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ABSTRACT OF THE DISSERTATION

Electron Affinity in Approximate Density Functional Theory and
the Role of Semiclassics in Orbital-Free Potential-Density Functional Theory

By

Dong Hyung Lee

Doctor of Philosophy in Chemistry

University of California, Irvine, 2010

Professor Kieron Burke, Chair

In this dissertation I discuss the effects of the self-interaction in atomic anions and the

role of semiclassics in the orbital-free (potential-)density functional theory. The first part

describes how accurate electron affinities can be obtained from the traditional basis-set

approaches, despite the positive highest occupied molecular orbital (HOMO) energy due

to the self-interaction. I also suggest an alternative way to calculate electron affinity using

approximate functionals evaluated on Hartree-Fock or exact-exchange densities for which

the extra electron is bound. In the second part, I study the asymptotic expansion of the

neutral-atom energy as the atomic number Z →∞. The recovery of the correct asymptotic

expansion is an important condition on the Kohn-Sham kinetic energy for the accuracy of

approximate kinetic energy functionals for atoms, molecules, and solids. The density and

kinetic energy density as potential functionals are derived from the semiclassical Green’s

function. Using the density as a potential functional, I show the orbital-free potential-

density functional calculation for atoms. I also present the energy potential functional in 1D

and spherical 3D, where the kinetic energy is obtained from the virial theorem.

xii



Chapter 1

Introduction

Density functional theory (DFT) has been successfully applied to many areas such as chem-

istry, solid-state physics, biology, and surface sciences(1). The basic theorems were proven

by Hohenberg and Kohn (HK)(2) in 1964, and the practical approach to real problems was

developed by Kohn and Sham(3). Kohn-Sham (KS) DFT is a rigorous way to deal with

real, interacting electron problems by mapping them into non-interacting electron problems,

which can be solved easily, and provides a balance between computational cost and accuracy.

KS-DFT enables us to handle much larger systems in which the traditional ab initio methods

can not. Although KS-DFT is formally rigorous, the exchange-correlation energy functional

(EXC[n]) needs to be approximated in practice. There are many approximations to EXC, such

as the local density approximation (LDA), generalized gradient approximation (GGA), hy-

brid functionals, and meta-GGAs. These approximate functionals provide suitable accuracy

for many chemistry and physics areas.

Despite many successful applications, there has been an argument about the applicability of

density functional approximations to atomic anions(4; 5). These approximate functionals can

not remove the self-repulsion of an electron in the classical Coulomb (or Hartree) potential.
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This incomplete cancellation between the Hartree and exchange potentials is called the self-

interaction error (SIE). It is known that effects of the SIE decrease as the size of the system

increases, due to the spatial distribution of electron density. The SIE becomes drastic in small

atomic anions, making their highest occupied molecular orbital (HOMO) energies positive.

This result implies the HOMO is not a bound state, and casts doubt on the reliability of

DFT for electron affinity (EA) calculations.

In the original HK-DFT, the total energy is an explicit density functional and the interacting

kinetic energy, T [n], is also a density functional. However, in KS-DFT, the non-interacting

KS kinetic energy, TS[n], is evaluated on the KS orbitals and the kinetic correlation energy

(T [n] − TS[n]) is contained in the exchange-correlation energy functional. Due to this limi-

tation, we need to solve the KS differential equation to obtain the density from the orbitals.

If we know TS as a density functional with sufficient accuracy, we can construct an orbital-

free density functional theory, yielding a computational method that scales linearly with the

number of particles. In particular, highly accurate TS[n] is necessary for orbital-free density

functional calculations, since TS[n] ≃ E[n] by the virial theorem. However, there are only a

small number of known conditions on TS(6) which approximate KS kinetic energy functional

should satisfy. For the EXC in KS-DFT, there are several exact conditions that EXC should

satisfy(7).

Despite successes achieved while focused on the density as a variable, the fundamental im-

portance of the potential has emerged(8; 9). We recently published a paper about the

semiclassical origins of density functionals(10), in which we derive the semiclassical density

and kinetic energy density as potential functionals in 1D hard wall boundary systems. As

discussed in Ref. (9), if we obtain TS[v] and n[v] from the same semiclassical single-particle

Green’s function, we can find a variational equation for the total energy. Until now, we had

derived the semiclassical density and kinetic energy density for box boundary conditions.

However, in real systems, e.g., Coulomb potentials, there are always turning points where

2



the total energy is equal to the potential energy. Hence, it is necessary to study the uniform

semiclassical Green’s function for systems with turning points, in order to derive the density

and kinetic energy density as potential functionals.

In this dissertation, I will discuss the above problems. In Chapter 2, I will give a basic

background in DFT, the uniform semiclassical approximation, and the Green’s function

approach. In Chapter 3, I will discuss the effect of SIE in EA calculations with approximate

density functionals and explain how to get reasonable EAs from traditional approaches,

despite positive HOMO energies. In Chapter 4, I show that the asymptotic expansion of

total energies of neutral atoms with atomic number Z can be a very important condition for

high accuracy in non-interacting KS kinetic energies. In Chapter 5, I will discuss semiclassical

orbital-free potential-density functional theory using a Green’s function approach. Finally,

I conclude with an overview and discuss the limitations encountered in these methods and

their influence on electronic structure methods.
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Chapter 2

Background

In this section, I will review the basics of DFT, Green’s function approaches, and uniform

semiclassical approximations in 1D.

2.1 Hohenberg-Kohn theorem

The first Hohenberg-Kohn (HK) theorem states that the ground state density determines

the external potential vext(r) uniquely up to an arbitrary constant. Consider the electron

density n(r) for the nondegenerate ground state of some N -electron system. It determines

N by simple quadrature, as well as vext(r) and the corresponding Hamiltonian. From this

Hamiltonian, we can determine the wavefunction and hence get all properties of the system.

Consider two external potentials, vext(r) and v′ext(r), differing by more than a constant.

Assume each potential gives the same n(r) for its ground state. These two different potentials

provide two different Hamiltonians, Ĥ and Ĥ ′, respectively, whose ground state densities are

the same although the normalized wavefunctions, Ψ and Ψ′, are different. Taking Ψ′ as a

4



trial wavefunction of Ĥ , the variational principle yields

E0 < 〈Ψ′|Ĥ|Ψ′〉

= 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉

= E ′
0 +

∫
d3r n(r) (vext(r)− v′ext(r)) (2.1)

Similarly, taking Ψ as a trial wavefunction of Ĥ ′,

E ′
0 < 〈Ψ|Ĥ ′|Ψ〉

= 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉

= E0 +

∫
d3r n(r) (v′ext(r)− vext(r)) (2.2)

By adding Eqs. (2.1) and (2.2), we obtain a contradiction: E0 + E ′
0 < E0 + E ′

0. This

result implies that n(r) can come from at most one external potential vext(r). Thus, n(r)

determines N and vext(r) and hence all properties of the ground state. In particular, the

ground state energy is a functional of the ground state electron density, and can be expressed

in terms of n0(r):

E0 = T [n0] + Vee[n0] + Vext[n0]

= T [n0] + Vee[n0] +

∫
d3r n0(r) vext(r) , (2.3)

where subscript ee indicates an electron interaction. The kinetic energy and electron-electron

interaction functionals are independent of the external potential, so the combination of these
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two functionals is referred to as the universal functional or the Hohenberg-Kohn functional,

FHK.

E0 = FHK[n0] +

∫
d3r n0(r) vext(r) (2.4)

FHK[n0] = T [n0] + Vee[n0] (2.5)

An explicit form of either functional is not known. The electron-electron interaction energy

can be divided into the classical electrostatic energy (Coulomb energy, J [n](r)) and the

remaining part.

Vee[n0] =
1

2

∫
d3r1

∫
d3r2

n(r1)n(r2)

r12
+ UXC[n]

= J [n] + UXC[n] (2.6)

where UXC is the non-classical contribution, including all effects of self-interaction correction,

exchange and correlation. Since we do not know the explicit form of UXC, it needs to be

approximated.

The second HK theorem states that E[n], the functional that gives the ground state energy

of the system, delivers the lowest energy if and only if the input density is the true ground

state density, n0(r). According to the variational principle,

E0 ≤ E[ñ] = T [ñ] + Vee[ñ] + Vext[ñ] (2.7)

For any trial density ñ(r) that satisfies necessary boundary conditions (e.g., ñ(r) ≥ 0 with
∫
d3r ñ(r) = N), the energy E[ñ] is the upper bound to the true ground state energy E0.

Equality in Eq. (2.7) results if and only if the input density is the true ground state electron
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density. For any trial density ñ, there is a corresponding external potential ṽext(r), and hence

a Hamiltonian
˜̂
H and a corresponding wavefunction Ψ̃. For the Hamiltonian Ĥ associated

with the true external potential vext(r),

E[ñ] = 〈Ψ̃|Ĥ|Ψ̃〉

= T [ñ] + Vee[ñ] +

∫
d3r ñ(r) vext(r)

E[n0] = 〈Ψ0|Ĥ|Ψ0〉

E[ñ] ≥ E0[n0] (2.8)

2.2 Kohn-Sham equation

Although the basic theory for DFT was suggested by Hohenberg and Kohn, the kinetic and

exchange-correlation energy functionals are not known, and so cannot be used to solve real

problems. Kohn and Sham(3) suggested a way in which the Hohenberg-Kohn theorem could

be used in real calculations with acceptable accuracy. They map an interacting system into

a non-interacting system that has the same density as the interacting system. For a non-

interacting, non-degenerate fermion ground state, exact wavefunctions are given by Slater

determinants. Thus, for the non-interacting system with a Hamiltonian including a local

effective potential veff(r):

Ĥ = −1
2

N∑

i=1

∇2
i +

N∑

i=1

veff(ri) (2.9)
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Ψs =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)

...
...

. . .
...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.10)

where the φi are the N lowest eigenstates of the one-electron Hamiltonian f̂KS. These orbitals

are determined by

f̂KSφi = ǫiφi , (2.11)

where f̂KS = −1
2
∇2 + veff(r) is the one-electron Kohn-Sham operator. Because the explicit

form of the true kinetic energy functional T [n] is not known, they suggested using Eq. (2.12),

the kinetic energy of a non-interacting system with the same density as the real, interacting

system.

TS[n] ≡ TS[Ψs] = 〈Ψs| −
1

2

N∑

i=1

∇2
i |Ψs〉 (2.12)

The difference between the non-interacting and true kinetic energies would then be treated

approximately. Kohn and Sham defined the total energy E[n] as

E[n] = TS[n] + Vext[n] + J [n] + EXC[n] , (2.13)

where EXC is the exchange-correlation energy, defined by

EXC[n] = T [n]− TS[n] + Eee[n]− J [n] . (2.14)

This exchange-correlation energy functional includes the effects of exchange, correlation, and

the residual kinetic energy.

8



Using the Lagrange undetermined multiplier method with the constraint 〈φi|φj〉 = δij leads

the resulting equation:

[
−1
2
∇2 + vext(r1) +

∫
d3r2

n(r2)

r12
+ vXC(r1)

]
φi =

[
−1
2
∇2 + veff(r1)

]
φi = ǫiφi (2.15)

where vXC = δEXC/δn. According to Eq. (2.15), veff(r) depends on the density through

the Coulomb term and vXC[n]. Therefore, the KS one-electron Eq. (2.15) has to be solved

iteratively.

2.3 Green’s function

We derive an approximation to the many-particle density n(x) and the kinetic energy density

tS(x) for non-interacting, spinless fermions in a one-dimensional, smooth potential v(x). This

system is characterized by the solutions of the static Schrödinger equation:

[
p
d2ψ

dx2

]
+ [E − v(x)]ψ = 0 , (2.16)

where p is a constant depending on the units (i.e., in atomic units, p = 1/2) and E is the

energy eigenvalue.

Our derivation is based on the Green’s function g(x, x′;E), which, analogous to Eq. (2.16),

obeys

[
p
d2g

dx2

]
+ [E − v(x)] g = δ(x− x′) . (2.17)
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The solutions of Eq. (2.17) can be expressed in terms of the independent solutions ψl(x)

and ψr(x) satisfying the boundary conditions on the left and on the right, respectively, i.e.,

g(x, x′;E) =






ψl(x) ψr(x′)
p W (E)

, if x ≤ x′ ,

ψl(x
′) ψr(x)

p W (E)
, if x ≥ x′ .

(2.18)

where W (E) = ψl(x)∂xψr(x) − ψr(x)∂xψl(x) is the Wronskian and ∂x := ∂/∂x. From the

diagonal Green’s function g(x; E) := g(x, x′ = x; E) we extract the density via

n(x) =
1

2πi

∮

C

dE g(x, E) , (2.19)

and the (non-interacting) kinetic energy density via

tS(x) =
1

2πi

∮

C

dE [E − v(x)]g(x, E) , (2.20)

where E denotes a complex-valued energy and C any closed contour in the complex energy-

plane, enclosing all occupied poles on the real axis.

2.4 Uniform semiclassics in 1D

The Wentzel-Kramers-Brillouin (WKB) method provides approximate solutions to the 1D

Schrödinger equation

− h̄2

2m

d2ψ(x)

dx2
+ v(x)ψ(x) = Eψ(x) , (2.21)

which can be rearranged into

d2ψ(x)

dx2
+
p2(x)

h̄2
ψ = 0 , (2.22)
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where p(x) =
√

2m(E − v(x)) is the semiclassical momentum. Using ψ(x) ∼ eif(x)/h̄ in Eq.

(2.22), expanding f(x) as a series of h̄, and collecting the first order of h̄ give us the WKB

solution:

ψ(x) ≃ C√
p(x)

e±
i
h̄

∫
p(x)dx . (2.23)

However, this WKB solution diverges at any turning points present in the system, due to

the factor of 1/
√
p(x). Hence, uniform semiclassical approximations which give finite and

accurate descriptions at turning points are crucial.

