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Linear response time-dependent density functional theory is used to study low-lying electronic
continuum states of targets that can bind an extra electron. Exact formulas to extract scattering
amplitudes from the susceptibility are derived in one dimension. A single-pole approximation for
scattering phase shifts in three dimensions is shown to be more accurate than static exchange for
singlet electron-He+ scattering. ©2005 American Institute of Physics. fDOI: 10.1063/1.1877052g

I. INTRODUCTION

Ground-state density functional theorysDFTd sRefs. 1
and 2d has become a popular electronic structure method in
both quantum chemistry and solid-state physics, because
modern approximations produce useful accuracy at moderate
computational cost.3,4 Now, electronic excitation energies of
atoms and molecules are being calculated using linear re-
sponse time-dependent density functional theory
sTDDFTd.5,6 In this scheme, bound→bound transition ener-
gies are first approximated by the poles of the frequency-
dependent Kohn–ShamsKSd density response function,6–8

and then corrected to the poles of the true response function,
i.e., the true excitations. Bound→continuum transitions,
however, have not been treated in the same way because
branch cuts of the KS and interacting response functions
overlap, and because it is the phase shifts, rather than the
energies, that are of interest in the scattering regime.

Even though photoresponse was addressed in the early
days of TDDFT,9 and there has been a long interest of using
density functional methods for the scattering problemse.g.,
Ref. 10d, there is no formal theory based on TDDFT to study
electron scattering. Such a theory might be particularly use-
ful in the emergent field of electron-impact chemistry,11 in
which large targets are struck by low energy electrons, so
that bound-free correlations are significant.12

Several results relevant to this goal are presented here.
First, we provide a proof of principle: the time-dependent
response of anN-electron ground state contains the scatter-
ing information for an electron scattering from the
sN−1d-electron target, and this is accessible via TDDFT.
Second, we show how this leads to practical ways of calcu-
lating scattering phase shifts or, in one dimension, transmis-
sion amplitudes. Finally, in the simplest case, singlet scatter-
ing from He+, we find that TDDFT yields better results than
static exchange, demonstrating its higher accuracy at low
computational cost.

Although we are not presenting acompletetheory of
electron scattering within TDDFT, such a theory can be built
upon the rigorous results presented here, and become a com-
petitive alternative to existing techniques for calculating
electron-molecule scattering cross sectionsse.g., Ref. 13d.
Since continuum states are the current-carrying states in mo-
lecular electronic devices, we also anticipate applications of
our one-dimensionals1Dd results in the field of electronic
transport through molecular wires.14

II. EXTRACTING SCATTERING INFORMATION
FROM THE SUSCEPTIBILITY

A. Theory

Our starting point is the Dyson-like response equation
that relates the susceptibilityxsr ,r 8 ;vd of a system ofN
interacting electrons with that of its ground-state KS analog,
xssr ,r 8 ;vd.6 In operator formsp indicates spatial and spin
convolutiond:

x = xs + xs p fHXC p x, s1d

where fHXC is the Hartree-exchange-correlation kernelswe
use atomic units throughoutd:

fHXCfrgsr ,r 8;t − t8d ; Udst − t8d
ur − r 8u

+
dvXCsr ,td
drsr 8,t8d

U
r

, s2d

a functional of theN-electron ground-state densityrsr d. In
Eq. s2d, vxcsr ,td is the time-dependent exchange-correlation
potential induced when a time-dependent perturbation is ap-
plied to the N-electron ground state. We write the spin-
decomposed susceptibility in the Lehman representation:
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xss8sr ,r 8;vd = Fo
n

Fnssr dFns8
* sr 8d

v − Vn + i0+ + ccsv → − vdG ,

s3d

with

Fnssr d = kC0ur̂ssr duCnl, r̂ssr d = o
i=1

N

dsr − r̂ iddsŝi
, s4d

whereC0 is the ground state of theN-electron system,Cn its
nth excited state, andr̂ssr d is thes-spin density operator. In
Eq. s3d, Vn is theC0→Cn transition frequency.

