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Time-dependent Schrödinger equation

i ∂
∂t Ψ(r1, ..., rN ; t) = (T̂ + V̂ (t) + V̂ee)Ψ(r1, ..., rN ; t)

with kinetic energy operator:

T̂ = −1
2

N∑
j=1
∇2

j

electron interaction:

V̂ee =
1
2
∑
j 6=k

1
|rj − rk |

The TDSE describes the time evolution of a many-body state Ψ(t)
starting from an initial state Ψ0 = Ψ(t0), under the influence of an
external time-dependent potential:

V̂ (t) =
∑

j
v(rj , t).
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Two types of time-dependence: 1. Due to initial state
Initial wavefunction is not an eigenstate: e.g.

ψ(x , t = 0) =
1√
5
{
2φ1(x) + φ2(x)

}
.

//

Plasmonics: oscillations of
nanoparticles

New J. Chem. 30, 1121 (2006)

Nature Mat. Vol. 2 No. 4 (2003)

Ullrich and Maitra’s March 2010 APS TDDFT presentation
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2nd type: Potential starts changing
Start in ground state, evolve in time-dependent potential v(x , t):

//

Nonlinear response of molecules in strong laser fields:

+3

Ullrich and Maitra’s March 2010 APS TDDFT presentation
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Conservation of density in time-dependent problems

Current operator:

ĵ(r) =
1
2
∑

j
(p̂jδ(r − rj) + δ(r − rj)p̂j)

Acting on wavefunction:

j(r, t) = N
∫

d3r2 · · ·
∫

d3rN ={Ψ(r, r2, ..., rN ; t)∇Ψ∗(r, r2, ..., rN ; t)}

Continuity:
∂n(r, t)

∂t = −∇ · j(r, t)
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Recent reviews on TDDFT

Fundamentals of Time-Dependent Density Functional Theory
(Lecture Notes in Physics) by Miguel A.L. Marques, Neepa T. Maitra,
Fernando M.S. Nogueira and E.K.U. Gross (Springer, 2012).
Time-dependent density functional theory, Carsten Ullrich (Oxford,
2012).
Time-dependent density functional theory: Past, present, and future
K. Burke, Jan Werschnik, and E.K.U. Gross, J. Chem. Phys. 123,
062206 (2005)
Excited states from time-dependent density functional theory, P.
Elliott, F. Furche, and K. Burke, in Reviews in Computational
Chemistry, eds. K. B. Lipkowitz and T. R. Cundari, (Wiley, Hoboken,
NJ, 2009), pp 91-165. Also arXiv:cond-mat/0703590
Time-dependent density-functional theory Phys. Chem. Chem. Phys.,
2009 DOI: 10.1039/b908105b, eds. Miguel Marques and Angel Rubio.
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Basic proof: Runge–Gross theorem (1984)

Any given current density, j(r, t), initial wavefunction, statistics, and
interaction, there’s only one external potential, v(r, t), that can
produce it.

Imposing a boundary condition and using continuity, find also true for
n(r, t).

Action in RG paper is WRONG.

van Leeuwen gave a constructive proof
I PRL 80, 1280, (1998)

but see
I Yang, Maitra, and Burke, Phys. Rev. Lett. 108, 063003, (2012)
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Basic points

TDDFT:
is an addition to DFT, using a different theorem

allows you to convert your KS orbitals into optical excitations of the
system

for excitations usually uses ground-state approximations that usually
work OK

has not been very useful for strong laser fields

is in its expansion phase: Being extended to whole new areas, not
much known about functionals

with present approximations has problems for solids

with currents is more powerful, but trickier
yields a new expensive way to get ground-state EXC, but see

I H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc. 131 1084 (2012)
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TD Kohn–Sham equations

Time-dependent KS equations:

i ∂
∂t φj(r, t) =

{
−1
2∇

2 + vS(r, t)

}
φj(r, t)

Density:

n(r, t) =
N∑

j=1
|φj(r, t)|2

The KS potential is

vS(r, t) = v(r, t) +

∫
d3r ′ n(r, t)

|r − r′| + vXC[n; Ψ0,Φ0](r, t),

where vXC depends on memory:
I entire history of n(r, t)
I initial state Ψ0 and Φ0.
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Adiabatic approximation

Almost all calculations use adiabatic approximation

No standard improvement over this

Use ground state functional vGS
XC on time-dependent n(r, t):

vadia
XC [n](r, t) = vGS

XC [n(t)](r).