There are two popular uniform semiclassical approximations(11; 12). Miller and Good(11)

developed a way to treat potentials with two turning points using a single, semiclassical

wavefunction without any patching scheme. However, this uniform approximation requires

us to map a given arbitrary potential into a harmonic oscillator well. Accordingly, the

original semiclassical momentum should also be mapped into the modified momentum of the

harmonic well. From Miller’s paper(12), the uniform approximate solutions to Schrödinger

equation for two-turning-point problems are given by

ψ1(x) =
θ
1/6
1 (x)

p1/2(x)
Ai

[
−
(
3

2
θ1(x)

)2/3
]

ψ2(x) = (−1)n θ
1/6
2 (x)

p1/2(x)
Ai

[
−
(
3

2
θ2(x)

)2/3
]
, (2.24)

where p(x) =
√

2(E − v(x)) is the local wavenumber,

θ1(x) =

∫ x

x1

dt p(t)

θ2(x) =

∫ x2

x

dt p(t) , (2.25)
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(x1, x2) are the left- and right-turning points respectively, and Ai is the Airy function.

According to the continuity of wavefunctions, the solutions should satisfy the following con-

ditions at some point x0:

ψ1(x0) = ψ2(x0)

ψ′
1(x0) = ψ′

2(x0) . (2.26)

Given this matching condition, the quantization condition becomes

Θ(E) = θ1(x) + θ2(x) =

(
Nn +

1

2

)
π , (2.27)

where the Nn is determined by

Nn =
4

3π
A

3/2
(n+1)/2 −

1

2
, n = 1, 3, 5, · · ·

=
4

3π
B

3/2
(n+2)/2 −

1

2
, n = 0, 2, 4, · · · (2.28)

The sets of {As} and {Bs} are the roots of the following equations:

Ai(−As) = 0 ,

Ai(−Bs)− 4BsAi
′(−Bs) = 0 . (2.29)

The numerical results of coefficients, Nn, can be found in Ref. (12).
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Chapter 3

Accuracy of Electron Affinities of

Atoms in Approximate DFT

3.1 Introduction

Treating atomic anions with approximate density functional theory (DFT) has long been

controversial(4; 5). The net negative charge produces strong self-interaction errors (SIE)(13),

resulting in such a large upward bump in the effective potential that the last electron is

unbound.

In Fig. 3.1, we show the exact Kohn-Sham (KS) potential for Li−, found from the density

of a highly accurate quantum Monte Carlo (QMC) calculation with a zero-variance zero-

bias estimator(14), and by inversion of the KS equations. The HOMO is at ǫ2s = −A,

with A = 0.62 eV, the electron affinity (EA). We also show the KS potential when the

exchange-correlation (XC) contribution is evaluated using the local density approximation

Reproduced with permission from Donghyung Lee, Filipp Furche and Kieron Burke, J. Phys. Chem.
Lett., 2010, 1, 2124 (2010). Copyright 2010 American Chemical Society.
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Figure 3.1: Comparison of KS potentials of Li−. The black line is essentially exact, using
a density from quantum Monte Carlo. The red (dashed) line is the LDA potential on that
density. The horizontal lines mark the HOMO (2s orbital) energies.

(LDA) on this accurate density. The 2s orbital of this potential is a very sharp resonance,

at approximately 0.80 eV.

Formal theorists argue that approximate DFT does “not apply to negative atomic ions if

the orbital energy (is) not negative.” (15) Despite this, many have ignored these warnings,

calculated EAs within DFT, and found reasonable results using reasonable basis sets(4).

Because such calculations have positive HOMO energies for the anion, many authors report

EAs found in this way with a note of caution. More than a decade ago, these opposing views

were well-expressed in Refs (4) and (5), with the latter arguing for why such calculations

should be discounted on formal grounds, and the former demonstrating that no practical

problems arise, even with very large basis sets, and that useful results can be found for

many small molecules (16).

The fact remains that a formally problematic procedure yields physically meaningful results.

This strongly suggests that there is a systematic property to be explored. In the present

letter, we use DFT calculations with exact exchange to elucidate that structure and show

how the practical and formal are reconciled. Our analysis suggests a new practical solution

to the problem that is as accurate as any existing DFT method with fewer formal difficulties.

14



We begin with our notation and formalism. The KS equations for any atom or ion are

[
−1
2
∇2 + vσS (r)

]
φiσ(r) = ǫiσφiσ(r) (3.1)

where vσS (r) is a single, multiplicative spin-dependent KS potential and σ is a spin index (up

and down spins). The KS potential is written as a sum of three contributions:

vσ
S
(r) = v(r) + vH[n](r) + vσ

XC
[n↑, n↓](r) (3.2)

where v(r) = −Z/r for an atom, vH(r) is the Hartree potential, and the XC potential is

vσ
XC
[n↑, n↓](r) =

δEXC[n↑, n↓]

δnσ(r)
. (3.3)

Thus, for either the exact or some approximate XC functional of the (spin)-densities, we

have a self-consistent set of equations.

Far from a nucleus, the Hartree potential decays as N/r, where N is the electron number.

The exact XC potential decays as

vXC(r)→ −1/r, r →∞, (3.4)

which is a pure exchange effect(17). For a neutral atom, Z = N , and vS(r)→ −1/r exactly.

However almost all local and gradient-corrected functional approximations to vXC(r) decay

incorrectly with r, typically exponentially, as the density decays exponentially. This has only

a small effect on the density itself, but leads to very poor HOMO levels in such calculations

(errors of several eV). These are all manifestations of the infamous SIE.

A well-known cure for this problem in DFT is to use the optimized effective potential (OEP)

method(18), which finds the KS potential for an orbital-dependent functional. The simplest
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case is to include exchange alone, often denoted EXX, producing a KS potential with the

correct asymptotic behavior and a HOMO energy that is close to −I for neutral systems.

A practical and accurate approximation to OEP, called localized Hartree-Fock (LHF), was

developed by Görling and co-workers (19; 20). The total energies of EXX are practically

indistinguishable from those of a standard Hartree-Fock (HF) calculation (21).

While awkward and embarrassing for DFT enthusiasts, this problem is not fatal for neutral

atoms and cations, because one extracts the total energy by applying the energy functional

to the self-consistent density, and need never look at the orbital energies. Such total energies

(and especially energy differences) have been found to have chemically useful accuracy(22).

But for anions, the problem does appear fatal, since the exponential decay of the approximate

vXC(r) leaves a KS potential that behaves as

vS(r)→ +1/r, r →∞, (3.5)

for an anion using an approximate XC functional. This produces a large positive bump in

the potential, especially for small systems, and usually raises the HOMO above the zero of

the potential (value at ∞). As we show in Fig. 3.1, the LDA HOMO energy is 0.83 eV, and

the last orbital is not an eigenstate, but a very sharp resonance. The KS potential decays

slowly and the classical outer turning point is at 17 Å. The true self-consistent ground state,

using an approximate functional, is found when a sufficiently large fraction of an electron

has escaped from the system (tunnelled to ∞), reducing the HOMO energy to zero. We

avoid this sorry fate in Fig. 3.1 by evaluating the LDA approximation to the KS potential

on the exact density, not a self-consistent density. Note that hybrid functionals mix about

25% of exact exchange with a GGA. This reduces the barrier by about 25%, but does not

rectify the problem.

Long ago, Shore et al(13) studied the local density approximation for the H− ground state.
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They confined electrons in a cavity by adding a spherical hard wall and calculated HOMO

and total energies, varying the position of the wall (RB). They found that there was a

plateau-like region of the energies in 15 a.u. < RB < 30 a.u. To obtain the asymptotic

solution of H− as RB →∞, they varied the number of core electrons at r < 25 a.u. and their

wavefunction to determine the energy minimum. The energy minimum occurred when 1.7

electrons were localized near the nucleus, 0.3 electrons were delocalized in the asymptotic tail

of the density, and the HOMO eigenvalue became zero. At about the same time, Schwarz(23)

noted that both O− and F− are unstable using Xα(24) (a precursor to LDA(3)) because

HOMO eigenvalues are positive.

Galbraith and Schaefer(4) claim the applicability of approximate DFT for negative ions. If

basis sets such as Dunning’s augmented correlation consistent polarized valence double zeta

(aug-cc-pVDZ) basis set(25; 26) or larger are used, DFT methods with GGA and hybrid

functionals can be applied to negative ions such as F−, whose outermost electron has a

positive HOMO. Subsequently Rösch and Trickey (5) correctly point out that exact DFT

itself has no difficulty for anions, but that the problem is with approximate functionals, as

is clearly illustrated in Fig. 3.1. They claim that there are no difficulties with the physical

significance of orbital eigenvalues, positive values are permissible, and that problems can be

masked by finite basis sets. Although correct, none of this necessarily implies that accurate

numbers cannot be extracted from finite basis sets. Later, careful calculations by Jarecki

and Davidson(15) showed that, for F−, there are two plateau regions of total energy as a

function of basis-set size. On the first plateau, both total energy and HOMO appear to

converge, the latter to a positive value. Beyond that, the basis set probes the outside of the

barrier, some density leaks out, and the HOMO falls to zero. But the density change is so

small that the total energy barely changes. Eventually, the electron completely escapes and

the HOMO falls even further.

A naive solution to this difficulty is to perform HF or the DFT version, LHF, for such systems,
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which produce negative HOMOs for the anions. However, for small anions, correlation effects

are large, so HF total energy differences are highly inaccurate. In fact, from the total energies,

many of the anions are unbound. One can also use Koopmans’ theorem, where I is estimated

as −ǫHOMO. While an improvement, the mean absolute errors (0.5 eV) are much larger

than DFT methods including correlation with a basis set. An alternative solution to the

SIE problem is to perform self-interaction corrected local spin density approximation (SIC-

LSDA)(27). In Ref. (28), Cole and Perdew applied SIC-LSDA to calculate EAs for atomic

systems, Z < 86, significantly reducing errors relative to LSDA, but much less accurate than

results produced here with GGAs, hybrids, and meta-GGAs.

3.2 Computational details

In all our calculations, the total energies of neutral atoms and ions are calculated using

the usual self-consistent unrestricted HF, LHF, and KS-DFT. The approximate function-

als in DFT calculations are LDA (S-VWN5)(29; 30; 31), PBE(32), hybrid (B3LYP(33; 34)

and PBE0(35)), and meta-GGA (TPSS(36)) functionals. We use Dunning’s augmented

correlation-consistent pVXZ (aug-cc-pVXZ, X = D, T, Q, and 5, AVXZ in this paper) basis

sets(25; 26). For the LHF calculations for anions, we calculate the Slater potential numeri-

cally everywhere to get accurate results. The calculations with basis sets are performed with

TURBOMOLE 6.2 (37). For the special cases of H− and Li− we perform fully numerical

DFT calculations using an OEP code(38) to calculate vS(r), vXC(r), and the densities using

EXX. Since this code makes a spherical approximation, we do not use it for non-spherical

cases. To calculate approximate functionals on HF densities, we perform unrestricted HF

calculations on both neutral and negative atoms. Then, we evaluate the total energies of

atoms using HF orbitals, so the kinetic energies are those of HF.
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Table 3.1: Errors in EAs (eV). Total energies for both neutral and negative atoms are
evaluated on HF-SCF densities with aug-cc-pVDZ basis set.

EA ∆EA
Exp LDA PBE B3LYP PBE0 TPSS

H 0.75 0.13 -0.11 0.03 -0.17 0.01
Li 0.62 -0.04 -0.12 -0.14 -0.14 -0.05
B 0.28 0.36 0.26 0.04 0.17 0.12
C 1.26 0.45 0.23 -0.04 0.12 0.12
O 1.46 0.41 0.14 0.01 -0.14 -0.09
F 3.40 0.59 0.12 -0.04 -0.18 -0.07

MAE1 0.33 0.16 0.05 0.15 0.08
Na 0.55 0.04 -0.01 -0.05 -0.05 0.03
Al 0.43 0.17 0.13 -0.08 0.10 0.06
Si 1.39 0.21 0.11 -0.13 0.09 0.07
P 0.75 0.13 0.03 0.02 -0.03 0.03
S 2.08 0.27 0.06 0.01 0.00 0.01
Cl 3.61 0.36 0.08 0.01 0.03 0.02

MAE 0.20 0.07 0.05 0.05 0.04
total 0.26 0.12 0.05 0.10 0.06
1 Mean absolute error

3.3 Results and discussion

Our suggestion is to perform calculations that include exact exchange (either LHF or HF) for

self-consistent densities, but evaluate an approximate functional on that density to obtain

the energy. Such a procedure has its own drawbacks, but avoids all the pitfalls mentioned

above.

In Table 3.1, we calculate EAs using HF densities for both neutral and negative atoms.

The B3LYP results were used in Fig. 3.2. Our EAs are much more accurate than the

corresponding ionization potentials (typically by about a factor of 2), with mean average

errors below 0.1 eV. These results change little when the basis set is expanded (either larger

valence space or more diffuse functions), and our new method, using HF densities, has a
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Figure 3.2: Comparison of errors (∆) in ionization potentials and electron affinities in first
2 rows of periodic table. Energies are evaluated with B3LYP density functional(33; 34)
evaluated on HF densities and on self-consistent densities within AVDZ basis set.

well-defined basis-set limit. The traditional method of limited basis sets (LBS) can only

work until the basis set probes the decay of the positive barriers of the type shown in Fig.

3.1. Similarly good results are found for the PBE generalized gradient approximation(32)

and its hybrid, PBE0(35). The best results are with the TPSS (36) meta-GGA with HF

densities. The results for all functionals are better than those of ionization potentials for

these elements. They also follow the usual trends for approximate functionals. The more

sophisticated functionals reduce errors by a factor of 2-5 relative to LDA.

In Fig. 3.3, we repeat Fig. 3.2, but now for the PBE functional. Comparison of the two

shows the more systematic (and often larger) errors of the non-empirical GGA versus the

empirical hybrid B3LYP. Interestingly, with our HF method for neutral and negative atoms,

PBE does as well as PBE0. B3LYP and the meta-GGA, TPSS, give the best total MAE.

We find almost identical results if we use LHF instead of HF densities.
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Figure 3.3: Comparison of errors (∆) in IP’s and EAs (in eV). Energies are evaluated with
PBE density functional evaluated on the AVDZ basis set, except the square symbols, where
the densities are found from a HF calculation.

