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Electronic structure problem

What atoms, molecules, and solids can exist, and with what
properties?

Figure: My first ever DFT transparency
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Atomic units

In atomic units, all energies are in Hartree (1H= 27.2 eV) and all
distances in Bohr (1a0 = 0.529 Å)

To write formulas in atomic units, set e2 = ~ = me = 1

In regular units,
I 1 H = 27.2eV
I 1 eV = 23.06 kcal/mol
I 1 kcal = 4.184 kJ/mol = 503K.
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Born-Oppenheimer approximation

Because of difference between proton and electron mass, can separate
wavefunction into nuclear × electronic to an excellent approximation.

Because electronic energies are in eV and much greater than 300K,
electrons always in ground state.

Yields

Etotal ({Rα}) = Vnuc−nuc({Rα}) + Eelec({Rα})

where electons are in ground state.

Knowing Etotal ({Rα}) yields structures from minima, vibrations from
curvature, all reaction energies from well-depths, all transition states
from saddle points, etc.

Kieron (UC Irvine) Basics of DFT Lausanne12 6 / 38



Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):

Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = −1
2

N∑
i=1
∇2

i , V̂ee =
1
2

N∑
i=1

N∑
j 6=i

1
|ri − rj |

,

and difference between systems is N and the one-body potential

V̂ =
N∑

i=1
v(ri )

Often v(r) is electron-nucleus attraction

v(r) = −
∑
α

Zα
|r − Rα|

where α runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ }Ψ = E Ψ, Ψ antisym

The one-particle density is much simpler than Ψ:

n(r) = N
∑
σ1

. . .
∑
σN

∫
d3r2 . . . d3rN |Ψ(rσ1, r2σ2, . . . , rNσN)|2

and n(r) d3r gives probability of finding any electron in d3r around r.
Wavefunction variational principle:

I E [Ψ] ≡ 〈Ψ|Ĥ|Ψ〉 is a functional
I Extrema of E [Ψ] are stationary states, and ground-state energy is

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ |Ψ〉

where Ψ is normalized and antisym.
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First principles

Aim: Predict properties just by solving the Schrödinger equation

Physics: Usually use model Hamiltonians with empirical parameters
(e.g. Hubbard)

Chemistry: Systematic expansion either of wavefunction or
Hamiltonian
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References for ground-state DFT

DFT in a nutshell, by KB and Lucas Wagner, IJQC

ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu/

Perspective on DFT, by KB, JCP 136, 150901, (2012)

A Primer in Density Functional Theory, edited by C. Fiolhais et al.
(Springer-Verlag, NY, 2003)

Density Functional Theory, Engel and Dreizler, (Springer-Verlag,
Berlin, 1990)

A Chemist’s Guide to Density Functional Theory, Koch and
Holthausen (Wiley-VCH, Weinheim, 2000)

Which functional should I choose? Rappoport, Crawford, Furche, and
Burke. http://dft.uci.edu/

Kieron (UC Irvine) Basics of DFT Lausanne12 11 / 38

http://onlinelibrary.wiley.com/doi/10.1002/qua.24259/abstract
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Brief history of DFT

1926: Old DFT was Thomas-Fermi theory and extensions.

50’s and 60’s: Slater and co-workers develop Xα as crude KS-LDA.

1965: Modern DFT begins with Kohn-Sham equations. By
introducing orbitals, get 99% of the kinetic energy right, get accurate
n(r), and only need to approximate a small contribution, EXC[n].

1965: KS also suggested local density approximation (LDA) and
gradient expansion approximation.

1993: More modern functionals (GGA’s and hybrids) shown to be
usefully accurate for thermochemistry

1998: Kohn and Pople win Nobel prize in chemistry

2010: DFT in materials science, geology, soil science, astrophysics,
protein folding,...
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Hohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ |Ψ〉

= min
n

{
F [n] +

∫
d3r v(r)n(r)

}
where

F [n] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉

I The minimum is taken over all positive n(r) such that
∫
d3r n(r) = N

2 The external potential v(r) and the hamiltonian Ĥ are determined to
within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

{
−1
2∇

2 + vS(r)

}
φj(r) = εjφj(r),

N∑
j=1
|φj(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +

∫
d3r n(r′)
|r − r′| + vXC[n](r), vXC(r) =

δEXC

δn(r)

Knowing EXC[n] gives closed set of self-consistent equations.
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KS potential of He atom

n(r)

z z

v(r)
vS(r)

Every density has (at most) one KS potential.1
Dashed line: vS(r) is the exact KS potential.