Often, error is due to ground-state approximation, not missing
frequency dependence.

I Thiele and Kümmel, Phys. Chem. Chem. Phys., 11, 4631 (2009)
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Overview of ALL TDDFT
TDDFT is applied in 3 distinct regimes:

Strong fields, where time-dependence is not perturbative.
I Properties: double ionization probabilities, momentum distributions,

high-harmonic generation
I Methodology: Must be real time, usually on a grid in real space.
I Performance: Several problems, including that n(r, t) is not enough

info to get the desired property, and that no good approximations when
n(r, t) is not close to ground state.

Excitations: To extract excitations and optical absorption, only need
linear response theory

I Methodology: Either real time, fourier transform dipole moment, or
response equations in frequency space.

I Performance: Usually quite good (good properties of excited
molecules) but growing list of deficiencies, e.g.:

F Extended systems and non-locality
F Charge transfer

Ground-state approximations: Via fluctuation-dissipation theorem,
can calculate the XC energy from TDDFT (very expensive - RPA cost)
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Excitations from DFT

Many approaches to excitations in DFT

There is no HK theorem from excited-state density
I Gaudoin and Burke, Phys. Rev. Lett. 93, 173001, (2004)

Would rather have variational approach (ensembles, constrained
search, etc.)

TDDFT yields a response approach, i.e, looks at TD perturbations
around ground-state
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Linear response theory

We will need the density-density response function:

δn(r, t) =

∫
d3r ′

∫
dt ′ χ(rr′, t − t ′)δv(r′, t ′)

where
δv(r, t) is a perturbation to the potential,
δn(r, t) is the density response to this perturbation, and
χ is the density-density response (susceptibility) function:

χ(r, r′, t − t ′) =
δn(rt)

δv(r′t ′)

(functional derivative)
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Linear response in TDDFT

Equate density change in reality with that of KS system (and Fourier
transform):

δn(rω) =

∫
d3r ′ χ[n](rr′ω)δv(r′ω)

=

∫
d3r ′ χS[n](rr′ω)δvS[n](r′ω)

which implies

δvS[n](rω) = δv(rω) +

∫
d3r ′

{ 1
|r − r′| + fXC[n](rr′ω)

}
δn(r′ω)

and the XC kernel is defined in time as

fXC(rr′, t − t ′) =
δvXC(rt)

δn(r′t ′) .
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Dyson-like equation from equating density responses

Get the real response function from the ground-state KS response function
plus kernel:

χ(rr′ω) = χS(rr′ω) +∫
d3r1

∫
d3r2 χS(rr′ω)

{ 1
|r1 − r2|

+ fXC[n](r1r2ω)

}
χ(rr′ω)

with KS susceptibility

χS(rr′ω) =
∑
jk

fjk
φj(r)φ∗k(r)φ∗j (r′)φk(r′)
ω − (εj − εk) + i0+

where fjk = fj − fk , εj is the KS orbital energy and φj(r) is the orbital.
If adiabatic approximation, the ground-state functional determines all.

Gross and Kohn, Phys. Rev. Lett. 55, 2850 (1985)
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Transitions

Look at KS transition frequencies ωq = εa − εj , where j is an occupied and
a an unoccupied orbital. Thus q is a double index (j , a).

