Basics of DFT

Kieron Burke and Lucas Wagner

Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

October 10 - 19th, 2012

Outline

General background

2 DFT

- background
- Kohn-Sham

3 Common functionals

- LDA
- GGA
- Hybrids

Electronic structure problem

• What atoms, molecules, and solids can exist, and with what properties?

Figure: My first ever DFT transparency

Kieron (UC Irvine))

- In atomic units, all energies are in Hartree (1H= 27.2 eV) and all distances in Bohr (1 a_0 = 0.529 Å)
- To write formulas in atomic units, set $e^2 = \hbar = m_e = 1$
- In regular units,
 - ▶ 1 H = 27.2eV
 - 1 eV = 23.06 kcal/mol
 - 1 kcal = 4.184 kJ/mol = 503K.

Born-Oppenheimer approximation

- Because of difference between proton and electron mass, can separate wavefunction into nuclear × electronic to an excellent approximation.
- Because electronic energies are in eV and much greater than 300K, electrons always in ground state.
- Yields

$$E_{total}(\{\mathbf{R}_{\alpha}\}) = V_{nuc-nuc}(\{\mathbf{R}_{\alpha}\}) + E_{elec}(\{\mathbf{R}_{\alpha}\})$$

where electons are in ground state.

 Knowing *E_{total}*({**R**_α}) yields structures from minima, vibrations from curvature, all reaction energies from well-depths, all transition states from saddle points, etc.

Hamiltonian

• Hamiltonian for N electrons in the presence of external potential $v(\mathbf{r})$: $\hat{H} = \hat{T} + \hat{V}_{oo} + \hat{V}.$

where the kinetic and elec-elec repulsion energies are

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}, \qquad \hat{V}_{ee} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|},$$

and difference between systems is N and the one-body potential

$$\hat{V} = \sum_{i=1}^{N} v(\mathbf{r}_i)$$

• Often $v(\mathbf{r})$ is electron-nucleus attraction

$$v(\mathbf{r}) = -\sum_{\alpha} \frac{Z_{\alpha}}{|\mathbf{r} - \mathbf{R}_{\alpha}|}$$

where α runs over all nuclei, plus weak applied **E** and **B** fields.

Schrödinger equation

• 6N-dimensional Schrödinger equation for stationary states

$$\{ \hat{\mathcal{T}} + \hat{V}_{ ext{ee}} + \hat{V} \} \, \Psi = E \, \Psi, \qquad extsf{ } \Psi$$
 antisym

The one-particle density is much simpler than Ψ:

$$n(\mathbf{r}) = N \sum_{\sigma_1} \dots \sum_{\sigma_N} \int d^3 r_2 \dots d^3 r_N |\Psi(\mathbf{r}\sigma_1, \mathbf{r}_2\sigma_2, \dots, \mathbf{r}_N\sigma_N)|^2$$

and n(r) d³r gives probability of finding any electron in d³r around r.
Wavefunction variational principle:

- $E[\Psi] \equiv \langle \Psi | \hat{H} | \Psi \rangle$ is a functional
- Extrema of $E[\Psi]$ are stationary states, and ground-state energy is

$$E = \min_{\Psi} \langle \Psi | \hat{T} + \hat{V}_{\mathrm{ee}} + \hat{V} | \Psi
angle$$

where Ψ is normalized and antisym.

• Aim: Predict properties just by solving the Schrödinger equation

• Physics: Usually use model Hamiltonians with empirical parameters (e.g. Hubbard)

• Chemistry: Systematic expansion either of wavefunction or Hamiltonian

References for ground-state DFT

- DFT in a nutshell, by KB and Lucas Wagner, IJQC
- ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu/
- Perspective on DFT, by KB, JCP 136, 150901, (2012)
- A Primer in Density Functional Theory, edited by C. Fiolhais et al. (Springer-Verlag, NY, 2003)
- *Density Functional Theory*, Engel and Dreizler, (Springer-Verlag, Berlin, 1990)
- A Chemist's Guide to Density Functional Theory, Koch and Holthausen (Wiley-VCH, Weinheim, 2000)
- Which functional should I choose? Rappoport, Crawford, Furche, and Burke. http://dft.uci.edu/

Brief history of DFT

- 1926: Old DFT was Thomas-Fermi theory and extensions.
- 50's and 60's: Slater and co-workers develop $X\alpha$ as crude KS-LDA.
- 1965: Modern DFT begins with Kohn-Sham equations. By introducing orbitals, get 99% of the kinetic energy right, get accurate $n(\mathbf{r})$, and only need to approximate a small contribution, $E_{\rm XC}[n]$.
- 1965: KS also suggested local density approximation (LDA) and gradient expansion approximation.
- 1993: More modern functionals (GGA's and hybrids) shown to be usefully accurate for thermochemistry
- 1998: Kohn and Pople win Nobel prize in chemistry
- 2010: DFT in materials science, geology, soil science, astrophysics, protein folding,...