1 Accurate exchange-correlation potentials and total-energy components for the
helium isoelectronic series, C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).
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Kohn-Sham energy components

The KS kinetic energy is the kinetic energy of the KS orbitals

TS[n] =
1
2

N∑
i=1

∫
d3r |∇φi (r)|2 > 0

The Hartree (aka Coulomb aka electrostatic) repulsive self-energy of
a charge density is

U[n] =
1
2

∫
d3r

∫
d3r ′ n(r) n(r′)

|r − r′| > 0

The exchange energy is

EX = −1
2
∑
σ

∑
i,j
occ

∫
d3r

∫
d3r ′

φ∗iσ(r)φ∗jσ(r′)φiσ(r′)φjσ(r)

|r − r′| < 0

EC is everything else, < 0
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Kohn-Sham elementary facts

T and Vee are both positive, trying to rip system apart, but overcome
by more negative V .
Kinetic energies are positive, and T > TS by definition.
U is positive and dominates the electron-electron repulsion.
EX only has contributions from same-spin electrons and is negative.
This part is given exactly by a HF calculation (in quantum chemistry).
The electron-electron repulsion of the KS wavefunction is just

〈Φ[n]|V̂ee|Φ[n]〉 = U[n] + EX[n]

EC contains both kinetic and potential contributions:

EC = 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉 − 〈Φ[n]|T̂ + V̂ee|Φ[n]〉
= (T − TS) + (Vee − U − EX) = TC + UC
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Energy components of small spherical atoms

T V Vee TS U EX TC UC EC

He 2.904 -6.753 0.946 2.867 2.049 -1.025 .037 -.079 -.042
Be 14.67 -33.71 4.375 14.59 7.218 -2.674 .073 -.169 -.096
Ne 128.9 -311.1 53.24 128.6 66.05 -12.09 .33 -.72 -.39

Table: Energy components found from the exact densities.

Huang and Umrigar, Phys. Rev. A 56, 290, (1997)

C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).

Thanks to Cyrus Umrigar, Xavier Gonze, and Claudia Filippi.
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Simple points about KS calculations

The total energy is not the sum of the orbital energies:

E 6=
N∑

i=1
εi

If some approximation is used for EXC, then energy can go below the
exact ground-state energy.
Any given formula for EXC, no matter where it came from, produces a
non-empirical scheme for all electronic systems.
The KS scheme, even with the exact functional, yields only E and
n(r) (and anything that can be deduced from them).
In principle, from HK, all properties are determined by n(r), but in
reality, we only know one really well.
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The KS HOMO-LUMO gap is not the fundamental gap

The fundamental gap of any system
I ∆ = I − A (= 24.6 eV for He)

The exact Kohn-Sham gap:
I ∆S = εHOMO − εLUMO (= ε1s − ε2s = 21.16 eV for He)

These gaps are not the same!

KS gap is typically smaller than ∆

Most notorious case: bulk Si

The exact ground-state EXC[n] produces a KS gap different from the
fundamental gap.
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Spin DFT

In modern reality, everyone uses spin-density functional theory
I U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

Can easily generalize theorems and equations to spin densities, n↑(r)
and n↓(r), with two different KS potentials (but some subtleties).

No difference for spin-unpolarized systems, but much more accurate
otherwise (odd electron number, radicals, etc.)

Spin-scaling trivial for EX, not so for correlation.

Can handle collinear B fields
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Lessons about basic DFT

DFT is
I different from all other methods of directly solving the Schrödinger

equation.
I in principle exact for E and n(r), knowing only EXC[n].
I approximate in practice.