Table 3.2: Errors in EAs (eV). Total energies for both neutral and negative atoms are
calculated by SCF procedure with aug-cc-pVDZ basis set.

EA ∆EA
Exp LDA PBE B3LYP PBE0 TPSS

H 0.75 0.15 -0.07 0.06 -0.16 0.02
Li 0.62 -0.03 -0.11 -0.12 -0.13 -0.04
B 0.28 0.44 0.32 0.10 0.19 0.16
C 1.26 0.53 0.31 0.03 0.15 0.18
O 1.46 0.58 0.30 0.12 -0.07 0.03
F 3.40 0.74 0.28 0.06 -0.11 0.05

MAE - 0.41 0.23 0.08 0.13 0.08
Na 0.55 0.07 0.01 -0.02 -0.03 0.04
Al 0.43 0.21 0.15 -0.04 0.11 0.09
Si 1.39 0.20 0.11 -0.12 0.08 0.07
P 0.75 0.25 0.09 0.09 0.00 0.07
S 2.08 0.31 0.10 0.04 0.01 0.03
Cl 3.61 0.35 0.09 0.02 0.02 0.02

MAE - 0.23 0.09 0.06 0.04 0.05
total - 0.32 0.16 0.07 0.09 0.07
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Figure 3.4: Shifted exact vS(r) potential (eV). The HOMO from QMC is -0.62 eV, and
the HOMO from LDA/AV5Z is 0.80 eV. We shift the exact vS by the difference between
eigenvalues.

3.4 Why do limited basis sets work?

If the last electron is unbound in a pure DFT calculation, one can reasonably ask why

limited-basis calculations yield sensible answers at all. To confirm that they do work, in

Table 3.2, we report the results of using a limited basis set. The B3LYP and PBE numbers

were used in Figs. 3.2 and 3.3, respectively. Without addressing the formal issues, these

results are entirely sensible and very close to those of Table 3.1. MAE’s are almost the same

(slightly worsened), and individual differences are almost all within the MAE of the given

functional. How can such sensible results and excellent agreement with Table 3.1 come from

such an apparently ill-defined procedure?

The original EXC defined by Kohn and Sham(3) was for fixed particle number. This means

the KS potential is undefined up to an arbitrary constant. The density is unaffected by an

arbitrary shift of the potential. Thus positive orbital energies per se do not mean a density

or total energy is inaccurate. However, in real calculations with approximate XC functionals,

we conventionally set vS(r →∞) to zero. Thus, the electron is unbound if its orbital energy

is positive, as in Fig. 3.1. Consider a model in which we add to the potential Cθ(Rc − r),
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Figure 3.5: Shifted exact vXC(r) potential (eV) in Li−. The HOMO from QMC is -0.62 eV,
and the HOMO from LDA/AV5Z is 0.80 eV. We shift the exact vXC by the difference between
eigenvalues.

where θ(r) is the Heaviside step function and Rc is a very large fixed distance. As long

as our basis sets do not stretch out to Rc, the anion will appear perfectly stable and have

a well-defined limit for its density. If C is large enough, the HOMO will be positive. In

Fig. 3.4, we have performed just such a procedure for Li−, with C = 1.42 eV, and choosing

Rc = 1000Å, arbitrarily. This slightly inaccurate KS potential yields essentially the exact

anionic density, produces as accurate an anionic energy as the approximate functional used

to evaluate it, but has a positive HOMO of 0.80 eV.

Now then the question becomes: Do approximate functionals, complete with SIE, really

accurately mimic such a shifted KS potential? The answer has long been known to be

yes(39), and we show this in Fig. 3.5. Here we include only the XC portion, in order to

zoom in on the region where the exact and approximate potentials differ. The LDA potential

almost exactly follows the shifted exact potential, once the outer shell (2s) is reached. Does

it converge to an accurate energy and density? The answer is generally yes, if the functional

is accurate except for producing the wrong asymptote.

In Fig. 3.6, we show that the errors in density for the Li− anion are only a few percent, and
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Figure 3.6: Plot of the radial density errors for Li− with various approximations. SCF
densities are obtained with AVQZ. The exact density is from quantum Monte Carlo.

are comparable for all methods.

Finally, we investigate the dependence of HOMOs and total energies on basis sets by adding

more diffuse functions for F−. Moving from singly augmented to quadruply augmented

AVTZ basis functions, the HOMO drops from 1.57 eV down to 0.75 eV, but the total energy

of the anion changes by only 2 mH. We also checked the use of a logarithmic (diffusive) grid,

but this had effects only in the 50 µH regime.

In summary, we have suggested an alternative method for calculating EAs of small anions

that resolves the dilemma of positive orbital energies and has a well-defined basis set limit.

By evaluating the energies on LHF or HF densities, in which the last electron is properly

bound with a negative HOMO, accurate and sensible results are obtained. We have also

shown that the consistency and accuracy of using limited basis sets for SCF calculations

with approximate functionals can be understood, despite the positive HOMO energies of the

anions. But an advantage of our method is that the basis-set limit is always well-defined.

Using limited basis sets could run into difficulty if the self-interaction barrier becomes too

narrow or insufficiently high, making it impossible to find a plateau region. Of course, by

evaluating the potential with one functional while evaluating the energy with another, various

well-known complications arise, such as in the calculation of forces. But these difficulties are
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far less subtle and challenging than those of positive HOMOs.

Finally, we note that even our method will fail if the (L)HF density is insufficiently accurate or

the approximate functional does not provide accurate energies. Thus we expect comparable

accuracy to that found here for molecular valence anions, but the weakly bound states such

as dipole- or higher multipole-bound anions(40) will be much more challenging and may

require self-interaction-free energy functionals along with a correct treatment of dispersion.
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Chapter 4

Condition on the Kohn-Sham Kinetic

Energy, and Modern Parametrization

of the Thomas-Fermi Density

4.1 Introduction

Ground-state Kohn-Sham (KS) density functional theory (DFT) is a widely-used tool for

electronic structure calculations of atoms, molecules, and solids (1), in which only the density

functional for the exchange-correlation energy, EXC[n], must be approximated. But a direct,

orbital-free density functional theory could be constructed if only the non-interacting kinetic

energy, TS, were known sufficiently accurately as an explicit functional of the density (41).

Using it would lead automatically to an electronic structure method that scales linearly with

the number of electrons N (with the possible exception of the evaluation of the Hartree

energy). Thus the KS kinetic energy functional is something of a holy grail of density

Reprinted with permission from Donghyung Lee, Lucian A. Constantin, John P. Perdew, and Kieron
Burke, J. Chem. Phys. 130, 034107 (2009). Copyright 2009, American Institute of Physics.
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functional purists, and interest in it has recently revived (42).

In this work, we exploit the “unreasonable accuracy” of asymptotic expansions (43; 44),

in this case for large neutral atoms, to show that there is a very simple condition that

approximations to TS must satisfy, if they are to attain high accuracy for total energies

of matter. By matter, we mean all atoms, molecules, and solids that consist of electrons

in the field of nuclei, attracted by a Coulomb potential. The condition is to recover the

(known) asymptotic expansion of TS/Z
7/3 for neutral atoms, in powers of Z−1/3. By careful

extrapolation from accurate numerical calculations up to Z ∼ 90, we calculate the coefficients

of this expansion. We find that the usual gradient expansion, derived from the slowly-

varying gas, but applied to essentially exact densities, yields only a good approximation to

these coefficients. Thus, all new approximations should either build in these coefficients, or

be tested to see how well they approximate them. We perform several tests, using atoms,

molecules, jellium surfaces, and jellium spheres, and analyze two existing approximations. In

Ref. (45), a related method was used to derive the gradient coefficient in modern generalized

gradient approximations (GGA’s) for exchange. Given this importance of N = Z → ∞ as

a condition on functionals, we revisited and improved upon the existing parametrizations of

the neutral-atom Thomas-Fermi (TF) density. The second-half of the paper is devoted to

testing its accuracy.

4.2 Theory and Illustration

For an N -electron system, the Hamiltonian is

Ĥ = T̂ + V̂ext + V̂ee , (4.1)
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where T̂ is the kinetic energy operator, V̂ext the external potential, and V̂ee the electron-

electron interaction, respectively. The electron density n(r) yields N =
∫
d3r n(r), where N

is the particle number.

To explain asymptotic exactness, we (re)-introduce the ζ-scaled potential (46) (which is

further discussed in Ref. (10)), given by

vζext(r) = ζ4/3 vext(ζ
1/3r), N → ζN, (4.2)

where vext(r) is the external potential, and the Thomas-Fermi expectation value is V ζ
ext[n] =

ζ7/3Vext[n]. In this ζ-scaling scheme, nuclear positions Rα and charges Zα of molecules are

scaled into ζ−1/3Rα and ζZα respectively. In a uniform electric field, E → ζ5/3E . For neutral

atoms, scaling ζ is the same as scaling Z, producing an asymptotic expansion for the total

energy of neutral atoms (43; 47; 48; 49; 50),

E = −c0 Z7/3 − c1 Z2 − c2 Z5/3 + · · · , (4.3)

where c0 = 0.768745, c1 = −1/2, c2 = 0.269900, and Z is the atomic number. This large Z-

expansion gives a remarkably good approximation to the Hartree-Fock energy of the neutral

atoms, with less than a 10% error for H, and less than 0.5% error for Ne. By the virial

theorem for neutral atoms, T = −E, and T ≃ TS to this order in the expansion (since

the correlation energy is roughly ∼ Z). Hence, the non-interacting kinetic energy has the

following asymptotic expansion.

TS = c0 Z
7/3 + c1 Z

2 + c2 Z
5/3 + · · · (4.4)

We say that an approximation to the kinetic energy functional is asymptotically exact to

the p-th degree if it can reproduce the exact c0, c1, . . . , cp. The three displayed terms in Eq.
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(4.3) constitute the second-order asymptotic expansion for the total energy of neutral atoms,

and we expect that this asymptotic expansion is a better starting point for constructing a

more accurate approximation to the kinetic energy functional than the traditional gradient

expansion approximation (GEA).

The leading term in Eq. (4.4) is given exactly by a local approximation to TS (TF theory),

but the leading correction is due to higher-order quantum effects, and only approximately

given by the gradient expansion evaluated on the exact density. However, these coefficients

are vital to finding accurate kinetic energies. Since we know that c0Z
7/3 becomes exact in

a relative sense as N = Z → ∞, we define ∆TS = TS − c0Z
7/3 and investigate ∆TS as a

function of Z. How accurate is the asymptotic expansion for ∆TS? In Fig. 4.1, we evaluate

TS for atoms (see section 4.3 for details) and plot the percentage error in ∆TS, for all atoms

and the asymptotic series with just two terms. The series is incredibly accurate, with only

a 13% error for N=2 (He), and 14% for N=1. Thus, any approximation that reproduces

the correct asymptotic series (up to and including the c2 term) is likely to produce a highly

accurate TS.
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To demonstrate the power and the significance of this approach, we apply it directly to the
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first term (where the answer is already known, but perhaps not yet fully appreciated in the

DFT community). Using any (all-electron) electronic structure code, one calculates the total

energies of atoms for a sequence running down a column in the periodic table. By sticking

with a specific column, one reduces the oscillatory contributions across rows, and the alkali-

earth column yields the most accurate results. By then fitting the resulting curve of TS/Z
7/3

as a function of Z−1/3 to a parabola, one finds c0 = 0.7705. Now assume one wishes to make

a local density approximation (LDA) to TS, but knows nothing about the uniform electron

gas. Dimensional analysis (coordinate scaling) yields (51)

T loc[n] = AS I, I =

∫
d3r n5/3(r) , (4.5)

but does not determine the constant, AS. A similar fitting of I, based on the corresponding

self-consistent densities, gives a leading term of 0.2677 Z7/3, yielding AS = 2.868. Thus we

have deduced the local approximation to the non-interacting kinetic energy.

A careful inspection of the above argument reveals that the uniform electron gas is never

mentioned. As N grows, the wavelength of the majority of the particles becomes short

relative to the scale on which the potential is changing, loosely speaking, and semiclassical

behavior dominates. The local approximation is a universal semiclassical result, which is

exact for a uniform gas simply because that system has a constant potential. On the basis

of that argument, we know AS=(3/10)(3π2)2/3 = 2.871, demonstrating that (for this case)

our result is accurate to about 0.1%. This argument tells us that the reliability of the local

approximation is no indicator of how rapidly the density varies. That this argument is correct

for neutral atoms was carefully proven by Lieb and Simon in 1973 (52) and later generalized

by Lieb to all matter (46).

The focus of the first part of this paper is on the remaining two known coefficients (c1

and c2) and how well the GEA performs for them. We evaluate those gradient terms by
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fitting asymptotic series and find that the traditional gradient expansion does well, but is

not exact. From this information, we develop a modified gradient expansion approximation

that reproduces the correct asymptotic coefficients c1 and c2, merely as an illustration of

the power of asymptotic exactness. We test it on a variety of systems, finding the expected

behavior.

In Section 4.5, we present a parametrization of the TF density which is more accurate

than previous parametrizations. The TF density has a simple scaling with Z and becomes

relatively exact and slowly-varying for a neutral atom as Z →∞, breaking down only near

the nucleus and in the tail. We compare various quantities of our parametrization with exact

values and earlier parametrizations, and analyze the properties of the TF density.

4.3 Large Z Methodology

We begin with a careful methodology for extracting the asymptotic behavior from highly

accurate numerical calculations. Fully numerical DFT calculations were performed using the

OPMKS code (38) to calculate the total energies of neutral atoms using ‘exact exchange’.

This is simply minimizing the Hartree-Fock energy, subject to the constraint of a multiplica-

tive potential (18). The spin-density functional version of TS has been used for all systems

(53). We refer throughout to these as the KS results, and none of our analysis depends on

which approximation we use. The coefficients c0, c1 and c2 are the same over a wide range

of approximations from exact exchange-correlation to local-density exchange.

