triplet helium ensemble

Fig. 9 shows that even the exchange-correlation potential corresponding to the largest w-value retains the shape of

FIG. 5. Ensemble densities of the two-multiplet ensemble of He.

FIG. 6. Ensemble xc potentials of the two-multiplet ensemble of He.

those of smaller w-values. In this way, this set of potentials is similar to that of the 2-multiplet ensemble, and not to that of the singlet ensemble, where higher values of w generate smoother potentials than lower values. As was seen with the singlet ensemble, excitation energies for the triplet-triplet transition that are extracted from the symmetry-projected ensemble are highly accurate (Table IX).

E. Unambiguous energy density

Virial energy densities are known to have erratic behaviors in ground-state DFT for molecules and solids. As a complement to the virial energy density presented in the main text, we can also define an unambiguous energy density. Mirroring the ground-state case², an unambiguous energy density for $E_{\rm HXC} + T_{\rm C}$ is

$$e_{\text{HXC},\mathbf{w}}^{\text{unamb}}(\mathbf{r}) + t_{c,\mathbf{w}}^{\text{unamb}}(\mathbf{r}) = -\frac{3}{4\pi} \int d^3 r' \; \frac{\nabla \cdot [n_{\mathbf{w}}(\mathbf{r}')\nabla v_{\text{XC},\mathbf{w}}(\mathbf{r}')]}{|\mathbf{r} - \mathbf{r}'|}$$
(7)

Fig. 10 shows the energy densities of $E_{\rm xc} + T_{\rm c}$ defined in the body of our paper as the virial energy density and

FIG. 7. Ensemble densities of the three-multiplet ensemble of He.

FIG. 8. Ensemble xc potentials of the three-multiplet ensemble of He.

Eq. (7) for w = 0.5 helium singlet ensemble. The unambiguous energy density is noticeably smoother than the virial energy density, which shows characteristic bumps that develop as w increases to its maximum value.

- ¹M. S. Pindzola, T. W. Gorczyca, and C. Bottcher. Two-photon ionization of lithium in the time-dependent hartree-fock approximation. *Phys. Rev. A*, 47:4982, 1993.
- ²K. Burke, F. G. Cruz, and K.-C. Lam. Unambiguous exchangecorrelation energy density for hooke's atom. *Int. J. Quant. Chem.*, 70:583, 1998.

W	0.166666	0.145833	0.125	0.104166	0.083333	0.0625	0.041666	0.020833
$E_1^{\mathrm{KS}} - E_0^{\mathrm{KS}}$	2.8928	2.8939	2.8946	2.8952	2.8956	2.8959	2.8963	2.8967
$\partial E_{\mathrm{xc,w}}[n]/\partial w _{n=n_{\mathrm{w}}}$	0.0187	0.0151	0.0128	0.0112	0.0104	0.0098	0.0089	0.0074
$(E_1 - E_0)_{w}$	2.8990	2.8989	2.8989	2.8989	2.8990	2.8992	2.8993	2.8992
$E_{\mathtt{w}}$	-57.7406	-57.9218	-58.1030	-58.2842	-58.4654	-58.6466	-58.8278	-59.0090
$T_{ m S}$	57.7065	57.8862	58.0660	58.2457	58.4255	58.6053	58.7851	58.9649
$E_{\rm H}$	24.2342	24.6239	25.0221	25.4287	25.8437	26.2671	26.6989	27.1392
V	-120.718	-121.337	-121.956	-122.575	-123.194	-123.813	-124.432	-125.051
$E_{\rm XC}$	-18.9630	-19.0947	-19.2349	-19.3835	-19.5405	-19.7060	-19.8799	-20.0622
E _{HX}	5.4735	5.7475	6.0214	6.2954	6.5694	6.8435	7.1176	7.3918
$E_{\mathbf{X}}$	-18.7606	-18.8765	-19.0007	-19.1333	-19.2743	-19.4236	-19.5813	-19.7474
$E_{\rm C}$	-0.2024	-0.2183	-0.2342	-0.2502	-0.2663	-0.2824	-0.2986	-0.3148
$T_{ m C}$	0.0341	0.0356	0.0371	0.0385	0.0399	0.0413	0.0427	0.0441
$T_{\rm C}^{\rm virial}$	0.0290	0.0304	0.0319	0.0333	0.0348	0.0361	0.0375	0.0389
$V_{ m C}$	-0.2365	-0.2539	-0.2713	-0.2887	-0.3062	-0.3237	-0.3413	-0.3589

TABLE IX. First excitation energy and energy components of the triplet ensemble of helium atom. All the energies are in eV. Exact first excitation energy $E_1 - E_0 = 2.8991$ eV. T = -E according to the virial theorem for atoms. $E_{\rm H}$ is defined in Eq. (29). $T_{\rm C}^{\rm virial}$ is obtained by the virial theorem Eq. (62).

FIG. 9. Exact densities and ensemble **xc** potentials for a triplet ensemble of He.

FIG. 10. Comparison of the virial energy density and unambiguous energy density for the singlet ensemble of He at w = 0.5.