Exact DFT tells us what we can and cannot expect our functionals to
be able to do.

vS(r) and φj(r) are not real, just logical constructions. The φj(r) can
be very useful interpretative tools and follow intuition, but vS(r) is
dangerous.
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Functionals in common use

Local density approximation (LDA)
I Uses only n(r) at a point,

ELDA
XC [n] =

∫
d3r eunif

XC (n(r))

Generalized gradient approx (GGA)
I Uses both n(r) and |∇n(r)|

EGGA
XC [n] =

∫
d3r eXC(n(r), |∇n|)

I Examples are PBE and BLYP
Hybrid:

Ehyb
XC [n] = a(EX − EGGA

X ) + EGGA
XC [n]

I Mixes some fraction of HF, a usually about 25%
I Examples are B3LYP and PBE0
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Functional Soup

Good: choose one functional of each kind and stick with it (e.g.,
LDA, PBE, or PBE0).

Bad: Run several functionals, and pick ‘best’ answer.

Ugly: Design your own functional with 2300 parameters.

Empirical
I GGA: BLYP
I Hybrid: B3LYP

Names:
I B=B88 exchange
I LYP = Lee-Yang-Parr

correlation

Non-empirical
I GGA:PBE
I Meta-GGA: TPSS
I Hybrid: PBE0
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Local density approximation (LDA)

Exchange is trivial (Dirac, 1931)

eunif
X (n) = −AX n4/3, AX =

3
4

( 3
π

) 1
3

= 0.738

Correlation energy known:
eunif

C (n) was accurately calculated by QMC
I D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

Several accurate parametrizations in use (all very similar):
I PW92 – Perdew and Wang, Phys. Rev. B 45, 13244 (1992)

I PZ81 – Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

I VWN80, aka S-VWN-5
S.H. Vosco, L. Wilk, and M. Nusair, Can. J. Phys. 58(8): 1200 (1980)
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LDA (or LSDA) general performance

For total energies, EX is underestimated by about 10%, EC is
overestimated by about 200%, so EXC is good to about 7%
(mysterious cancellation of errors).
For bond dissociation energies, LDA overbinds by about 1 eV /bond
(30 kcal/mol), so no good for thermochemistry.
Typical bond lengths are underestimated by 1% (unless involving an
H atom), so excellent geometries and vibrations. So still used for
structure.
Bulk Fe is non-magnetic, because wrong structure has lowest energy.
Transitions to unoccupied orbitals in bulk insulators a rough guide to
quasiparticle excitations, except for too small gap.
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Densities

Figure: Exact and LDA radial densities of the Ne atom.
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Easy conditions

Size-consistency:

EXC[nA + nB] = EXC[nA] + EXC[nB],

where nA(r) and nB(r) do not overlap.

Uniform limit: Recover exact XC bulk jellium energy if n is constant.

Linear response of uniform gas: LDA is almost exact for linear
response to perturbation cos(q · r) for q ≤ 2kF.

Lieb-Oxford bound: Magnitude of EXC cannot be greater than 2.3
ELDA

X .
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Uniform coordinate scaling

-1 0 1
0

2

x

nΓHxL
nHxL

Figure: A one-dimensional density (red) being squeezed by γ = 2 (blue)

A very handy way to study density functionals, especially in limits:
nγ(r) = γ3 n(γr), 0 ≤ γ ≤ ∞

I For γ > 1, squeezes up the density, preserving norm; for γ < 1,
stretches it out.

Exchange: Require EX[nγ ] = γ EX[n]
Correlation: EC[nγ ] = B[n] + C [n]/γ + ... for high density limit of
finite systems. (Violated by LDA!)
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History of GGA

Gradient expansion approximation (GEA): Expansion in density
gradients that is valid for slowly-varying gas, discussed in KS65.
Langreth-Mehl 81: First modern GGA, but cut-off in wavevector
space.
PW86: Early version of Perdew strategy, cutting off
gradient-expanded hole in real space. (Phys. Rev. B, 33)

B88: Axel Becke EGGA
X , based on energy density of atoms, one

parameter (Phys. Rev. A. 38)

LYP, 88: Lee-Yang-Parr turn Colle-Salvetti orbital functional for
atoms into an EC[n] (Phys. Rev. B. 37)