To attain maximum accuracy for c1 and c2, we need to suppress the oscillations which come

at the same order as the next term, c3Z
4/3. Consider first the KS results (TS). We investigate

the differences between TS/Z
7/3 and c0 + c1 Z

−1/3 + c2 Z
−2/3 in Fig. 4.2. We extract 6 data

points (Z=24 (Cr), 25 (Mn), 30 (Zn), 31 (Ga), 61 (Pm), and 74 (W)) which have the
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smallest differences, i.e., nearest to where the curve crosses the horizontal axis. We then

make a least-squares fit with a parabolic form in Z−1/3, ignoring the oscillation term,

TS

Z7/3
= 0.768745 + c1Z

−1/3 + c2Z
−2/3 . (4.6)

Effectively, we solve two linear equations for c1 and c2. We explicitly include c0 = 0.768745,

since we don’t have enough data points to extract c0 accurately, especially in the region

Z−1/3 < 0.2. It is important to control the behavior of the fitting line at Z → ∞. This

fitting yields an accurate estimate of c1 = −0.5000 and c2 = 0.2702, with error less than 1%,

demonstrating the accuracy of our method for c1 and c2.

We repeat the same procedure to extract c1 and c2 coefficients of TF and second- and fourth-

order GEA’s which are given by

TGEA2 = TTF + T (2), (4.7)

and (54; 41; 55):

TGEA4 = TTF + T (2) + T (4) . (4.8)
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These gradient corrections to the local approximation are given by

T (2) =
5

27

∫
d3r τTF(r)s2(r) , (4.9)

and

T (4) =
8

81

∫
d3r τTF(r)

[
q2(r)− 9

8
q(r)s2(r) +

s4(r)

3

]
, (4.10)

where τTF(r), s(r), and q(r) are defined as

τTF(r) =
3

10
k2

F
(r)n(r) , (4.11)

s(r) =
|∇n(r)|

2kF(r)n(r)
, (4.12)

q(r) =
∇2n(r)

4k2
F
(r)n(r)

, (4.13)

and kF(r) = (3π2n(r))1/3.

We have also applied this procedure to both T (2) and T (4). Since the asymptotic expansions

of these energies begin at Z2, we extract only a c1 and a c2 for each using the following

equations:

TGEA2 − TTF

Z7/3
= ∆c1Z

−1/3 +∆c2Z
−2/3 ,

TGEA4 − TGEA2

Z7/3
= ∆c1Z

−1/3 +∆c2Z
−2/3 . (4.14)
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These results are also included in Table 4.1, and are of course consistent with our results

from Eq. (4.6).

Table 4.1: The coefficients in the asymptotic expansion of the KS kinetic energy and various
local and semilocal functionals. The fit was made to Z=24 (Cr), 25 (Mn), 30 (Zn), 31 (Ga),
61 (Pm), and 74 (W). The functionals of the last two rows are defined in section 4.4.

c1 c2
Exact -0.5000 0.2699
TS -0.5000 0.2702
TTF -0.6608 0.3854
T (2) 0.1246 -0.0494
T (4) 0.0162 0.0071
TGEA2 -0.5362 0.3360
TGEA4 -0.5200 0.3431
TGGA a -0.5080 0.2918
T LmGGA a -0.5089 0.3174
a See section 4.4

4.4 Results and Interpretation

To understand the meaning of the above results, begin with the values of c1. We have com-

bined the results of the T (2) and T (4) fits with that of the TTF fit to produce the asymptotic

coefficients of TGEA2 and TGEA4. We check that these combinations produce the same coef-

ficients in Table 4.1 which are found from the direct fitting of TGEA2 and TGEA4 using Eq.

(4.6). The exact value of c1 is −1/2. We see that the local approximation (TF) gives a

good estimate, −0.66. Then the second-order gradient expansion yields −0.54, reducing the

error by a factor of 5. Finally, the fourth-order gradient expansion yields −0.52, a further

improvement, yielding only a 4% error in its approximation to the Scott correction (56).

For c2, the gradient expansion is less useful. The exact result is 0.27, while the TF approxi-

mation overestimates this as 0.39. The GEA2 result is only slightly reduced (0.34), and the
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fourth-order correction has the wrong sign.

To understand how important these results can be, we consider how exchange and correlation

functionals are constructed. Often, such constructions begin from the GEA, which is then

generalized to include (in an approximate way) all powers of a given gradient. For slowly

varying densities, it is considered desirable to recover the GEA result. But we have seen here

how this conflicts with the asymptotic expansion, and in Ref (45), it was shown how the

asymptotic expansion is more significant to energies of real materials, and how successful

GGA’s for atoms and molecules well-approximate the large-Z asymptotic result, not the

slowly-varying gas.

Atoms: To illustrate this point, we construct here a trivial modified gradient expansion,

MGEA2, designed to have the correct asymptotic coefficients, in so far as is possible. Thus

TMGEA2 = TTF + 1.290 T (2) (4.15)

The enhancement coefficient has been chosen to make cMGEA2
1 = −1/2. In Table 4.2, we list

the results of several different approximations for the alkali-earth atoms. Because the GEA2

error passes through 0 around Z=8, its errors are artificially low.
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Table 4.2: KS kinetic energy (T ) in hartrees and various approximations for alkali-earth atoms.

Atom Z TS TTF %err TGEA2 %err TMGEA2 %err TGEA4 %err TMGEA4 %err

Be 4 14.5724 13.1290 -10 14.6471 0.5 15.0880 3.5 14.9854 2.8 14.5453 -0.2

Mg 12 199.612 184.002 -8 198.735 -0.4 203.014 1.7 201.452 0.9 199.924 0.2

Ca 20 676.752 630.064 -7 672.740 -0.6 685.136 1.2 680.286 0.5 677.433 0.1

Sr 38 3131.53 2951.89 -6 3110.44 -0.7 3156.50 0.8 3136.76 0.2 3134.48 0.09

Ba 56 7883.53 7478.27 -5 7829.36 -0.7 7931.34 0.6 7886.19 0.03 7888.14 0.06

Ra 88 23094.3 22065.8 -4 22945.9 -0.6 23201.5 0.5 23083.9 -0.05 23110.5 0.07
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We can repeat this exercise for the fourth order, matching both c1 and c2 to exact values.

Now we find:

TMGEA4[n] = TTF[n] + 1.789 T (2)[n]− 3.841T (4)[n] (4.16)

i.e., strongly modified gradient coefficients. This is somewhat arbitrary, as there are several

terms in T (4), and there’s no real reason to keep their ratios the same as in GEA (Eq. (4.10)).

However, the results of Table 4.2 and Fig. 4.3 speak for themselves. The resulting functional

is better than either GEA for all the alkali-earths. Of course, TS is positive for any density,

as are the terms TTF, T (2) and T (4) of the GEA. Eq. (4.16) however can be improperly

negative for rapidly-varying densities, and so is not suitable for general use.
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Figure 4.3: Percentage errors for atoms (from Z = 1 to Z = 92) using various approxima-
tions.

Molecules: The improvement in total kinetic energies is not just confined to atoms. Also,

for non-interacting kinetic energies of molecules, using the data in Ref. (57), Eq. (4.16)

gives a better average of the absolute errors in hartree (0.6) than TTF (9.4), TGEA2 (0.9),

and TGEA4 (0.8), shown in Table 4.3. Of greater importance are energy differences. For

atomization kinetic energies, also using the data in Ref. (57), TTF gives the best averaged

absolute error (0.25), which is worsened by gradient corrections. Since the GEA does not have

37



Table 4.3: Non-interacting kinetic energy (in hartrees) for molecules, and errors in approxi-
mations. All values are evaluated on the converged KS orbitals and densities obtained with
B88-PW91 functionals, and the MGEA4 kinetic energies are evaluated using the TF and the
GEA data from Ref. (57).

Atom TS
1 TTF 1 TGEA2 1 TGEA4 1 TMGEA4

H 0.500 -0.044 0.011 0.032 -0.026
B 24.548 -2.506 -0.058 0.476 -0.177
C 37.714 -3.731 -0.154 0.600 -0.228
N 54.428 -4.993 -0.097 0.904 -0.078
O 74.867 -6.990 -0.546 0.765 -0.497
F 99.485 -9.093 -0.933 0.659 -0.609
H2 1.151 -0.142 -0.014 0.033 -0.094
HF 100.169 -9.016 -0.920 0.639 -0.520
H2O 76.171 -7.074 -0.692 0.565 -0.484
CH4 40.317 -3.773 -0.140 0.619 -0.189
NH3 56.326 -5.292 -0.400 0.587 -0.331
BF3 323.678 -29.052 -2.641 2.454 -1.370
CN 92.573 -8.940 -0.687 0.978 -0.570
CO 112.877 -10.694 -0.911 1.036 -0.670
F2 199.023 -18.367 -2.201 0.925 -1.451

HCN 92.982 -8.925 -0.658 1.008 -0.534
N2 109.013 -10.487 -0.916 0.999 -0.719
NO 129.563 -12.342 -1.240 0.962 0.279
O2 149.834 -14.186 -1.527 0.965 -1.110
O3 224.697 -21.636 -2.699 1.028 -2.071

MAE2 9.364 0.872 0.812 0.600
1 Ref. (57)
2 Mean absolute error

the right quantum corrections from the edges, turning points and Coulomb cores (10), GEA

does not improve on the atomization process. However, the TF kinetic energy functional

is always the dominant term. So, TF gives very good results on the atomization kinetic

energies. But the error (0.29) of Eq. (4.16) is smaller than that of TGEA2 (0.36) and TGEA4

(0.44). In either case, Eq. (4.16) works better for atoms and molecules than the fourth-order

gradient expansion. Thus, requiring asymptotic exactness is a useful and powerful constraint

in functional design.
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Jellium surfaces: We test this MGEA4 functional for jellium surface kinetic energies.

As shown in Table 4.4, the T (4) term in TGEA4 improves the jellium surface kinetic energy

in comparison to the results of TGEA2, but Eq. (4.16) worsens the jellium surface kinetic

energies due to the strongly modified coefficient of T (4). This is a confirmation of our general

approach. By building in the correct asymptotic behavior for atoms, including the Scott

correction coming from the 1s region, we worsen energetics for systems without this feature.

Table 4.4: Jellium surface kinetic energies (erg/cm2) and % error, which is (σapp
S −σex

S
)/σex

S
,

of each approximation.

rs Exact TTF TGEA2 TGEA4 TMGEA2 a TMGEA4 b T LmGGA

2 -5492.7 11 2.5 1.1 -0.9 0.73 1.3
4 -139.9 54 22 11 12 36 15
6 -3.4 660 330 180 238 675 280
a See Eq. (4.15)
b See Eq. (4.16)

Jellium spheres: We also investigate the kinetic energies of neutral jellium spheres (with

KS densities using LDA exchange-correlation and with rS = 3.9) from Ref. (58). The analysis

of the results is based upon the liquid drop model of Refs. (59; 60). We write

TS(rS, N) =
4

3
πR3τunif(rS) + 4πR2σS + 2πRγeff

S
(rS, N), (4.17)

where R is the radius of the sphere of uniform positive background. Since we know the

bulk (uniform) kinetic energy density, τunif , and the surface kinetic energy σS for a given

functional, we can extract γeffS (rS, N) from this equation, and

lim
N→∞

γeffS (rS, N) = γS(rS) (4.18)

is the curvature energy of jellium. We calculate γeffS (rS, N) using the TF, GEA, MGEA,
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and a Laplacian-level meta-GGA (LmGGA) of Ref. (58), which is explained further in the

following subsection. From Table 4.5, we observe that: (i) Gradient corrections in GEA

Table 4.5: 104 × (γeff
S
(rS, N) − γTF

S
(rS, N)) in atomic units vs. N = Z for neutral jellium

spheres with rS = 3.93 with various functionals. As N = Z →∞, γeffS tends to the curvature
kinetic energy of jellium, γS.

N Exact TGEA2 TGEA4 TMGEA2 a TMGEA4 b T LmGGA

2 -1.8 1.1 2.4 1.5 -2.8 1.9
8 -1.9 1.0 2.1 1.3 -2.3 -5.1
18 -0.5 1.2 2.0 1.6 -0.7 -6.4
58 -0.8 1.3 2.2 1.7 -1.1 -3.2
92 -1.7 1.2 2.0 1.5 -1.0 -1.9
254 -0.5 1.4 2.3 1.8 -0.9 -
a See Eq. (4.15)
b See Eq. (4.16)

worsen γeff
S
. (ii) The LmGGA of Ref. (58) is even worse than TGEA4. (iii) Eq. (4.15) (which

has the right c0 and c1) is not so good, but better than TGEA4. (iv) Eq. (4.16) (which has

the right c0, c1, and c2) gives good results.

Existing approximations: We suggest that the large-Z asymptotic expansion is a neces-

sary condition that an accurate kinetic energy functional should satisfy, but is not sufficient.

We show this by testing two kinds of semilocal approximations (GGA and meta-GGA) to

the kinetic energy functionals.

Recently, Tran and Wesolowski (61) constructed a GGA-type kinetic energy functional us-

ing the conjointness conjecture. They found the enhancement factor by minimizing mean

absolute errors of kinetic energies for closed-shell atoms. We evaluate the kinetic energies of

atoms using this functional (TGGA) and extract the asymptotic coefficients shown in Table

4.1. This gives a good c1 coefficient (-0.51), with c2 (0.29) close to the correct value (0.27),

and so is much more accurate than the GEA’s.

Perdew and Constantin (58) constructed a LmGGA for the positive kinetic energy density τ
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that satisfies the local bound τ ≥ τW , where τW is the von Weizsäcker kinetic energy density,

and tends to τW as r → 0 in an atom. It recovers the fourth-order gradient expansion in

the slowly-varying limit. We calculate the asymptotic coefficients shown in Table 4.1 for this

functional. These values are better than those of TGEA4. The good c1 from TGEA4 appears

somewhat fortuitous, since there is nothing about a slowly-varying density that is relevant

to a cusp in the density. The good Scott correction c1 from the LmGGA comes from correct

physics: LmGGA recovers the von Weizsäcker kinetic energy density in the 1s cusp, without

the spurious but integrable divergences of the integrand of TGEA4.