For the remainder of this section, we restrict the analysis
to one dimension. Consider large distances, where the
N-electron ground-state density is dominated by the decay of
the highest occupied KS orbital;15 the ground-state wave
function behaves as16

C0 →
x→`

c0
N−1sx2, . . . ,xNdÎrsxd

N
S0ss,s2, . . . ,sNd, s5d

where c0
N−1 is the ground-state wave function of the

sN−1d-electron systemsthe targetd, S0 the spin function of
the ground state, andrsxd the N-electron ground-state den-
sity. Similarly,

Cn →
x→`

cnt

N−1sx2, . . . ,xNd
fkn

sxd
ÎN

Snss,s2, . . . ,sNd, s6d

wherecnt

N−1 is an eigenstate of the targetslabeled byntd, Sn is
the spin function of thenth excited state, andfkn

sxd a one-
electron orbital.

We focus on elastic scattering, so the contribution to
Fnssxd from channels where the target is excited vanishes as
x→` due to orthogonality. Inserting Eqs.s5d ands6d into the
1D version of Eq.s4d, and taking into account the antisym-
metry of bothC0 andCn,

Fnssxd →
x→`

Îrsxdfkn
sxdd0,nt

3 o
s2¯sN

S0
*ss ¯ sNdSnss ¯ sNd. s7d

The susceptibility at large distances is then obtained by in-
serting Eq.s7d into Eq. s3d:

xsx,x8;vd = o
ss8

xss8sx,x8;vd

→
x,x8→±`

Îrsxdrsx8d

3 o
n

fkn
sxdfkn

* sx8d

v − Vn + ih
d0,nt

dS0,Sn

+ ccsv → − vd. s8d

Since only scattering states of theN-electron optical poten-
tial contribute to the sum in Eq.s8d at large distances, it

becomes an integral over wave numbersk=Î2«, where« is
the energy of the projectile electron:

o
n

fkn
sxdfkn

* sx8d

v − Vn + ih
→

x,x8→±`

1

2p
E

0fRg,fLg

` fksxdfk
*sx8d

v − Vk + ih
dk. s9d

In this notation, the functionsfkn
are box normalized and

fkn
sxd=fksxd /ÎL, whereL→` is the length of the box. The

transition frequencyVn=En
N−E0

N is now simply Vk=E0
N−1

+k2/2−E0
N=k2/2+I, whereI is the first ionization potential

of theN-electron system, andE0
M andEn

M are the ground and
nth excited state energies of theM-electron system. The sub-
script “fRg, fLg” implies that the integral is over both orbitals
satisfyingright and left boundary conditions:

f
k

fRg
fLg sxd → He±ikx + rke

7ikx, x → 7 `

tke
±ikx, x → ± `.

J s10d

Whenx→−` andx8=−x the integral of Eq.s9d is domi-
nated by a term that oscillates in space with wave number
2Î2s«− Id and amplitude given by the transmission ampli-
tude for spin-conserving collisionstk at that wave number.
Denoting this byxosc, we obtain

ts«d = lim
x→−`

F iÎ2«

Îrsxdrs− xd
xoscsx,− x;« + IdG . s11d

While this formula also applies to the KS system, its trans-
mission tss«d can be easily obtained by solving apotential
scatteringproblemsi.e., scattering off theN-electron ground-
state KS potentiald. The exact amplitudests«d of the many-
body problem are formally related to thetss«d through Eqs.
s11d and s1d. This is the main result of this work: the time-
dependent response of theN-electron ground state contains
the scattering information, and is accessible via TDDFT. A
potential scattering problem is solved first for theN-electron
ground-state KS potential, and the scattering amplitudes thus
obtained are further corrected byfHXC to account for, e.g.,
polarization effects.

While Eq. s11d seems impractical as a basis for compu-
tations, it leads to practical approximations. For example, if
Eq. s1d is iterated once, we find through Eq.s11d the follow-
ing useful distorted-wave-Born-type approximation for the
transmission amplitude:

ts«d = tss«d +
1

iÎ2«
kkHOMO,«u f̂HXCs« + IduHOMO,«ll,

s12d

where kuHOMO,«ll is the product of the highest occupied KS
orbital and the continuum KS orbital of energy«.