Hohenberg-Kohn theorem (1964)

• Rewrite variational principle (Levy 79):

$$E = \min_{\Psi} \langle \Psi | \hat{T} + \hat{V}_{ee} + \hat{V} | \Psi \rangle$$
$$= \min_{n} \left\{ F[n] + \int d^{3}r \ v(\mathbf{r}) n(\mathbf{r}) \right\}$$

where

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi \rangle$$

- The minimum is taken over all positive $n(\mathbf{r})$ such that $\int d^3r \ n(\mathbf{r}) = N$
- **2** The external potential $v(\mathbf{r})$ and the hamiltonian \hat{H} are determined to within an additive constant by $n(\mathbf{r})$
 - P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).
 - M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).

Kohn-Sham 1965

• Define *fictitious* non-interacting electrons satisfying:

$$\left\{-\frac{1}{2}\nabla^2 + v_{\rm s}(\mathbf{r})\right\}\phi_j(\mathbf{r}) = \epsilon_j\phi_j(\mathbf{r}),$$

$$\sum_{j=1}^{N} |\phi_j(\mathbf{r})|^2 = n(\mathbf{r}).$$

where $v_{\rm S}(\mathbf{r})$ is *defined* to yield $n(\mathbf{r})$.

 \bullet Define ${\cal T}_{\rm S}$ as the kinetic energy of the KS electrons, U as their Hartree energy and

$$T+V_{
m ee}=T_{
m s}+U+E_{
m xc}$$

the remainder is the exchange-correlation energy.

• Most important result of exact DFT:

$$v_{\rm s}(\mathbf{r}) = v(\mathbf{r}) + \int d^3 r \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{\rm xc}[n](\mathbf{r}), \qquad v_{\rm xc}(\mathbf{r}) = \frac{\delta E_{\rm xc}}{\delta n(\mathbf{r})}$$

• Knowing $E_{\rm XC}[n]$ gives closed set of self-consistent equations.

KS potential of He atom

Every density has (at most) one KS potential.¹ Dashed line: $v_{\rm S}(\mathbf{r})$ is the *exact* KS potential.

¹ Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series, C. J. Umrigar and X. Gonze, Phys. Rev. A **50**, 3827 (1994).

Kieron (UC Irvine)

Lausanne12 15 / 38

Kohn-Sham energy components

• The KS kinetic energy is the kinetic energy of the KS orbitals

$$T_{\rm s}[n] = \frac{1}{2} \sum_{i=1}^{N} \int d^3 r |\nabla \phi_i(\mathbf{r})|^2 > 0$$

• The Hartree (aka Coulomb aka electrostatic) repulsive self-energy of a charge density is

$$U[n] = \frac{1}{2} \int d^3r \int d^3r' \, \frac{n(\mathbf{r}) \, n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} > 0$$

• The exchange energy is

$$E_{\rm x} = -\frac{1}{2} \sum_{\sigma} \sum_{i,j \atop occ} \int d^3 r \int d^3 r' \frac{\phi_{i\sigma}^*(\mathbf{r})\phi_{j\sigma}^*(\mathbf{r}')\phi_{i\sigma}(\mathbf{r}')\phi_{j\sigma}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} < 0$$

• $E_{\rm C}$ is everything else, < 0

Kohn-Sham elementary facts

- *T* and *V*_{ee} are both positive, trying to rip system apart, but overcome by more negative *V*.
- Kinetic energies are positive, and $T > T_{\rm s}$ by definition.
- U is positive and dominates the electron-electron repulsion.
- E_x only has contributions from same-spin electrons and is negative. This part is given exactly by a HF calculation (in quantum chemistry).
- The electron-electron repulsion of the KS wavefunction is just

$$\langle \Phi[n] | \hat{V}_{\rm ee} | \Phi[n] \rangle = U[n] + E_{\rm x}[n]$$

• $E_{\rm C}$ contains both kinetic and potential contributions:

$$\begin{split} \mathcal{E}_{\mathrm{C}} &= \langle \Psi[n] | \hat{\mathcal{T}} + \hat{\mathcal{V}}_{\mathrm{ee}} | \Psi[n] \rangle - \langle \Phi[n] | \hat{\mathcal{T}} + \hat{\mathcal{V}}_{\mathrm{ee}} | \Phi[n] \rangle \\ &= (\mathcal{T} - \mathcal{T}_{\mathrm{S}}) + (\mathcal{V}_{\mathrm{ee}} - \mathcal{U} - \mathcal{E}_{\mathrm{X}}) = \mathcal{T}_{\mathrm{C}} + \mathcal{U}_{\mathrm{C}} \end{split}$$

Energy components of small spherical atoms

	T	V	$V_{ m ee}$	$T_{\rm s}$	U	$E_{\rm x}$	T _C	$U_{ m C}$	$E_{ m C}$
He	2.904	-6.753	0.946	2.867	2.049	-1.025	.037	079	042
Be	14.67	-33.71	4.375	14.59	7.218	-2.674	.073	169	096
Ne	128.9	-311.1	53.24	128.6	66.05	-12.09	.33	72	39

Table: Energy components found from the exact densities.

- Huang and Umrigar, Phys. Rev. A 56, 290, (1997)
- C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).
- Thanks to Cyrus Umrigar, Xavier Gonze, and Claudia Filippi.

Simple points about KS calculations

• The total energy is *not* the sum of the orbital energies:

$$E \neq \sum_{i=1}^{N} \epsilon_i$$

- If some approximation is used for $E_{\rm XC}$, then energy can go below the exact ground-state energy.
- Any given formula for $E_{\rm XC}$, no matter where it came from, produces a *non-empirical* scheme for *all* electronic systems.
- The KS scheme, even with the exact functional, yields only E and $n(\mathbf{r})$ (and anything that can be deduced from them).
- In principle, from HK, *all* properties are determined by *n*(**r**), but in reality, we only know one really well.

The KS HOMO-LUMO gap is not the fundamental gap

- The fundamental gap of any system
 - $\Delta = I A$ (= 24.6 eV for He)
- The exact Kohn-Sham gap:

• $\Delta_{\rm s} = \epsilon_{\rm HOMO} - \epsilon_{\rm LUMO}$ (= $\epsilon_{1s} - \epsilon_{2s} = 21.16 \, {\rm eV}$ for He)

- These gaps are *not* the same!
- KS gap is typically smaller than Δ
- Most notorious case: bulk Si
- The exact ground-state $E_{\rm XC}[n]$ produces a KS gap different from the fundamental gap.

Spin DFT

- In modern reality, everyone uses *spin*-density functional theory
 - ▶ U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
- Can easily generalize theorems and equations to spin densities, $n_{\uparrow}(\mathbf{r})$ and $n_{\downarrow}(\mathbf{r})$, with two different KS potentials (but some subtleties).
- No difference for spin-unpolarized systems, but much more accurate otherwise (odd electron number, radicals, etc.)
- Spin-scaling trivial for $E_{\rm X}$, not so for correlation.
- Can handle collinear **B** fields

Lessons about basic DFT

DFT is

- different from all other methods of directly solving the Schrödinger equation.
- in principle exact for *E* and $n(\mathbf{r})$, knowing only $E_{\rm xc}[n]$.
- approximate in practice.
- Exact DFT tells us what we can and cannot expect our functionals to be able to do.
- $v_{\rm S}(\mathbf{r})$ and $\phi_j(\mathbf{r})$ are *not* real, just logical constructions. The $\phi_j(\mathbf{r})$ can be very useful interpretative tools and follow intuition, but $v_{\rm S}(\mathbf{r})$ is dangerous.