We finish by discussing other columns of the periodic table. We have also performed all

these calculations on the noble gases. In fact, from studies of the asymptotic series (62), it

is known that the shell-structure occurs in the next order, Z4/3, and that the noble gases

are furthest from the asymptotic curves. But Table 4.6 shows our functionals work almost

as well for the noble gas series.
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Table 4.6: KS kinetic energy (T ) in hartrees and various approximations for noble atoms.

Atom Z TS TTF %err TGEA2 %err TMGEA2 %err TGEA4 %err TMGEA4 %err

He 2 2.86168 2.56051 -11 2.87847 0.6 2.97083 3.8 2.96236 3.5 2.80717 -1.9

Ne 10 128.545 117.761 -8 127.829 -0.6 130.753 1.7 129.737 0.9 128.447 -0.08

Ar 18 526.812 489.955 -7 524.224 -0.5 534.178 1.4 530.341 0.7 527.772 0.2

Kr 36 2752.04 2591.20 -6 2733.07 -0.7 2774.27 0.8 2756.72 0.2 2754.17 0.08

Xe 54 7232.12 6857.94 -5 7183.78 -0.7 7278.42 0.6 7236.65 0.06 7237.85 0.08

Rn 86 21866.7 20885.7 -4 21725.4 -0.6 21969.3 0.5 21857.2 -0.04 21881.7 0.07
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4.5 Modern Parametrization of Thomas-Fermi Density

Our asymptotic expansion study gives new reasons for studying large Z atoms. Our approx-

imate functionals were tested on highly accurate densities, but ultimately, self-consistency is

an important and more-demanding test. Any approximate functional yields an approximate

density via the Euler equation. In this section, we present a new, modern parametrization

of the neutral atom TF density, which is more accurate than earlier versions (63; 64).

The TF density of a neutral atom can be written as

n(r) =
Z2

4πa3

(
Φ

x

)3/2

, (4.19)

where a = (1/2)(3π/4)2/3 and x = Z1/3r/a, and the dimensionless TF differential equation

is

d2Φ(x)

dx2
=

√
Φ3(x)

x
, Φ(x) > 0, (4.20)

which satisfies the following initial conditions:

Φ(0) = 1 , Φ′(0) = −B , B = 1.5880710226 . (4.21)

We construct a model for Φ which recovers the first eight terms of the small-x expansion

and the leading term of the asymptotic expansion at large-x (Φ(x) → 144/x3, as x → ∞).

Following Tal and Levy (65), we use y =
√
x as the variable, because of the singularity of

the TF equation. Our parametrization is

Φmod(y) =

(
1 +

9∑

p=2

αpy
p

)
/

(
1 + y9

5∑

p=1

βpy
p +

α9y
15

144

)
(4.22)
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Figure 4.4: Accurate numerical Φ(y) and parametrized Φ(y) can not be distinguished.
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Figure 4.5: Errors in the model, relative to numerical integrations.
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where αi and βi are coefficients given in the Table 4.7. The values of αi are fixed by the small

y-expansion, while those of βi are found by minimization of the weighted sum of squared

residuals, χ2, for 0 < y < 10. The χ2 was minimized using the Levenberg-Marquardt method

(66). This method is for fitting when the model depends nonlinearly on the set of unknown

parameters. 1000 points were used, equally spaced between y = 0 and y = 10. We plot

Table 4.7: The values of βi are found by fitting Eq.(4.22) to the accurate numerical solution,
and those of αi are the parameters of small-y expansion (65). B is given by 1.5880710226.

α2 −B β1 −0.0144050081
α3 4/3 β2 0.0231427314
α5 −2B/5 β3 −0.00617782965
α6 1/3 β4 0.0103191718
α7 3B2/70 β5 −0.000154797772
α8 −2B/15
α9 2/27 +B3/252

the accurate Φ(y) and our model in Fig. 4.4, and the differences between them in Fig. 4.5.

These graphs illustrate the accuracy of our parametrization.

In Table 4.5 we calculate several moments using our model and existing models that were

proposed by Gross and Dreizler (63) and Latter (64). The Latter parametrization is

ΦL(x) = 1/(1 + 0.02747x1/2 + 1.243x− 0.1486x3/2 + 0.2303x2 + 0.007298x5/2

+0.006944x3) , (4.23)

and the Gross-Dreizler model (which correctly removes the
√
x term) is:

ΦGD(x) = 1/(1 + 1.4712x− 0.4973x3/2 + 0.3875x2 + 0.002102x3) . (4.24)

Lastly, we introduce an extremely simple model that we have found useful for pedagogical
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purposes (even when N differs from Z). We write

nped(r) =
N

2π3/2R3/2

1

r3/2
e−r/R , R =

αN2/3

Z − βN , (4.25)

where α = (9/5
√
5)(
√
3π/4)1/3 and β = 1/2 − 1/π have been found from integration of the

TF kinetic and Hartree energies, respectively, and R minimizes the TF total energy. For

N = Z, this yields:

Φped(x) = γ e−2a(1−β)x/3α , γ =
5
√
5

6
√
3

(
1

2
+

1

π

)
. (4.26)

This crude approximation does not satisfy the correct initial conditions of Eq. (4.21):

Φped(0) = γ = 0.880361 ( 6= 1) ,

Φped′(0) = −125(2 + π)2

648(4π5)1/3
= −0.48 ( 6= −1.59) . (4.27)

To compare the quality of the various parametrizations, we calculate the p-th moment of the

j-th power of Φ(x)/x:

M
(p)
j =

∫
dx xp

(
Φ(x)

x

)j
. (4.28)

Many quantities of interest can be expressed in terms of these moments:

1) Particle number: To ensure
∫
d3r n(r) = N , we require

M
(2)
3/2 = 1 (4.29)
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2) TF kinetic energy: The TF kinetic energy is c0Z
7/3, which implies

M
(2)
5/2 =

5

7
B . (4.30)

3) The Hartree energy is U = 1
2

∫ ∫
d3r d3r′ n(r)n(r

′)
|r−r

′| = 1
7a
M

(1)
3/2Z

7/3, which implies

M
(1)
3/2 = B . (4.31)

4) The external energy is defined as Vext = −
∫
d3r Z n(r)/r = − 1

a
M

(1)
3/2Z

7/3 for the exact TF

density, which also implies Eq. (4.31).

5) The local density approximation exchange energy is defined as ELDA
X

= AX

∫
drn4/3(r),

where AX = −(3/4)(3/π)1/3, so for TF, ELDA
X = AX(4πa

3)−
1
3M

(2)
2 Z5/3, which implies

M
(2)
2 = 0.615434679 , (4.32)

extracted from our accurate numerical solution. LDA exchange suffices (43; 45) for asymp-

totic exactness to the order displayed in Eqs. (4.3) and (4.4); for a numerical study, see Ref.

(67; 68).
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Table 4.8: Various moments calculated with our model and with the models of Ref. (63; 64). Here M
(p)
j is given by

∫
dx xp

(
Φ(x)
x

)j

moment our model % err Gross and Dreizler (63) % err Latter(64) % err Φped(x) % err exact

M
(2)
3/2 0.999857885 -0.01 1.008 0.8 0.999 -0.04 1 0 1

M
(2)
5/2 1.13426462 -0.006 1.1299 -0.4 1.137 0.2 1.11 -2 5B/7

M
(2)
2 0.615438208 0.001 0.6129 -0.4 0.616 0.02 0.72 16 0.6154346791

M
(1)
3/2 1.58799857 -0.005 1.5844 -0.2 1.589 0.07 1.62 2 B

1 Numerical result from the TF differential equation.
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Table 4.5 shows that our modern parametrization is far more accurate than existing models

by all measures, and that our simple pedagogical model is roughly correct for many features.

Finally, we make some comparisons with densities of real atoms to illustrate those features

of real atoms that are captured by TF. The radial density, s(r) (Eq. (4.12)), and q(r) (Eq.

(4.13)) are given by

4πr2n(r) = Z4/3f(x)/a , (4.33)

where f(x) =
√
xΦ3/2(x),

s(r) =
a1
Z1/3

|g(x)|
f(x)

, a1 = (9/2π)1/3/2 , (4.34)

and

q(r) =
a21

3Z2/3

{g2(x) + 2x2Φ(x)Φ′′(x)}
f 2(x)

, (4.35)

where g(x) is defined as Φ(x)− xΦ′(x). The gradient relative to the screening length is

t(r) =
|∇n(r)|

2kS(r)n(r)
, where kS(r) =

√
4kF(r)/π , (4.36)

and here

t(r) =
a2|g(x)|

(x3Φ5(x))1/4
, a2 =

35/6π1/3

28/3
√
a

= 0.6124 . (4.37)

We also show large- and small-x limit behaviors of various quantities using Φ(x) → 144/x3
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as x→∞ and Φ(x)→ 1−Bx+ · · · as x→ 0.

Z2

4πa3
1

x3/2
x→0←− n(r)

x→∞−→ 432Z2

a3πx6
, (4.38)

Z4/3

a

√
x

x→0←− 4πr2n(r)
x→∞−→ 144Z4/3

ax5/2
, (4.39)

a1
Z1/3

1√
x

x→0←− s(r)
x→∞−→ a1x

3Z1/3
, (4.40)

a21
3Z2/3

1

x

x→0←− q(r)
x→∞−→ 5a21x

2

54Z2/3
, (4.41)

a2
x3/4

x→0←− t(r)
x→∞−→ 2a2√

3
. (4.42)

0 1 2 3

Z
1/3

r = ax

0

0.1

0.2

0.3

0.4

0.5

4π
r2 n(

r)
 / 

Z
4/

3

Ba
Ra
TF

Figure 4.6: Plot of the scaled radial densities of Ba and Ra using Eq.(4.33) and SCF densities.
TF scaled densities of Ba and Ra are on top of each other.

We plot the Z-scaled accurate self-consistent densities and TF radial densities of Ba (Z = 56)

and Ra (Z = 88) in Fig. 4.6. Although the shell structure is missing, and the decay at a

large distance is wrong, the overall shape of the TF density is relatively correct.

In Figs. 4.7, 4.8, and 4.9, we plot the scaled s(r), q(r), and t(r) using the self-consistent

and TF densities of Ba and Ra. In particular, t(r) measures how fast the density changes on
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Figure 4.7: Plot of the scaled reduced density gradient s(r) (relative to the local Fermi
wavelength) vs. Z1/3r.

the scale of the TF screening length, and its magnitude does not vary with Z in TF theory.

From these figures, we see that s(r), q(r) and t(r) of the TF density diverge near the nucleus,

since the TF density does not satisfy Kato’s cusp condition.
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Figure 4.8: Plot of the scaled reduced Laplacian q(r) (relative to the local Fermi wavelength)
vs. Z1/3r.

When N = Z →∞ for a realistic density, s(r) is small except in the density tail (s ∼ Z−1/3

over most of the density), and q(r) is small except in the tail and 1s core regions (q ∼ Z−2/3

over most of the density). This is why gradient expansions for the kinetic and exchange

energies, applied to realistic densities, work as well as they do in this limit. The kinetic and
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exchange energies have only one characteristic length scale, the local Fermi wavelength, but

the correlation energy also has a different one, the local screening length. Since t(r) is not

and does not become small in this limit, gradient expansions do not work well at all for the

correlation energies of atoms (45). The standard of “smallness” for s and q, and the more

severe standard of smallness for t, are explained in Refs. (45) and (69; 70).

Finally we evaluate T (0) + T (2) on the TF density. We find the correct c0 in the Z → ∞

expansion from T (0), but c1 vanishes, due to the absence of a proper nuclear cusp, and c2

diverges because T (2) diverges at its lower limit of integration.

4.6 Summary

We have shown the importance of the large-N limit for density functional construction of the

kinetic energy (with the functional evaluated on a Kohn-Sham density), and also provided a

modern, highly accurate parametrization of the neutral-atom TF density. Our results should

prove useful in the never-ending search for improved density functionals.
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Figure 4.9: Plot of the reduced density gradient t(r) (relative to the local screening length)
vs. Z1/3r. As r →∞, the TF t→ 0.7071.
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For atoms and molecules, the large-N limit seems more important than the slowly-varying

limit. On the ladder (71) of density-functional approximations, there are three rungs of

semilocal approximations (followed by higher rungs of fully nonlocal ones). The LDA uses

only the local density, the GGA uses also the density gradient, and the meta-GGA uses in

addition the orbital kinetic energy density or the Laplacian of the density. For the exchange-

correlation energy, the GGA rung cannot (45; 69) simultaneously describe the slowly-varying

limit and the N = Z →∞ limit for an atom, and we have found here that the same is true

(but less severely by percent error of a given energy component) for the kinetic energy. This

follows because, as N = Z →∞, the reduced gradient s(r) of Eq. (4.12) becomes small over

the energetically important regions of the atom, as can be inferred from Fig. 4.7, so that

a GGA reduces to its own second-order gradient expansion even in regions where a meta-

GGA does not (45) (e.g., near a nucleus, where q(r) diverges but s(r) does not, as shown in

Figs. 4.7 and 4.8). For the kinetic as for the exchange-correlation energy, meta-GGA’s (58)

can recover both the slowly-varying and large-Z limits; it remains to be seen how well fully

nonlocal approximations (6; 72) can do this.
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Chapter 5

Semiclassical Orbital-Free

Potential-Density Functional Theory

In this chapter, we discuss how to derive a uniform semiclassical approximation to the density

and kinetic energy (KE) density as a functional of the potential from the semiclassical Green’s

function. we apply this semiclassical scheme to 1D systems with two turning points and

compare the semiclassical result to the exact answer. Also, we find that this scheme can be

applied to 3D spherical systems with two turning points.

5.1 Uniform semiclassical density

Recently, we derived a semiclassical approximation to the density and KE density for systems

with hard wall boundaries(10). This has been further discussed in Ref. (73). The original

idea of a semiclassical Green’s function approach comes from Ref. (74).