B. Example

We illustrate on a simple 1D model of an electron scat-
tering from a one-electron atom of nuclear chargeZ sRef. 17d
in the weak interaction limit:
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Ĥ = −
1

2

d2

dx1
2 −

1

2

d2

dx2
2 − Zdsx1d − Zdsx2d + ldsx1 − x2d.

s13d

Electrons interact via ad-function repulsion, scaled byl.
With l=0 the ground state density is a simple exponential,
analogous to hydrogenic atoms in 3D.

Exact solution in the weak interaction limit. First, we
solve for the exact transmission amplitudes to first order inl
using the static exchange method.18 The results for tripletttrip
and singlettsing scattering are

ttrip = t0, t0 =
ik

Z + ik
,

s14d

tsing= t0 + 2lt1, t1 =
− ik2

sk − iZd2sk + iZd
.

Our TDDFT solution. The ground-state of theN-electron
systemsN=2d is given toOsld by

C0sx1s1,x2s2d =
1
Î2

f0sx1df0sx2dfds1↑ds2↓ − ds1↓ds2↑g,

s15d

where the orbitalf0sxd satisfies19,20

F−
1

2

d2

dx2 − Zdsxd + luf0sxdu2Gf0sxd = mf0sxd. s16d

To first order inl,

f0sxd = ÎZe−Zuxu +
l

8ÎZ
f2e−3Zuxu + e−Zuxus4Zuxu − 3dg. s17d

The bare KS transmission amplitudestss«d characterize the
asymptotic behavior of the continuum states ofvssxd
=−Zdsxd+luf0sxdu2, and can be obtained toOsld by a
distorted-wave Born approximationssee, e.g., Ref. 21d:

ts = t0 + lt1. s18d

The result is plotted in Fig. 1, along with the interacting
singlet and triplet transmission amplitudes, Eqs.s14d.

We now apply Eq.s11d to show that thefHXC term of Eq.
s1d corrects thets values to their exact singlet and triplet
amplitudes.

We needfHXC only to Osld,

fHX
ss8sx,x8;vd = ldsx − x8ds1 − dss8d, s19d

where thefHXC of Eq. s1d is given toOsld by fHX = fH+ fX

= 1
4oss8fHX

ss8 s=1
2 fH hered. Eq. s19d yields

xsx,x8;vd = xssx,x8;vd +
l

2
E dx9xssx,x9;vdxsx9,x8;vd.

s20d

Since the ground state of theN-electron system is a spin
singlet, the Kronecker deltadS0,Sn

in Eq. s8d implies that only
singlet scattering information may be extracted fromx,
whereas information about triplet scattering requires the
magnetic susceptibilityM=oss8sss8dxss8, related to the
KS susceptibility by spin TDDFT:22

Msx,x8;vd = xssx,x8;vd

−
l

2
E dx9xssx,x9;vdMsx9,x8;vd. s21d

For either singlet or triplet case, since the correction to
xs is multiplied byl, the leading correction totss«d is deter-
mined by the same quantity,x̂s

s0d
p x̂s

s0d, where x̂s
s0d is the

zeroth-order approximation to the KS susceptibilityfi.e.,
with vssxd=vs

s0dsxd=−Zdsxdg. Its oscillatory part at large
distances23 fmultiplied by Îrsxdrs−xd / ik, see Eq.s11dg is
equal tolt1. We then find through Eqs.s11d, s20d, ands21d
that

tsing= ts + lt1, ttrip = ts − lt1, s22d

in agreement with Eqs.s14d.