Functionals in common use

- Local density approximation (LDA)
 - Uses only n(r) at a point,

$$E_{\rm xc}^{
m LDA}[n] = \int d^3r \ e_{
m xc}^{
m unif}(n(\mathbf{r}))$$

• Generalized gradient approx (GGA)

• Uses both $n(\mathbf{r})$ and $|\nabla n(\mathbf{r})|$

$$E_{\mathrm{xc}}^{\mathrm{GGA}}[n] = \int d^3r \ e_{\mathrm{xc}}(n(\mathbf{r}), |\nabla n|)$$

Examples are PBE and BLYP

• Hybrid:

$$E_{\mathrm{xc}}^{\mathrm{hyb}}[n] = a(E_{\mathrm{x}} - E_{\mathrm{x}}^{\mathrm{GGA}}) + E_{\mathrm{xc}}^{\mathrm{GGA}}[n]$$

- Mixes some fraction of HF, a usually about 25%
- Examples are B3LYP and PBE0

Functional Soup

- Good: choose one functional of each kind and stick with it (e.g., LDA, PBE, or PBE0).
- Bad: Run several functionals, and pick 'best' answer.
- Ugly: Design your own functional with 2300 parameters.
- Empirical
 - GGA: BLYP
 - Hybrid: B3LYP
- Names:
 - B=B88 exchange
 - LYP = Lee-Yang-Parr correlation

- Non-empirical
 - GGA:PBE
 - Meta-GGA: TPSS
 - Hybrid: PBE0

Local density approximation (LDA)

• Exchange is trivial (Dirac, 1931)

$$e_{\rm X}^{\rm unif}(n) = -A_{\rm X} n^{4/3}, \qquad A_{\rm X} = \frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} = 0.738$$

- Correlation energy known: $e_{\rm C}^{\rm unif}(n)$ was accurately calculated by QMC
 - ▶ D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- Several accurate parametrizations in use (all very similar):
 - ▶ PW92 Perdew and Wang, Phys. Rev. B 45, 13244 (1992)
 - ▶ PZ81 Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)
 - VWN80, aka S-VWN-5
 S. H. Vosco, L. Wilk, and M. Nusair, Can. J. Phys. 58(8): 1200 (1980)

LDA (or LSDA) general performance

- For total energies, E_x is underestimated by about 10%, E_c is overestimated by about 200%, so E_{xc} is good to about 7% (mysterious cancellation of errors).
- For bond dissociation energies, LDA overbinds by about 1 eV /bond (30 kcal/mol), so no good for thermochemistry.
- Typical bond lengths are underestimated by 1% (unless involving an H atom), so excellent geometries and vibrations. So still used for structure.
- Bulk Fe is non-magnetic, because wrong structure has lowest energy.
- Transitions to unoccupied orbitals in bulk insulators a rough guide to quasiparticle excitations, except for too small gap.

Densities

Figure: Exact and LDA radial densities of the Ne atom.

• Size-consistency:

$$E_{\rm xc}[n_A+n_B]=E_{\rm xc}[n_A]+E_{\rm xc}[n_B],$$

where $n_A(\mathbf{r})$ and $n_B(\mathbf{r})$ do not overlap.

- Uniform limit: Recover exact XC bulk jellium energy if *n* is constant.
- Linear response of uniform gas: LDA is almost exact for linear response to perturbation cos(q ⋅ r) for q ≤ 2k_F.
- Lieb-Oxford bound: Magnitude of $E_{\rm XC}$ cannot be greater than 2.3 $E_{\rm X}^{\rm LDA}$.

Uniform coordinate scaling

Figure: A one-dimensional density (red) being squeezed by $\gamma = 2$ (blue)

• A very handy way to study density functionals, especially in limits:

$$n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r}), \qquad 0 \leq \gamma \leq \infty$$

- For γ > 1, squeezes up the density, preserving norm; for γ < 1, stretches it out.</p>
- Exchange: Require $E_{\rm X}[n_{\gamma}] = \gamma E_{\rm X}[n]$
- Correlation: E_C[n_γ] = B[n] + C[n]/γ + ... for high density limit of finite systems. (Violated by LDA!)

History of GGA

- Gradient expansion approximation (GEA): Expansion in density gradients that is valid for slowly-varying gas, discussed in KS65.
- Langreth-Mehl 81: First modern GGA, but cut-off in wavevector space.
- PW86: Early version of Perdew strategy, cutting off gradient-expanded hole in real space. (Phys. Rev. B, **33**)
- B88: Axel Becke $E_{\rm X}^{\rm GGA}$, based on energy density of atoms, one parameter (Phys. Rev. A. **38**)
- LYP, 88: Lee-Yang-Parr turn Colle-Salvetti orbital functional for atoms into an $E_{\rm C}[n]$ (Phys. Rev. B. 37)
- PW91: Parametrization of real-space cut-off procedure
- PBE, 96: A re-parametrization and simplification of PW91
- RPBE, 99: Danish version, improves surface energetics
- PBEsol, 08: Revised PBE for solids

Philosophy of GGA

- If LDA is very reliable using only n(r), surely can be more accurate if use ∇n(r) too.
- Use exact conditions to constrain construction.
- Non-empirical (Perdew):
 - Use known QM limits to fix all parameters.
 - Retains systematic error
 - Controlled extrapolation away from known limits
- Empirical (Becke):
 - Fit parameters to atoms and molecules.
 - Minimizes error on fitted and similar systems
 - Fails badly when applied elsewhere
- Pragmatic (Kieron):
 - Judge a Perdew functional by its derivation, not its numbers
 - Judge a Becke functional by the numbers, not its derivation.