Imagine a potential v(x) in 1D with hard walls at x = 0 and x = L. If the orbital energy

is greater than the maximum of the bottom potential, the following WKB wavefunction

54



satisfies the boundary conditions:

ψ(x) ≃ 1√
k(x)

sin θ(x) , (5.1)

where the semiclassical momentum k(x) =
√
2(E − v(x)) and the semiclassical phase θ(x) =

∫ x
0
dx k(x). Hence, we can construct the semiclassical Green’s function from WKB wave-

functions using Eq. (2.18):

g(x; E) = cos θ(L)− cos (2θ(x)− θ(L))
k(x) sin θ(L)

. (5.2)

The Fermi energy (or chemical potential) EF is determined by the quantization condition

∫ L

0

dx
√

2(EF − v(x)) =
(
N +

1

2

)
π , (5.3)

where N is the number of particles, and EF lies between the highest occupied and the lowest

unoccupied levels.

Figure 5.1: Contour of integration in the complex E-plane.

Accounting for the requirement that EN ≤ EF ≤ EN+1 we pick the contour C shown in

Fig. 5.1: a vertical line along E = EF + iη connected to a semicircle, which encloses the
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N lower-lying energy-eigenvalues E1, . . . , EN . By choosing this particular shape for C we

ensure that the lowest |E| used is EF .

Via Eq. (2.19) where the contour C is chosen to pass through the real axis at EF in Fig.

5.1, the semiclassical density for N particles is obtained

nsemi(x) =
kF(x)

π
− sin θF(x)

2TFkF(x) sinα(x)
, (5.4)

where α(x) = πτF(x)/TF, the semiclassical traveling time from 0 to x τF(x) =
∫ x
0
dx 1/kF(x),

and τF(L) = TF. Note that subscript F denotes evaluation of the given quantity at EF. This

semiclassical approximation generally gives very accurate densities (10; 73) for arbitrary

bottom potentials.

However, the WKB approximation is not a good choice for construction of a uniform semi-

classical Green’s function for 1D systems with turning points, since the WKB wavefunction

diverges at turning points due to the 1/k(x) factor. we use a uniform semiclassical approxi-

mation instead of WKB to avoid this problem.

5.1.1 The leading term

We construct the Green’s function for a single turning point by approximating ψl,r(x) by

means of the uniform semiclassical solutions (12; 75)

ψ
unif

l (x) =
θ1/6(x)√
k(x)

Ai(−z(x)) , (5.5)

ψ
unif

r (x) =
θ1/6(x)√
k(x)

Ai(−e2πi/3z(x)) , (5.6)
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where the semiclassical momentum k(x) =
√

2(E − v(x)), the semiclassical phase θ(x) =
∫ x
a
dx′ k(x′) , z(x) = (3θ(x)/2)2/3, and a is the turning point on the left side. In this

approximation, the Wronskian becomes

W (E) =

(
2

3

)1/3
1

2π
e5πi/6 . (5.7)

In atomic units, p = 1/2 in Eq. (2.18), our semiclassical approximation to the diagonal

Green’s function for a single turning-point problem becomes

gsemi
ST (x, E) = 2π

i

√
z(x)

k(x)
Ai(−z(x))[Ai(−z(x)) − i Bi(−z(x))] . (5.8)

As the number of particles N →∞, EF ≫ η for the dominant contributions to the integral,

allowing us to expand all quantities in powers of the imaginary part of the energy η

1

k(x;EF + iη)
=

1

kF(x)

(
1− iη

kF
2
+ . . .

)
, (5.9)

θ(x;EF + iη) = θF(x) + iητF(x) + . . . , (5.10)

Θ(EF + iη) = ΘF + iηTF + . . . , (5.11)

z(x;EF + iη) = zF(x) + iη
τF(x)√
zF(x)

+ . . . . (5.12)

Here, we introduce the quantities τF(x) =
∫ x
aF

dx′ 1/kF(x
′), the classical time for a particle at

EF to travel from aF to x, and TF = τF(bF). aF and bF are the left and right turning points

determined by EF. Keeping terms up to first order in η and using the integral representation
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of Airy functions (76), Eq. (2.19) yields

nsemi
ST

(x) = −1

π
ℜ
∫ ∞

0

idη

[√
zF
kF

+ iη

(
τF(x)

kF(x)
√
zF(x)

− zF(x)

k3F(x)

)]

× 1

2π3

∫ ∞

0

dt e−if(t)−tητF(x)/
√
zF(x) . (5.13)

We make use of the semiclassical quantization condition for the two-turning-point problem,

which states that Θ/π is an integer +1/2, i.e., ΘF = Nπ. Direct evaluation of the integration

with respect to η gives

nsemi
ST

(x) =
2zF(x)

kF(x)τF(x)
[zF(x)Ai

2(−zF(x)) + Ai′(−zF(x))2] . (5.14)

However, this semiclassical density for a single turning point system cannot recover the

Thomas-Fermi (TF) density at the asymptotic limit, since the uniform semiclassical wave-

function does not know about the existence of another turning point. Hence, to recover the

TF density, we set the traveling time τF(x) as

τF(x) =
3θF(x)

k2
F
(x)

. (5.15)

This yields

nsemi
ST

(x) =
kF(x)√
zF(x)

[zF(x)Ai
2(−zF(x)) + Ai′(−zF(x))2] . (5.16)

Using the asymptotic form of Airy functions(76), we obtain from Eq. (5.16)

nsemi
ST (x) ∼ kF(x)

π
− kF(x) cos(2θF(x))

6πθF(x)
, (5.17)

which recovers the TF density as the leading term.

58



5.1.2 Quantum corrections

The Green’s function(74) for a two-turning-point system is given as

gsemi(x; E) = −2π
√
z(x)

k(x)
[tanΘAi2(−z(x)) + Ai(−z(x))Bi(−z(x))] . (5.18)

It can be split into gsemi
ST

(x; E) (Eq. (5.8)) and gQC(x; E), which arises due to the other turning

point. So,

gsemi(x; E) = gsemi
ST

(x; E) + gQC(x; E) , (5.19)

where

gQC(x; E) = 4πi

√
z(x)

k(x)

1

1 + e−2iΘ
Ai2(−z(x)) . (5.20)

Hence, the density becomes

nsemi(x) =
1

2πi

∮

C(µ)

dE gsemi(x; E)

=
1

2πi

∮

C(µ)

dE [gsemi
ST (x; E) + gQC(x; E)]

= nsemi
ST (x) + nQC(x) , (5.21)

where nsemi
ST

(x) is given in Eq. (5.16). The density nQC(x) is

nQC(x) =

∮

C

dE
√
z(x)

k(x)

(
2

1 + e−2iΘ

)
Ai2(−z(x)) . (5.22)
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By taking E → EF + i η, expanding terms to the first order in η, and using the contour in

Fig. 5.1, nQC(x) becomes

nQC(x) = 4ℜ
[
i

√
zF(x)

kF(x)

∫ ∞

0

dη
Ai2(−zF(x)− iητF(x)/

√
zF(x))

1 + e2ηTF

]
. (5.23)

Using the integral representation of the Airy function, nQC(x) can be expressed as an integral

representation

nQC(x) =
2

2π3/2

√
zF(x)

kF(x)

[∫ ∞

0

dt√
t
sin f(t)

∫ ∞

0

e−ηtτF(x)/
√
zF(x) − eηtτF(x)/

√
zF(x)

1 + e2ηTF
dη

]
, (5.24)

where f(t) = t3/12− zF(x)t + π/4. The integration with respect to η can be expressed as

∫ ∞

0

e−ηtτF(x)/
√
zF(x) − eηtτF(x)/

√
zF(x)

1 + e2ηTF
dη =

√
zF(x)

tτF(x)
− π

2TF

csc

(
πτF(x)

2TF

√
zF(x)

t

)
. (5.25)

By setting t = 2
√
zF(x) via the stationary phase approximation, the above integration is

simplified to yield

∫ ∞

0

e−2ητF − e2ητF
1 + e2ηTF

dη =
1

2τF
− π

2TF

csc

(
πτF
TF

)
. (5.26)

Hence, the density nQC(x) is

nQC(x) =

( √
zF(x)

kF(x)τF(x)
− π

√
zF(x)

kF(x)TF

csc

(
πτF(x)

TF

))
1

2π3/2

∫ ∞

0

sin(f(t))
dt√
t

=

( √
zF(x)

kF(x)τF(x)
− π

√
zF(x)

kF(x)TF sin(α(x))

)
Ai(−zF(x))Bi(−zF(x)) . (5.27)
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By using the asymptotic forms of Ai and Bi (76),

Ai(−zF(x))Bi(−zF(x)) ∼
1

2π
√
zF(x)

sin(2θF(x) + π/2)

=
1

2π
√
zF(x)

cos(2θF(x)) , (5.28)

Eq. (5.27) becomes

nQC(x) =
cos(2θF(x))

2πkF(x)τF(x)
− cos(2θF(x))

2kF(x)TF sin(α(x))
, (5.29)

and Eq. (5.15) gives the quantum correction term corresponding to Eq. (5.16):

nQC(x) =
kF(x) cos(2θF(x))

6πθF(x)
− cos(2θF(x))

2kF(x)TF sin(α(x))
. (5.30)

Combining Eq. (5.17) and Eq. (5.30) reproduces the asymptotic density formula in Ref.

(74):

nKS(x) =
kF(x)

π
− cos(2θF(x))

2kF(x)TF sin(α(x))
. (5.31)

5.1.3 The evanescent region

In the evanescent region (E − v(x) < 0), the uniform semiclassical wavefunctions are

ψ
unif

l (x) =
|θ(x)|1/6√
|k(x)|

Ai(|z(x)|) , (5.32)

ψ
unif

r (x) =
|θ(x)|1/6√
|k(x)|

Ai(e2πi/3|z(x)|) . (5.33)
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Using the above wavefunctions, the Green’s function for a single turning-point system in this

region can be constructed:

gsemi
ST

(x, E) = 2π

i

√
|z(x)|
|k(x)| Ai(|z(x)|)[Ai(|z(x)|) − i Bi(|z(x)|)] . (5.34)

Using the same derivation, we find nsemi
ST

(x) in the evanescent region to be

nsemi
ST

(x) = − |kF(x)|√
|zF(x)|

[|zF(x)|Ai2(|zF(x)|)− Ai′(|zF(x)|)2] . (5.35)

The Green’s function in the evanescent region for two-turning-point systems is constructed:

gsemi(x; E) = −2π tanΘ
√
|z(x)|
|k(x)| [Ai

2(|z(x)|)− iAi(|z(x)|)Bi(|z(x)|)] . (5.36)

Following the logic of Eq. (5.21), we can extract gQC(x; E) in this region as

gQC(x; E) = 4πi

√
|z(x)|
|k(x)|

1

1 + e−2iΘ
[Ai2(|z(x)|)− iAi(|z(x)|)Bi(|z(x)|)] . (5.37)

We then derive the quantum correction in the evanescent region, using the contour in Fig.

5.1 and find

nQC(x) =
e−2|θF(x)|

4|kF(x)|TF sinh(|α(x)|)
− |kF(x)|e−2|θF(x)|

12π|θF(x)|
. (5.38)

5.2 Uniform kinetic energy density

Using the definition of Eq. (2.20) and Green’s functions Eqs. (5.8) and (5.20), we derive a

semiclassical approximation to the KE density in the traveling and evanescent regions. We
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apply the same method as in deriving the density with the only difference that we expand

the semiclassical quantities in the integrand up to the second order of η. Without going into

any details of the derivations, we show the final results.

In the traveling region, the leading KE density term is given as

tsemi
ST

(x) =
k3

F
(x)

2
√
zF(x)

[zF(x)Ai
2(−zF(x)) + Ai′(−zF(x))2]

− k3
F
(x)

9θF(x)
[2z2F(x)Ai

2(−zF(x))− Ai(−zF(x))Ai′(−zF(x))

+2zF(x)Ai
′2(−zF(x))] , (5.39)

which recovers the TF KE density (k3
F
(x)/6π) at the asymptotic limit. The first order

quantum correction to the kinetic energy density is given by

tQC
(1) (x) =

k3
F
(x) cos(2θF(x))

12πθF(x)
− kF(x) cos(2θF(x))

4TF sin(α(x))
. (5.40)

The second order KED quantum correction is given by

tQC
(2) (x) = −

(
k3

F
(x)

8z
5/2
F (x)

−
√
zF(x)π

2 cos(α(x))

2kF(x)T 2
F sin2(α(x))

)
Ai2(−zF(x)) . (5.41)

We now find analogous quantities in the evanescent region. The leading term of the KE

density is

tsemi
ST (x) =

|kF(x)|3
2
√
|zF(x)|

[|zF(x)|Ai2(|zF(x)|)− Ai′2(|zF(x))|)]

−|kF(x)|3
9|θF(x)|

[2|zF(x)|2Ai2(|zF(x)|)

−Ai(|zF(x)|)Ai′(|zF(x)|)− 2|zF(x)|Ai′2(|zF(x)|)] . (5.42)
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If we take the asymptotic forms of Ai and Ai′, tsemi
ST (x) becomes zero at the asymptotic limit

in the evanescent region. The quantum corrections in this region are

tQC
(1) (x) =

|kF(x)|3e−2|θF(x)|

24π|θF(x)|
− |kF(x)|e−2|θF(x)|

8TF sinh(|α(x)|)
, (5.43)

and

tQC
(2) (x) =

(
|kF(x)|3

8|zF(x)|5/2
−
√
|zF(x)|π2 cosh(|α(x)|)

2|kF(x)|T 2
F
sinh2(|α(x)|)

)
Ai2(|zF(x)|) , (5.44)

giving a set of clearly analogous expressions for the KE density in both regions.

5.3 Different limit

However, the above quantum corrections result in a discontinuity at the turning point. At

the turning point, aF, the magnitude of Eq. (5.30) is twice that of Eq. (5.38). For a harmonic

oscillator (v(x) = x2/2), Eq. (5.38) in the evanescent region is more accurate than Eq. (5.30)

in the traveling region at aF. (See Section 5.5.1 and Table 5.1 for the detailed discussion and

the data.)

To make these equations continuous, we define the following two points, xI and xII, in the

traveling region (see Fig. 5.2):

∫ xI

aF

dx′ kF(x
′) =

π

4
∫ bF

xII

dx′ kF(x
′) =

π

4
. (5.45)
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Figure 5.2: 1D systems.