εb _________ b

εa _________ a

εj

q

OO

q′

OO

j
If we consider

Φq(r) = φ∗j (r)φa(r),

we can rewrite

χS(rr′ω) = 2
∑

q

{
Φq(r)Φ∗q(r′)
ω − ωq + i0+

−
Φ∗q(r)Φq(r′)
ω + ωq − i0+

}
.
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TDDFT linear response

Probe system with AC field of frequency ω

See at what ω you find a self-sustaining response

That’s a transition frequency!

Need a new functional, the XC kernel, fXC[n](rrω)

Almost always ignore ω-dependence (called adiabatic approximation)

Can view as corrections to KS response
I Appel, Gross, and Burke, Phys. Rev. Lett. 90, 043005, (2003)
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Casida’s matrix formulation (1996)

Get true transition frequencies ω as eigenvalues of∑
q′

Ωqq′(ω)νq′ = ω2νq,

where
Ωqq′ = δqq′ω2

q + 4
√
ωqω′q[q|fHXC(ω)|q′]

and
[q|fHXC(ω)|q′] =

∫∫
d3r d3r ′ Φ∗q(r′)fHXC(rr′ω)Φq′(r)

and the eigenvectors νq determine the optical strength.

Time-dependent density functional response theory of molecular systems, M.E. Casida, in
Recent developments and applications in DFT, ed. J.M. Seminario (Elsevier, Amsterdam,
1996).
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KS response
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Benzene is the fruitfly of TDDFT

First-principles density-functional
calculations for optical spectra of clusters
and nanocrystals, I. Vasiliev, S. Ogut, and
J.R. Chelikowsky, Phys. Rev. B 65, 1
15416 (2002).
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Case study: Naphthalene

Study of various functionals for
Naphthalene. Variations in vXC(r)
comparable to those in fXC(r, r′).

P. Elliott, F.Furche, KB, Reviews Comp
Chem, 2008.

Kieron (UC Irvine) TDDFT Lausanne12 26 / 32



Performance of functionals in TDDFT

Study of various functionals over a
set of 500 organic compounds, 700
excited singlet states

D. Jacquemin, V. Wathelet, E. A.
Perpete, C. Adamo, J. Chem. Theory
Comput. (2009).
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Typical success of TDDFT for excited states

Energies to within about 0.4 eV

Bonds to within about 1%

Dipoles good to about 5%

Vibrational frequencies good to 5%

Cost scales as N2, vs N5 for CCSD

Available now in your favorite quantum chemical code (Turbomole)
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Current challenges in TDDFT

Rydberg states
I Wasserman and Burke, PRL 95, 163006, (2005)

I Wasserman, Maitra, and Burke, PRL 91, 263001, (2003)

Double excitations
I Maitra et al., J. Chem. Phys. 120, 5932-5937, (2004)

Optical response of solids
I Sharma et al., PRL 107, 186401 (2011)

Long-range charge transfer
I Stein, Kronik, and Baer, J. Am. Chem. Soc. 131, 2818 (2009)

Polarizabilities of long-chain molecules
I van Faassen et al., J. Chem. Phys. 120, 5932, (2004)
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Extracting EXC[n] from TDDFT

From the fluctuation-dissipation theorem:

EXC[n] = −1
2

∫ 1

0
dλ
∫

d3r
∫

d3r ′ 1
|r − r′| ×∫ ∞

0

dω
π

{
χλ[n](rr′ω) + n(r)δ(r − r′)

}
Plug in ground-state n(r) to obtain EXC.

Combine with TDDFT Dyson-like equation to get new approximations
from old functionals, but demanding response calculation.
For separated systems, gives van der Waals coefficients.
Approximate frequency integration and factorization of response
functions yields Langreth-Lunqvist van der Waals function—a
non-local ground-state density functional.

I M Dion et al, PRL 92, 24601 (2004).
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Lessons about TDDFT

A way to extract electronic excitations using new theorem, from
ground-state DFT calculation.

Only real game in town for excitations in chemistry for decent-sized
molecules.

Cost comparable to single-point ground-state calculation.

Uses adiabatic approximation.

Problems for large systems due to locality of approximate functionals.
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