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Continuum states from time-dependent density functional theory
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Linear response time-dependent density functional theory is used to study low-lying electronic
continuum states of targets that can bind an extra electron. Exact formulas to extract scattering
amplitudes from the susceptibility are derived in one dimension. A single-pole approximation for
scattering phase shifts in three dimensions is shown to be more accurate than static exchange for
singlet electron-Hescattering. €2005 American Institute of PhysidDOI: 10.1063/1.1877052

I. INTRODUCTION Although we are not presenting @mpletetheory of
electron scattering within TDDFT, such a theory can be built

Ground-state density functional theof®FT) (Refs. 1 upon the rigorous results presented here, and become a com-

and 2 has become a popular electronic structure method ipetitive alternative to existing techniques for calculating

both quantum chemistry and solid-state physics, becausglectron-molecule scattering cross sectigasy., Ref. 13

modern approximations produce useful accuracy at moderatsince continuum states are the current-carrying states in mo-

computational cost Now, electronic excitation energies of lecular electronic devices, we also anticipate applications of

atoms and molecules are being calculated using linear resur one-dimensionallD) results in the field of electronic

sponse _time-dependent density  functional  theorytransport through molecular wiré$.

(TDDFT).5’6 In this scheme, bound bound transition ener-

gies are first approximated by the poles of the frequency-

dependent Kohn—ShartkS) density response functioh®

and then corrected to the poles of the true response function,

i.e., the true excitations. Boundcontinuum transitions, Il. EXTRACTING SCATTERING INFORMATION

however, have not been treated in the same way becaus&OM THE SUSCEPTIBILITY

branch cuts of the KS and interacting response functiong Theory

overlap, and because it is the phase shifts, rather than the

energies, that are of interest in the scattering regime. Our starting point is the Dyson-like response equation
Even though photoresponse was addressed in the eadpat relates the susceptibility(r,r’; w) of a system ofN

days of TDDFT and there has been a long interest of usinginteracting electrons with that of its ground-state KS analog,

density functional methods for the scattering probl@y.,  xs(I.r";®).° In operator form(x indicates spatial and spin

Ref. 10, there is no formal theory based on TDDFT to studyconvolution:

electron scattering. Such a theory might be particularly use-

ful in the emergent field of electron-impact chemisll]ryn X=Xs+ Xs* Taxc * X, (1)
which large targets are struck by low energy electrons, so
that bound-free correlations are significaht. where f,uc is the Hartree-exchange-correlation kerfek

. Several re_sults relevant to Fhisf goal are_presented hergse atomic units throughout
First, we provide a proof of principle: the time-dependent
response of aMN-electron ground state contains the scatter- ,
. . . . 5(1: -1 ) 5ch(r ,t)
ing information for an electron scattering from the fuxclpl(r,r';t—t') = =+ — 1,
(N-1)-electron target, and this is accessible via TDDFT. Ir=r'[  p(r',t") |,
Second, we show how this leads to practical ways of calcu-
lating scattering phase shifts or, in one dimension, transmisa functional of theN-electron ground-state densigyfr). In
sion amplitudes. Finally, in the simplest case, singlet scatterEq. (2), v,(r,t) is the time-dependent exchange-correlation
ing from He", we find that TDDFT vyields better results than potential induced when a time-dependent perturbation is ap-
static exchange, demonstrating its higher accuracy at lowlied to the N-electron ground state. We write the spin-
computational cost. decomposed susceptibility in the Lehman representation:

(2)
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Fro(F)Fpr (1) becomes an integral over wave numbls\2e, wheree is
Xoo (.1 0) = ——— tcdw—-w) |, the energy of the projectile electron:
o w—Q,+i0
(3) i, () by (X') 17 AEX)
2 = 9
with n o= Qntig xx~>+00277 O[R][L] @~ Qk+|7l

In this notation, the functlonaﬁk are box normalized and

Fro(1) ={(Polp, (N, p,r)= E (=18, @ (X= S /L, whereL — is the length of the box. The
transition frequency,=EN-E} is now simply Q,=EN"?
+k2[2-E)=K?/2+l, wherel is the first ionization potentlal
of the N-slectron system, andly andEY are the ground and

nth excited state energies of the-electron system. The sub-

cript {R], [L]" implies that the integral is over both orbitals
atisfyingright andleft boundary conditions:

whereVW, is the ground state of thé-electron systemy,, its
nth excited state, ang,(r) is the o-spin density operator. In
Eq. (3), Q, is theVy— W, transition frequency.