At these xI and xII, n
QC(x) (Eq. (5.30)) becomes zero since cos (2θF(xI/II)) = cos (π/2) = 0.

Only the leading term, nsemi
ST (x), remains. So we can divide the region to make the density

continuous.

With this separation of space, we obtain a continuous quantum corrections to the density:

nQC(x) =





kF(x) cos(2θF(x))

6πθF(x)
− cos(2θF(x))

2kF(x)TF sin(α(x))
, for xI < x < xmid

kF(x) cos(2θF(x))

12πθF(x)
− cos(2θF(x))

4kF(x)TF sin(α(x))
, for aF < x < xI

e−2|θF(x)|

4|kF(x)|TF sinh(|α(x)|)
− |kF(x)|e−2|θF(x)|

12π|θF(x)|
, for x < aF ,

(5.46)

where the mid-phase point, xmid, is determined by

∫ xmid

aF

dx′ θF(x
′) =

Nπ

2
. (5.47)

These formulas give a continuous density although discontinuities in the first derivative exist

at xI, xII and xmid.
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Using the same argument, the tQC(x) can also be divided into three regions:

tQC(x) =






tQC
(1),a + tQC

(2),a , for xI < x < xmid

1

2
tQC
(1),a + tQC

(2),a , for aF < x < xI

tQC
(1),e + tQC

(2),e , for x < aF .

(5.48)

5.4 Summary of equations

In this section, we summarize all previous results related to the semiclassical density and

KE density that will be used in this paper. We define the following semiclassical quantities

at EF.

The semiclassical momentum:

kF(x) =
√

2|EF − v(x)| . (5.49)

The semiclassical phase:

θF(x) =

∫ x

aF

kF(x
′)dx′ , (5.50)

zF(x) = Sgn(θF(x))

(
3

2
|θF(x)|

)2/3

. (5.51)

The classical traveling time:

τF(x) =

∫ x

aF

1

kF(x′)
dx′ . (5.52)
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For the semiclassical density (nsemi
ST and nQC(x)):

nsemi
ST (x) = ± kF(x)√

±zF(x)
[zF(x)Ai

2(−zF(x)) + Ai′(−zF(x))2] , (5.53)

nQC(x) =






kF(x) cos(2θF(x))

6πθF(x)
− cos(2θF(x))

2kF(x)TF sin(α(x))
, for xI < x < xmid

kF(x) cos(2θF(x))

12πθF(x)
− cos(2θF(x))

4kF(x)TF sin(α(x))
, for aF < x < xI

e−2|θF(x)|

4|kF(x)|TF sinh(|α(x)|)
− |kF(x)|e−2|θF(x)|

12π|θF(x)|
, for x < aF ,

(5.54)

where the upper sign means the traveling region, the lower sign the evanescent region, and

αF(x) = πτF(x)/TF.

For tsemi, the subscript a and e mean the traveling and evanescent regions respectively. The

leading term is

tsemi
ST (x) = ± k3

F
(x)

2
√
±zF(x)

[zF(x)Ai
2(−zF(x)) + Ai′(−zF(x))2]

∓ k3
F
(x)

9θF(x)
[2z2F(x)Ai

2(−zF(x))− Ai(−zF(x))Ai′(−zF(x))

+2zF(x)Ai
′2(−zF(x))] , (5.55)

and the quantum corrections for the KE density are

tQC
(1),a(x) =

k3
F
(x) cos(2θF(x))

12πθF(x)
− kF(x) cos(2θF(x))

4TF sin(αF(x))
(5.56)

tQC
(2),a(x) = −

(
k3

F
(x)

8z
5/2
F (x)

−
√
zF(x)π

2 cos(αF(x))

2kF(x)T 2
F
sin2(αF(x))

)
Ai2(−zF(x)) (5.57)
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tQC
(1),e(x) =

kF(x)e
2θF(x)

8TF sinh(αF(x))
− kF(x)

3e2θF(x)

24πθF(x)
(5.58)

tQC
(2),e(x) =

(
kF(x)

3

8(−zF(x))5/2
−
√
−zF(x)π2 cosh(αF(x))

2kF(x)T 2
F
sinh2(αF(x))

)
Ai2(−zF(x)) (5.59)

tQC(x) =





tQC
(1),a + tQC

(2),a , for xI < x < xmid

1

2
tQC
(1),a + tQC

(2),a , for aF < x < xI

tQC
(1),e + tQC

(2),e , for x < aF .

(5.60)

The total semiclassical density and KE density are

nsemi(x) = nsemi
ST

(x) + nQC(x)

tsemi(x) = tsemi
ST

(x) + tQC(x) . (5.61)

5.5 1D Applications

5.5.1 Harmonic potential

The Schrödinger equation for a harmonic oscillator is

(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
ψj(x) = ǫjψj(x) . (5.62)

The exact wavefunction of j-th level is given by

ψj(x) =

√
1

2jj!

(mω
πh̄

)1/4
e−mωx

2/2h̄Hj

(√
mω

h̄
x

)
, (5.63)
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where Hj is the j-th Hermite polynomial. And the exact energy levels are

ǫj =

(
j +

1

2

)
h̄ω , j=0,1,2,... (5.64)

In atomic units (m = 1, h̄ = 1), with ω = 1, the wavefunction is reduced to

ψj(x) =

√
1

2jj!

(
1

π

)1/4

e−x
2/2Hj(x) , (5.65)

and the exact density for N particles is

n(x) =

N−1∑

j=0

ψ2
j (x) . (5.66)

EF of the harmonic oscillator for N particles is calculated by

∫ √
2EF

−
√
2EF

dx
√

2(EF − x2/2) = Nπ , (5.67)

with EF = N and turning points ±
√
2N . In Table 5.1, we calculate the percentage errors

of the semiclassical density at the turning point (TP, x = −
√
2N), using Eqs. (5.53), (5.55)

and (5.61). The leading terms in the density (nsemi
ST

, Eq. (5.53)) and KE density (tsemi
ST

,

Eq. (5.55)) give relatively accurate values at the TP, and the percentage errors decrease as

N becomes large. With quantum corrections, Eq. (5.61) (nsemi and tsemi) gives very good

results, even for N = 1. The errors are less than 2% and decrease much more rapidly than

those of the leading terms.

We calculate kinetic and potential energies of a harmonic oscillator (v(x) = x2/2) using

the semiclassical density and KE density in Table 5.2. Errors in the normalization of the

semiclassical densities decrease as N increases. The magnitude of errors for the semiclassical

KE increase with N , but slowly converge to a constant. The errors in potential energies are
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Table 5.1: The percentage errors of densities and KE densities at the turning point (x =
−
√
2N) for a harmonic oscillator.

N nsemi
ST nsemi tsemi

ST tsemi

1 24.0717 1.9631 13.4611 1.78836
2 14.338 1.50315 7.78502 0.799501
3 10.6836 1.20183 5.71087 0.482507
4 8.70012 1.01334 4.6052 0.334419
5 7.43109 0.884161 3.90672 0.250848
6 6.53896 0.789477 3.42032 0.198019
7 5.87216 0.716657 3.05945 0.161993
8 5.35183 0.658626 2.77952 0.136058
9 4.93263 0.611107 2.55511 0.116609
10 4.58645 0.571352 2.37056 0.101555
20 2.85266 0.365231 1.45737 0.0407332
30 2.16591 0.280327 1.10111 0.0238158
40 1.78283 0.232148 0.903817 0.0162631
50 1.53354 0.200477 0.775996 0.0120943
60 1.35623 0.177797 0.685357 0.00949334
70 1.22255 0.160614 0.617179 0.00773511
80 1.11755 0.147064 0.563717 0.00647718
90 1.03249 0.136056 0.520474 0.00553832
100 0.961952 0.126903 0.484651 0.00481425
200 0.604372 0.0801871 - -

bigger than those in the semiclassical KE and show much slower convergence. In contrast,

the percentage errors in the potential energies go to zero rapidly.

In 2003, Sim et al. derive the kinetic energy density in 1D from the virial theorem for

noninteracting electrons with v-representable densities(77):

tDF(x) =
1

2

∫ ∞

x

dx′ n(x′)
dv(x′)

dx′
. (5.68)

We test this kinetic energy functional on the semiclassical densities for a harmonic oscillator.

The kinetic energies from Eq. (5.68) have almost the same errors as the potential energies,

satisfying the virial theorem. To remove the normalization errors, we re-normalize the

semiclassical density to N numerically. With the re-normalized densities, we calculate the
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Table 5.2: Errors of densities, kinetic energy, potential energy for a harmonic oscillator
(v(x) = x2/2).

N
∫
dxnsemi(x) exact KE

∫
dx tsemi(x)

∫
dx tDF(x)

∫
dxnsemi(x)v(x)

1 0.9856 0.25 -0.03921639 0.00076356 0.00075271
2 1.9931 1.00 -0.03546662 0.00027550 0.00027493
4 3.9943 4.00 -0.04261346 -0.00195068 -0.00195005
8 7.9960 16.00 -0.04766957 -0.00625399 -0.00629082
16 15.9974 64.00 -0.05132631 -0.01274630 -0.01273680
32 31.9983 256.00 -0.05402198 -0.02092856 -0.02159829
64 63.9989 1024.00 -0.05597217 -0.03409107 -0.03409480
128 127.9993 4096.00 -0.05753729 -0.04841689 -0.04943579
256 255.9996 16384.00 -0.05868514 -0.07050443 -0.07054575

Table 5.3: Errors of kinetic energies and potential energies for a harmonic oscillator (v(x) =
x2/2). The semiclassical density is re-normalized to N to calculate kinetic energies from
tDF(x) (Eq. (5.68)) and potential energies.

N exact KE
∫
dx tDF(x)

∫
dxnsemi(x)v(x) E

1 0.25 0.00447381 0.00441528 0.00888909
2 1.00 0.00376036 0.00375728 0.00751765
4 4.00 0.00374241 0.00373903 0.00748145
8 16.00 0.00192897 0.00173114 0.00366011
16 64.00 -0.00215785 -0.00220972 -0.00436757
32 256.00 -0.00752076 -0.00819052 -0.01571129
64 1024.00 -0.01706026 -0.01706399 -0.03412424
128 4096.00 -0.02716883 -0.02818773 -0.05535656
256 16384.00 -0.04368269 -0.04372401 -0.08740670

kinetic energies using Eq. (5.68) and the potential energies in Table 5.3. The errors in

kinetic and potential energies are similar to those in Table 5.2, but the magnitude of errors

is reduced as N becomes large. We plot the semiclassical (KE) densities with exact results

in Figs. 5.3 and 5.4 for N = 2. Errors present in the semiclassical KE density decrease

rapidly as N increases.
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Figure 5.3: Comparison of exact and semiclassical densities of a harmonic potential with
N = 2.
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Figure 5.4: Comparison of exact and semiclassical KE densities of a harmonic potential with
N = 2.

5.5.2 Morse potential

Then we apply the semiclassical density and KE density to a Morse potential(78). The

Morse potential is an approximation to the potential energy surface of a diatomic molecule

that gives the better vibrational energy levels than those found using the harmonic oscillator

approximation. An exact solution can be obtained by solving the Schrödinger equation. In
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this study, we use the following Morse potential:

v(x) = 16(e−x/2 − 2e−x/4) . (5.69)

We obtain the exact density and KE density numerically and compare them with the semi-

classical solutions for N = 2 in Figs. 5.5 and 5.6. The semiclassical density in Fig. 5.5
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n
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x

Figure 5.5: Comparison of exact and semiclassical densities of Morse potential with N = 2.

shows very good agreement with the exact density, but the difference of the KE densities in

the traveling region is clear in Fig. 5.6. However, this difference rapidly diminishes as N

increases.

5.6 Is this variational?

According to Ref. (77), we can define the total energy of a given system with the density,

n(x) and the potential, v(x):

E =
1

2

∫ ∞

−∞
dx

∫ ∞

x

dx′ n(x′)
dv(x′)

dx′
+

∫ ∞

−∞
dxn(x) v(x) . (5.70)
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Figure 5.6: Comparison of exact and semiclassical KE densities of Morse potential with
N = 2.

If we know the density as a functional of a given potential, the total energy will be a functional

of the potential. Hence, we can rewrite the above equation as

Ev[v] =
1

2

∫ ∞

−∞
dx

∫ ∞

x

dx′ n[v](x′)
dv(x′)

dx′
+

∫ ∞

−∞
dxn[v](x) v(x) . (5.71)

Since the kinetic energy functional is derived from the virial theorem, the kinetic and po-

tential energies always satisfy the virial theorem for a given potential and the density from

the potential.

The question then becomes, “Is Eq. (5.71) variational?” To check this, we calculate the total

energies for a given trial potential, ṽ(x), using

Ev[ṽ] =
1

2

∫ ∞

−∞
dx

∫ ∞

x

dx′ n[ṽ](x′)
dṽ(x′)

dx′
+

∫ ∞

−∞
dxn[ṽ](x) v(x) , (5.72)

where the trial potential, ṽ(x), is

ṽ(x) =
1

2
xp , p = 2, 4, 6, and 8 , (5.73)

74



and the true (external) potential, v(x), is

v(x) =
1

2
x4 . (5.74)

In Table 5.4, we summarize the KE, PE, and total energies of N = 1, 2, 3, and 4 for given

trial potentials. We re-normalize the semiclassical densities numerically to N . The minimum

Table 5.4: Variational principle. The trial potential, ṽ(x), is xp/2 and the exact (target)
potential is x4/2. For all cases, the minimum of the total energy is at p = 4.

p KE PE E KE/PE

N = 1

2 0.25447381 0.38465361 0.63912742
4 0.36936501 0.18467997 0.55404498 2.00003
6 0.47279080 0.13254050 0.60533129
8 0.56578485 0.10765556 0.67344041

N = 2

2 1.00376036 2.26951144 3.27327181
4 1.63598630 0.81775834 2.45374464 2.00057
6 2.11907692 0.52224034 2.64131726
8 2.54624093 0.40335159 2.94959252

N = 3

2 2.25548094 7.16249997 9.41798091
4 4.12831726 2.06415038 6.19246764 2.00001
6 5.53804028 1.18722743 6.72526771
8 6.69177584 0.86496638 7.55674222

N = 4

2 4.00374241 16.54509916 20.54884157
4 8.00986449 4.00454536 12.01440985 2.00019
6 11.14843359 2.11463851 13.26307210
8 13.66074179 1.46596067 15.12670246

of the total energy for all N is always at p = 4.