III. SINGLE POLE APPROXIMATION
IN THE CONTINUUM

We have yet to prove an analog of Eq.s11d for Coulomb
repulsion in three dimensions. But here we use quantum-
defect theory24 to deduce the result at zero energy. Consider
the l =0 Rydberg series of bound states converging to the first
ionization thresholdI of the N-electron system:

En − E0 = I − 1/f2sn − mnd2g, s23d

wheremn is the quantum defect of thenth excited state. Let

en = − 1/f2sn − ms,nd2g s24d

be the KS orbital energies of that series. The true transition
frequenciesvn=En−E0 are related through TDDFT to the
KS frequenciesvs,n=en−eHOMO. Within the single-pole ap-
proximationsSPAd sRef. 6d:

vn = vs,n + 2kkHOMO,nu f̂HXCsvnduHOMO,nll. s25d

Numerical studies25 suggest thatDmn=mn−ms,n is a small
number whenn→`. Expandingvn aroundDmn=0, and us-
ing I =−eHOMO, we find

FIG. 1. Real and imaginary parts of the KS transmission amplitudets, and of
the interacting singlet and triplet amplitudessto first order inld, for the
model system of Eq.s13d. Z=2 andl=0.5 in this plot.
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vn = vs,n − Dmn/sn − ms,nd3. s26d

We conclude that, within the SPA,

Dmn = − 2sn − ms,nd3kkHOMO,nu f̂HXCsvnduHOMO,nll. s27d

Letting n→`, Seaton’s theoremfp limn→` mn=ds«→0+dg
sRef. 24d implies

ds«d = dss«d − 2pkkHOMO,«u f̂HXCs« + IduHOMO,«ll, s28d

a relation for the phase-shiftsd in terms of the KS phase-
shiftsds applicable when«→0+. The factorsn−ms,nd3 of Eq.
s27d gets absorbed into the energy-normalization factor of
the KS continuum states.

We illustrate in Fig. 2 the remarkable accuracy of Eq.
s28d when applied to the case of electron scattering from
He+. For this system, an essentially exact ground-state poten-
tial for the N=2 electron system is known. This was found
by inverting the KS equation using the ground-state density
of an extremely accurate wave function calculation of the He
atom.26 We calculated the low-energy KSs-phase shifts from
this potential,dss«d sdashed line in the center, Fig. 2d, and
then corrected these phase shifts according to Eq.s28d em-
ploying a hybrid approximation tofHXC sRef. 27d s5 adia-
batic local density approximation for antiparallel contribu-
tion to fHXC and exchange-only approximation for the
parallel contributiond. We also plot the results of a recent
highly accurate wave function calculation28 ssolidd, and of
static-exchange calculations29 sdottedd. The results show that
phase shifts from theN-electron ground-state KS potential
dss«d are an excellent approximation to the average of the
true singlet/triplet phase shifts for an electron scattering from
the sN−1d-electron target, just as in our one-dimensional
model; they also show that TDDFT, with existing approxi-
mations, works very well to correct scattering from the KS
potential to the true scattering phase shifts, at least at low

energies. In fact, for the singlet phase shifts, TDDFT does
better than the computationally more demanding static ex-
change method, and for the triplet case TDDFT does only
slightly worse. Even though Eq.s28d is, strictly speaking,
only applicable at zero energysmarked with asterisks in Fig.
2d, it clearly provides a good description for finiteslowd en-
ergies. It is remarkable that the antiparallel spin kernel,
which is completely local in space and time, and whose
value at each point is given by the exchange-correlation en-
ergy density of a uniform electron gassevaluated at the
ground-state density at that pointd, yields phase shifts for
e-He+ scattering with less than 20% error. Since a signature
of density-functional methods is that, with the same func-
tional approximations, exchange-correlation effects are often
better accounted for in larger systems, the present approach
holds promise as a practical method for studying large
targets.

IV. CONCLUSION

To summarize, we have shown how, in one-dimension,
scattering amplitudes may be obtained from TDDFT, and
deduced the results for three dimensions near zero energy for
Coulombic systems. The ultimate goal is to accurately treat
bound-free correlation for low energy electron scattering
from polyatomic molecules, with a computational cost lower
than that of static exchange. An obvious limitation of the
present approach is that it can only be applied to targets than
bind an extra electron, and there is much work yet to be
done: general proof of principle in three dimensions, testing
of the accuracy of approximate ground-state KS potentials,
developing and testing approximate solutions to the TDDFT
Dyson-like equation, extending the methodology to cases
where the anion has a sharp resonance rather than a ground
state, etc.
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