For the remainder of this section, we restrict the analy3|%
to one dimension. Consider large distances, where the
N-electron ground-state density is dominated by the decay of [R] {

etlkx+re+|kx, X — F oo

+|kx X — + o0

the highest occupied KS orbitil; the ground-state wave - (%) —

(10)
function behaves &%

Whenx— —o andx’ =—x the integral of Eq(9) is domi-
TS (w—l(x X)) MS)(O’ o on) (5) nated by a term that oscillates in space with wave number
O e 0 2NN N NG 2\2(e-1) and amplitude given by the transmission ampli-

tude for spin-conserving collisiong at that wave number.
where ' is the ground-state wave function of the penoting this byy® we obtain

(N-1)-electron systentthe target), §, the spin function of

the ground state, ang(x) the N-electron ground-state den- iV2e
sity. Similarly, t(e) = lim | —=x"(x,—X;e+1) |. (11
x—===| \p(X)p(=X)
Vo — YN X, . Xy ki)&(g Tor e ON), (6)  While this formula also applies to the KS system, its trans-
X—00 t \

missionty(e) can be easily obtained by solvingpmtential
1 ) ] scatteringproblem(i.e., scattering off thé&\-electron ground-
where;ﬂr}‘t is an eigenstate of the targéabeled byny), S,is  giate KS potential The exact amplitudet{e) of the many-
the spin function of theith excited state, aneh (x) a one-  pody problem are formally related to thge) through Egs.
electron orbital. (11) and(1). This is the main result of this work: the time-
We focus on elastic scattering, so the contribution todependent response of theelectron ground state contains
Fno(X) from channels where the target is excited vanishes age scattering information, and is accessible via TDDFT. A
X— o0 due to orthogonality. Inserting Eq&) and(6) into the  potential scattering problem is solved first for tReelectron
1D version of Eq(4), and taking into account the antisym- ground-state KS potential, and the scattering amplitudes thus

metry of bothW¥, and ¥, obtained are further corrected Hyjyc to account for, e.g.,
J— polarization effects.
Fro(X) — Vp(X) by (X) 8o n, While Eq.(11) seems impractical as a basis for compu-
o tations, it leads to practical approximations. For example, if
X > 50(0 oS o). (7) Eq. (1) is iterated once, we find through Ed.1) the follow-
oy oy ing useful distorted-wave-Born-type approximation for the

transmission amplitude:
The susceptibility at large distances is then obtained by in-

serting Eq.(7) into Eqg. (3): 1 -
t(e) =te) + — /2—<<HOMO,s|fHXC(s +1)|HOMO, €)),
iV2e

XXX 50) = 2 Xoor (XX 5 )

oo’ (12)
,_’+ Vp(X)p(x’) where |HOMO, €)) is the product of the highest occupied KS
e ) orbital and the continuum KS orbital of energy
3 P () by (X') .
% n w—Q,+ip 0SS
B. Example
+c(w— —w). (8)

We illustrate on a simple 1D model of an electron scat-
Since only scattering states of tiNeelectron optical poten- tering from a one-electron atom of nuclear charg&ef. 17
tial contribute to the sum in Eq8) at large distances, it in the weak interaction limit:
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FIG. 1. Real and imaginary parts of the KS transmission amplity@ad of
the interacting singlet and triplet amplitudé® first order in\), for the
model system of Eq13). Z=2 and\=0.5 in this plot.

~1d® 1
H——Ed—xi—EdTé—Zﬁ(Xl)—Zﬁ(XZ)+A5(X1—X2).
(13

Electrons interact via &-function repulsion, scaled by.

With A=0 the ground state density is a simple exponential,

analogous to hydrogenic atoms in 3D.
Exact solution in the weak interaction limiFEirst, we

solve for the exact transmission amplitudes to first order in

using the static exchange methtddhe results for tripletyp
and singlett;,q Scattering are

tip =t to= L

trip — ‘Os O_Z+ikv

(14
- ik2

(k-i2)4(k+iz)"

Our TDDFT solution The ground-state of thid-electron
system(N=2) is given toO(\) by

tsing: to + 2)\t1, tl =

1
Wo(X101,%207) = 3 $o(X1) Po(X)[ 65,165, = 65, 6yt ],

(15

where the orbitakpy(x) satisfies*?°
2

1d
Erra Z5(X) + N do(X)]? | bo(X) = mebo(X). (16)

To first order in\,
- )\
do(X) = VZe 2 + S—E[ze‘3z\xl +e¥(az|x|-3)]. 17

The bare KS transmission amplitudgées) characterize the
asymptotic behavior of the continuum states ©f(x)

=-Z8(X)+\|po(X)|?, and can be obtained t®(\) by a

distorted-wave Born approximatidsee, e.g., Ref. 21

ts=1to + \ty. (18

Continuum states from time-dependent density functional theory
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We now apply Eq(11) to show that thdxc term of Eq.
(1) corrects thetg values to their exact singlet and triplet
amplitudes.

We needfxc only to O(M),

% (X5 @) = NSX =X)L = 8), (19

where thefyyc of Eq. (1) is given toO(\) by fux=f+fx
=13, f7¢ (=3fy hera. Eq. (19) yields

A
XXX 0) = xo(X,X' ;) + > J dxX xs(X,X"; @) x (X", X"; w).