PW91: Parametrization of real-space cut-off procedure
PBE, 96: A re-parametrization and simplification of PW91
RPBE, 99: Danish version, improves surface energetics
PBEsol, 08: Revised PBE for solids
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Philosophy of GGA

If LDA is very reliable using only n(r), surely can be more accurate if
use ∇n(r) too.
Use exact conditions to constrain construction.
Non-empirical (Perdew):

I Use known QM limits to fix all parameters.
I Retains systematic error
I Controlled extrapolation away from known limits

Empirical (Becke):
I Fit parameters to atoms and molecules.
I Minimizes error on fitted and similar systems
I Fails badly when applied elsewhere

Pragmatic (Kieron):
I Judge a Perdew functional by its derivation, not its numbers
I Judge a Becke functional by the numbers, not its derivation.
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PBE, 1996

Correlation:
I In slowly varying limit, EC → EGEA

C .
I In rapidly varying limit, EC → ELDA

C .
I In high-density limit, EC → −const.

Exchange:
I Under uniform scaling, EX[nγ ] = γEX[n].
I Under spin-scaling, EX[n↑, n↓] = (EX[2n↑] + EX[2n↓])/2.
I Linear response same as LDA.
I Lieb-Oxford bound: EXC ≥ 2.3ELDA

X .
Leads to enhancement factor:

FX(s) = 1 + κ− κ/(1 + µs2/κ), κ ≤ 0.804.

Performance
I Reduces LDA overbinding by 2-3.
I Overcorrects bond lengths to about +1%.
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GGA general performance

GGA reduces LSDA error in total energies by a factor of 3 or so,
retaining cancellation of errors.
For bond dissociation energies, PBE cures LDA overbinding by about
a factor of 3 (typical error 0.3 eV/bond), so greatly improves
thermochemistry. But still overbinds.
BLYP is about 2 times better on G2 data set, but less systematic in
errors.
PBE overcorrects the LSDA error in bond lengths, from about -1% to
about + 1%.
Bulk Fe is magnetic in PBE, because right structure has lowest energy.
Transitions to unoccupied orbitals in bulk insulators a rough guide to
quasiparticle excitations, except for too small gap, just as in LSDA.
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Hybrids

A hybrid functional replaces some fixed fraction of GGA exchange
with exact exchange.

First proposed by Becke
I A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

Morphed into the infamous B3LYP, now most used functional in DFT.

The 3 in B3LYP is 3 fitted parameters, but other 2 just modify GGA.

PBE0 is the derived version, with 1/4 mixing rationalized.
I Burke, Ernzerhof, and Perdew, Chem. Phys. Lett. 265, 115, (1996)

I Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982, (1996)
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Typical results with functionals

G2 Data Set of small molecules
m.a.e. HF LDA PBE BLYP Hybrid

kcal/mol 100 30 10 6 3

BLYP for uniform gas
rs 0.1 1 2 5 10

error -50% -30% -40% -50% -60%

Successive improvement (in energetics) at increasing computational
cost.

Kieron (UC Irvine) Basics of DFT Lausanne12 36 / 38



Hybrid general performance

PBE0 reduces PBE error in bond energies by a factor of 3 or so,
retaining cancellation of errors.
Typical chemical transition-state barriers are too low (even 0) in
LSDA, better but too low in PBE, and best in hybrids such as PBE0.
For G2 data set, B3LYP thermochemistry is better by factor of 2 than
PBE0.
Hybrids do not improve over GGA for ionization potentials or
transition metal complexes.
Mysteriously, hybrids calculated with HF exchange give better gaps
for semiconductors.
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Lessons about standard functionals

No approximation is exact or even highly accurate.

Use only standard functionals, preferably L(S)DA, PBE, PBE0
Report results with LDA and PBE, making sure they’re consistent.
LSDA gives highly accurate densities and bond lengths, and
moderately accurate energetics (but not good enough for
thermochemistry).
LSDA is very reliable because it satisfies many exact conditions
because it uses energetics of uniform gas.
Non-empirical GGA, such as PBE, tries to keep all good features of
LSDA but improve energetics.
Good empirical functionals are more accurate on the systems they’re
designed for, but less reliable away from those.
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