PBE, 1996

• Correlation:

- In slowly varying limit, $E_{\rm C} \rightarrow E_{\rm C}^{\rm GEA}$.
- In rapidly varying limit, $E_{\rm c} \rightarrow \tilde{E}_{\rm c}^{\rm LDA}$.
- In high-density limit, $E_{\rm C} \rightarrow -{\rm const.}$
- Exchange:
 - Under uniform scaling, $E_x[n_\gamma] = \gamma E_x[n]$.
 - Under spin-scaling, $E_x[n_{\uparrow}, n_{\downarrow}] = (E_x[2n_{\uparrow}] + E_x[2n_{\downarrow}])/2.$
 - Linear response same as LDA.
 - Lieb-Oxford bound: $E_{\rm xc} \ge 2.3 E_{\rm x}^{\rm LDA}$.

Leads to enhancement factor:

$$F_{\mathrm{x}}(s) = 1 + \kappa - \kappa/(1 + \mu s^2/\kappa), \qquad \kappa \leq 0.804.$$

• Performance

- Reduces LDA overbinding by 2-3.
- Overcorrects bond lengths to about +1%.

- GGA reduces LSDA error in total energies by a factor of 3 or so, retaining cancellation of errors.
- For bond dissociation energies, PBE cures LDA overbinding by about a factor of 3 (typical error 0.3 eV/bond), so greatly improves thermochemistry. But still overbinds.
- BLYP is about 2 times better on G2 data set, but less systematic in errors.
- PBE *overcorrects* the LSDA error in bond lengths, from about -1% to about +1%.
- Bulk Fe is magnetic in PBE, because right structure has lowest energy.
- Transitions to unoccupied orbitals in bulk insulators a rough guide to quasiparticle excitations, except for too small gap, just as in LSDA.

Hybrids

- A hybrid functional replaces some fixed fraction of GGA exchange with exact exchange.
- First proposed by Becke
 - A.D. Becke, J. Chem. Phys. 98, 5648 (1993).
- Morphed into the infamous B3LYP, now most used functional in DFT.
- The 3 in B3LYP is 3 fitted parameters, but other 2 just modify GGA.
- PBE0 is the derived version, with 1/4 mixing rationalized.
 - Burke, Ernzerhof, and Perdew, Chem. Phys. Lett. 265, 115, (1996)
 - Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982, (1996)

G2 Data Set of small molecules

m.a.e.	HF	LDA	PBE	BLYP	Hybrid
kcal/mol	100	30	10	6	3

BLYP for uniform gas

r _s	0.1	1	2	5	10
error	-50%	-30%	-40%	-50%	-60%

• Successive improvement (in energetics) at increasing computational cost.

- PBE0 reduces PBE error in *bond energies* by a factor of 3 or so, retaining cancellation of errors.
- Typical chemical transition-state barriers are too low (even 0) in LSDA, better but too low in PBE, and best in hybrids such as PBE0.
- For G2 data set, B3LYP thermochemistry is better by factor of 2 than PBE0.
- Hybrids do not improve over GGA for ionization potentials or transition metal complexes.
- Mysteriously, hybrids calculated with HF exchange give better gaps for semiconductors.

Lessons about standard functionals

- No approximation is exact or even highly accurate.
- Use only standard functionals, preferably L(S)DA, PBE, PBE0
- Report results with LDA and PBE, making sure they're consistent.
- LSDA gives highly accurate densities and bond lengths, and moderately accurate energetics (but not good enough for thermochemistry).
- LSDA is very *reliable* because it satisfies many exact conditions because it uses energetics of uniform gas.
- Non-empirical GGA, such as PBE, tries to keep all good features of LSDA but improve energetics.
- Good empirical functionals are more accurate on the systems they're designed for, but less reliable away from those.