(20)

Since the ground state of thé-electron system is a spin
singlet, the Kronecker deltés, 5 in Eq.(8) implies that only
singlet scattering information may be extracted frogm
whereas information about triplet scattering requires the
magnetic susceptibilityM =% (cc’) x,, related to the
KS susceptibility by spin TDDFT?

MXX;0) = x(X,X'; w)
—%fd)(’XS(x,x”;w)M(x”,x’;w). (21)

For either singlet or triplet case, since the correction to
Xs is multiplied by\, the leading correction tty(e) is deter-

mined by the same quantity;'? 5((30), where )”((SO) is the

zeroth-order approximation tcf the KS susceptibilfiye.,
with vs(x):vgo)(x):—25(x)]. Its oscillatory part at large
distance®® [multiplied by \p(X)p(-Xx)/ik, see Eq.(11)] is
equal toat;. We then find through Eqg11), (20), and(21)
that

tsing: ts+ AL, ttrip =t~ Ay, (22)

in agreement with Eqg14).

[ll. SINGLE POLE APPROXIMATION
IN THE CONTINUUM

We have yet to prove an analog of Ef1) for Coulomb
repulsion in three dimensions. But here we use quantum-
defect theor§/4 to deduce the result at zero energy. Consider
thel=0 Rydberg series of bound states converging to the first
ionization threshold of the N-electron system:

En-Eo=1-1[2(n~ Mn)z]y (23
where u,, is the quantum defect of thah excited state. Let
€=~ 1/[2(1’] - Ms,n)z] (24)

be the KS orbital energies of that series. The true transition
frequenciesw,=E,—E, are related through TDDFT to the
KS frequenciesos = €,~ eqomo- Within the single-pole ap-
proximation(SPA) (Ref. 6:

wp = wsp + 2((HOMO, N|frixc(@n) |[HOMO, ). (25)

Numerical studie® suggest thatd u,=u,—usy is @ small

The result is plotted in Fig. 1, along with the interacting number whem— oo, Expandingw, aroundAuw,=0, and us-

singlet and triplet transmission amplitudes, Edsl).

ing 1 =—enqomo, We find
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1% energies. In fact, for the singlet phase shifts, TDDFT does
. better than the computationally more demanding static ex-
change method, and for the triplet case TDDFT does only

0.8 slightly worse. Even though Ed28) is, strictly speaking,

= only applicable at zero enerdgynarked with asterisks in Fig.

3 061 2), it clearly provides a good description for finiflew) en-

% ergies. It is remarkable that the antiparallel spin kernel,
'?:.1 04l o which is completely local in space and time, and whose
R value at each point is given by the exchange-correlation en-

singlet | ergy density of a uniform electron gdgvaluated at the

02F ground-state density at that pointields phase shifts for
e-He' scattering with less than 20% error. Since a signature
0 L L of density-functional methods is that, with the same func-

0 02 04 06 038 1

tional approximations, exchange-correlation effects are often
Energy (H)

better accounted for in larger systems, the present approach
FIG. 2. s-phase shifts as a function of energy for electron scattering frothIdS promise as a practlcal method for StUdymg Iarge
He*. Dashed lines: the line labeled KS corresponds to the phase shifts frofargets.
the exactKS potential of the He atom; the other dashed lines correspond to
the TDDFT singlet and triplet phase shifts calculated in the present wor

g v b §v. CONCLUSION

according to Eq(28). Solid lines: accurate wave function calculations of

electron-Hé scattering from Ref. 28. The solid line in the center is the T . h h h . di .
average of singlet and triplet phase shifts. Dotted lines: Static exchange 0 summarize, we have shown how, In one-dimension,

calculations, from Ref. 29. The asterisks at zero energy correspond to exscattering amplitudes may be obtained from TDDFT, and
trapolating the bound-bound results of Ref. 27. deduced the results for three dimensions near zero energy for
Coulombic systems. The ultimate goal is to accurately treat
_ 3 bound-free correlation for low energy electron scatterin
wn = s~ A/ (N pisp)” (26 from polyatomic molecules, with a co?nyputational cost IowegrJ
We conclude that, within the SPA, than that of static exchange. An obvious limitation of the
3 - present approach is that it can only be applied to targets than
Aptn= = 2(n = pgp) (HOMO, N[ frixc(wn) HOMO,NY). (27)  hing an extra electron, and there is much work yet to be
Letting n—c, Seaton’s theorenfirr lim,, .. u,=8(e—0%)]  done: general proof of principle in three dimensions, testing
(Ref. 24 implies of the accuracy of approximate ground-state KS potentials,
R developing and testing approximate solutions to the TDDFT
8e) = 84(e) — 2m((HOMO, g|fxc(e + I)|HOMO, €)), (28) Dyson-like equation, extending the methodology to cases
where the anion has a sharp resonance rather than a ground

a relation for the phase-shift§ in terms of the KS phase- state, etc.

shifts & applicable wher: — 0*. The factor(n— us,)® of Eq.

(27) gets absorbed into the energy-normalization factor 01;\ CKNOWLEDGMENTS
the KS continuum states.
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