We also test the variational principle by changing the coefficient of x2 in Table 5.5. The trial

and true potentials are, respectively,

ṽ(x) = αx2 ,

v(x) =
3

4
x2 . (5.75)
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We change the α from 1/2 to 1.0 and calculate the total energies using Eq. (5.72) for trial

potentials. The energy minimum is found at α = 3/4.

Table 5.5: Variational principle for N = 1. The trial potential, ṽ(x), is αx2 and the exact
(target) potential is 3x2/4. The minimum of the total energy is at α = 3/4.

α KE PE E KE/PE
1.00 0.35979927 0.26984201 0.62964128
0.95 0.35068325 0.27685260 0.62753585
0.90 0.34148517 0.28444855 0.62593372
0.85 0.33183181 0.29267613 0.62450794
0.80 0.32187217 0.30169775 0.62356993
0.75 0.31159691 0.31158810 0.62318501 1.00003
0.70 0.30225659 0.32262455 0.62488114
0.65 0.29017028 0.33470732 0.62487760
0.60 0.27872824 0.34836102 0.62708926
0.55 0.26685058 0.36385248 0.63070306
0.50 0.25447380 0.38162292 0.63609672

5.7 Spherically symmetric 3D potential

In this section, we discuss the non-interacting, spinless fermions in spherically symmetric

potentials in 3D. The Hamiltonian for the system is given in atomic units as

Ĥ = −1
2
∇2 + v(r) . (5.76)

The Laplacian in spherical coordinates is expressed as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− 1

r2
L̂2 . (5.77)
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We can separate the wavefunction ψ(r) into a radial, R(r), and an angular part, Y m
l (θ, φ):

ψ(r) = Rnl(r)Y
m
l (θ, φ) , (5.78)

where Y m
l (θ, φ) is the eigenfunction of L̂2:

L̂2Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ) . (5.79)

The radial part of Schrödinger equation becomes

−1
2

(
R′′
nl(r) +

2

r
R′
nl(r)

)
+

(
l(l + 1)

2r2
+ v(r)

)
Rnl(r) = ERnl(r) , (5.80)

where this is the eigenvalue problem in 1D. To remove the singularity at the origin, we can

define the radial wavefunction as

Rnl(r) =
unl(r)

r
. (5.81)

Then, the differential equation can be further simplified to yield

(
d2

dr2
+ 2

[
E − v(r)− l(l + 1)

2r2

])
unl(r) = 0 . (5.82)

For a given spherical potential v(r), the exact radial density is the sum of u2nl(r):

4πr2n(r) =
n∑

i=1

i−1∑

j=0

u2ij(r) . (5.83)

The exact centrifugal potential, l(l+1)/2r2, does not give the right orbital energy or asymp-

totic behavior of the semiclassical wavefunctions for the Coulomb potential, −Z/r(75; 79).

Thus, Langer(75) proposed the following modification of the angular contribution, which en-
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sures the right energy and the asymptotic decays of semiclassical wavefunctions(79; 80; 81)

l(l + 1)→
(
l +

1

2

)2

. (5.84)

For l = 0, this modification converts the single-turning-point problem into the two-turning-

point problem. According to this modification, the effective potential can be rewritten as

veff(r) = v(r) +
(l + 1/2)2

2r2
, (5.85)

and Eq. (5.82) can be written as

(
d2

dr2
+ 2[E − veff(r)]

)
unl(r) = 0 , (5.86)

which is a 1D Schrödinger equation with two turning points. Hence, we can apply our

semiclassical density formula to Eq. (5.86). Similar to the separation of space shown in Fig.

5.2, we define the necessary points for the semiclassical scheme in Fig. 5.7. r+ and r− are
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Figure 5.7: Spherical 3D systems.
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the turning points at EF and the points, rI and rII, are found by the conditions

θF(rI) =

∫ rI

r+

dr kl(r;EF) = π/4 ,

θF(rII) =

∫ r−

rII

dr kl(r;EF) = π/4 . (5.87)

Our semiclassical equations give the radial density. Therefore, 4πr2 appears in front of

nsemi
ST (r) and nQC(r) to prevent confusion between these and the previous 1D results.

5.7.1 Isotropic 3D harmonic potential

The Schrödinger equation for an isotropic 3D harmonic oscillator is given by

−1
2
∇2ψ(r) +

1

2
r2ψ(r) = Eψ(r) . (5.88)

The exact radial wavefunction is

Rnl(r) = Nnlr
le−r

2/2L
l+1/2
(n−l)/2(r

2) , (5.89)

where L
l+1/2
(n−l)/2(r

2) is an associated Laguerre polynomial andNnl is the normalization constant

Nnl =

√
2n+l+2

(
n−l
2

)
!
(
n+l
2

)
!√

π(n + l + 1)!
. (5.90)

The energy levels are given by En = (n + 3/2), which is (n + 1)(n + 2)/2-fold degenerate.

With angular momentum quantum number l, the possible principle quantum number n is l,

l + 2, l + 4 . . . . We use Langer’s modification for the centrifugal potential. So the effective
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potential is given by

veff(r) =
1

2
r2 +

(l + 1/2)2

2r2
. (5.91)

Near the origin, 4πr2nQC(r) (Eq. (5.54)) overcorrects 4πr2nsemi
ST

(r) (Eq. (5.53)), hence

4πr2nsemi(r) can be negative for radial densities. This becomes severe in s and p orbitals,

compared to d and f orbitals, which is due to the rapid change of the centrifugal potential,

1/r2, near the origin. To avoid this, we use the single-turning-point formula near the origin:

4πr2nsemi
app (r) =

2zF(r)

kF(r)τF(r)
[zF(r)Ai

2(−zF(r)) + Ai′(−zF(r))2] . (5.92)

Kohn and Sham(74) suggest the linear equation around the turning point:

4πr2nlin(r) = |2v′(aF)|1/3(zF(r)Ai2(−zF(r)) + Ai′2(−zF(r))) . (5.93)

If we take Taylor series of the potential at aF, Eq. (5.93) can be derived from Eq. (5.92). How-

ever, Eq. (5.92) is not continuous with the original semiclassical approximation 4πr2nsemi(r)

(Eq. 5.61). We calculate the ratio between 4πr2nsemi
app (rI) of Eq. (5.92) and 4πr2nsemi(rI)

of Eq. (5.61), and multiply the radial density of Eq. (5.92) by the ratio at r = rI. For

r > rI, we use our semiclassical approximation (Eq. (5.61)) to produce the right quantum

oscillations. We apply this method to the 3D spherical harmonic oscillator in Figs. 5.8, 5.9,

and 5.10, demonstrating that our semiclassical approximation produces very accurate radial

densities.
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Figure 5.8: Comparison of exact and semiclassical densities of l = 0 orbitals with N = 3 for
an isotropic 3D harmonic potential. Eq. (5.92) is used from r = 0 to rI.
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Figure 5.9: Comparison of exact and semiclassical densities of l = 1 orbitals with N = 3 for
an isotropic 3D harmonic potential. Eq. (5.92) is used from r = 0 to rI.

5.7.2 Bohr atom

The Hamiltonian for a hydrogenic system is given by in atomic units

Ĥ = −1
2
∇2 − Z

r
, (5.94)
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Figure 5.10: Comparison of exact and semiclassical densities of l = 2 orbitals with N = 3
for an isotropic 3D harmonic potential. Eq. (5.92) is used from r = 0 to rI.

where Z is the atomic number. We can separate the wavefunction ψ(r) into a radial, R(r),

and an angular part, Y m
l (θ, φ):

ψ(r) = R(r)Y m
l (θ, φ) . (5.95)

The radial part of Schrödinger equation becomes

−1
2

(
R′′(r) +

2

r
R′(r)

)
+

(
l(l + 1)

2r2
− Z

r

)
R(r) = ER(r) . (5.96)

The exact radial solution for the above equation is given as

R(r) = Nnl

(
2Zr

n

)l
e−Zr/nL2l+1

n−l−1

(
2Zr

n

)
, (5.97)

where n is the principal quantum number, L2l+1
n−l−1 is the associated Laguerre polynomial and

Nnl is a normalization constant,

Nnl =

√
(n− l − 1)!

2n(n + 1)!

(
2Z

n

)3

. (5.98)
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We define the radial wavefunction as

R(r) =
u(r)

r
. (5.99)

Then, the differential equation can be simplified to

(
d2

dr2
+ 2

[
E +

Z

r
− l(l + 1)

2r2

])
u(r) = 0 . (5.100)

According to Langer’s modification(75), the effective Coulomb potential can be rewritten as

veff(r) = −Z
r
+

(l + 1/2)2

2r2
, (5.101)

and the semiclassical quantities are defined for a given angular momentum quantum number

l as

kl(r) =
√

2(E − veff(r))

θl(r) =

∫ r

r+

dr′ kl(r
′)

τl(r) =

∫ r

r+

dr′
1

kl(r′)
. (5.102)

The EF is determined by the following quantization condition:

∫ r−

r+

dr kl(r;EF) = (n− l)π , (5.103)

where n and l are the valence principal and angular momentum quantum numbers respec-
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tively, and the turning points at the EF are given by

r+ =
−Z +

√
Z2 + 2EF(l + 1/2)2

2EF

r− =
−Z −

√
Z2 + 2EF(l + 1/2)2

2EF

. (5.104)

Unlike the isotropic 3D harmonic oscillator, the potential, veff(r), goes to zero as r → ∞,

and the EF for given n and l is generally close to zero. In this case, the leading term,

4πr2nsemi
ST (r) (Eq. (5.53)), decays too rapidly compared to 4πr2nQC(r), Eq. (5.54), after r−,

and the semiclassical radial density becomes negative in the right-side evanescent region.

However, 4πr2nsemi
app (r) (Eq. (5.92)) decays slowly compared to 4πr2nsemi

ST
(r). In addition,

4πr2nsemi
ST

(r−) = 4πr2nsemi
app (r−) at the turning point. Hence, we use 4πr2nsemi

app (r) without any

quantum corrections in the regions, r < rI and with quantum corrections (4πr2nQC(r)) in

the region for which r− < r.
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Figure 5.11: Comparison of exact and semiclassical densities of 1s12s13s14s1.

We plot the exact and semiclassical radial densities with Z = 1 in Figs. 5.11, 5.12, 5.13

and 5.14. For example, if the valence quantum number n = 4 and l = 0, this means 4
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Figure 5.12: Comparison of exact and semiclassical densities of 2p13p14p1.

(=n − l) particles, and its electronic configuration for non-interacting same spin electrons

is 1s12s13s14s1. The semiclassical formalism for the given potential, veff(r), gives the right
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Figure 5.13: Comparison of exact and semiclassical densities of 3d14d1.

quantum oscillations for p, d, and f orbital densities, compared to the exact radial density.

However, in Fig. 5.11, a few oscillations near the origin show significant differences in the

s-orbital density. Also, there is a slight phase shift for the s-orbital density which can also

be seen in Fig. 9 of Ref. (74), where WKB wavefunctions were used. This is due to Langer’s

transformation and will be discussed in Section 5.8.
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Figure 5.14: Comparison of exact and semiclassical densities of 4f 1.

5.8 Real atoms

5.8.1 Single-point calculation

We begin with the KS formalism. The KS equations for any atoms or ions are

[
−1
2
∇2 + vSσ(r)

]
φiσ(r) = ǫiσφiσ(r) , (5.105)

and the spin densities are

nσ(r) =

Nσ∑

i=1

|φiσ(r)|2 , (5.106)

where vSσ(r) is a single, multiplicative spin-dependent KS potential, and σ is the spin index(↑

and ↓). The spin-dependent KS potential is a sum of three contributions:

vSσ(r) = v(r) + vH[n](r) + vXCσ[n↑, n↓](r) , (5.107)

86



where v(r) = −Z/r for an atomic system, vH(r) is the Hartree potential given as

vH(r) =

∫
d3r′

n(r′)

|r− r′| , (5.108)

and the exchange-correlation (XC) contribution is

vXCσ[n↑, n↓](r) =
δEXC[n↑, n↓]

δnσ(r)
. (5.109)

For an atomic system, the KS equations can be separated into the radial and angular parts:

[
−1
2

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2r2
L̂2 + vSσ(r)

]
φiσ(r) = ǫiσφiσ(r) . (5.110)

This can be further reduced to a 1D radial equation like Eq. (5.82). Let us define veffsσ (r)

with this centrifugal potential:

veffsσ (r; l) = vext(r) + vH[n](r) + vXCσ[n↑, n↓](r) +
l(l + 1)

2r2
. (5.111)

This exact centrifugal potential does not produce the right asymptotic behavior of semiclas-

sical wavefunctions discussed in Section 5.7. Thus we use Langer’s modification instead of

the exact l(l + 1)

veffsσ (r; l) = vext(r) + vH[n](r) + vXCσ[n↑, n↓](r) +
(l + 1/2)2

2r2
, (5.112)

where veffsσ (r) always has two turning points even for l = 0.

We obtain the total radial density (4πr2n(r)) and the KS potential (vS(r)) of a neutral Kr

atom (Z = 36) with the LDA XC functional using the fully numerical OPMKS code(38).

The electronic configuration of Kr is [Ar]3d104s24p6. Since Kr is a spin-unpolarized, fully

occupied atom, the KS potentials for up-spins and down-spins are identical. With vLDA
S

(r)
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and Eq. (5.112), we calculate EF for a given l:

∫ r−

r+

√
2(EF − veffs↑ (r; l)dr = (n− l)π , (5.113)

where {(n, l)} = {(4, 0), (4, 1), (3, 2)}. For example, for the up-spin s-orbital density, n = 4

and l = 0. This means that the number of up-spin electrons up to 4s is 4(= n− l). With this

EF, we apply our semiclassical scheme to calculate the radial density (4πr2nsemi
n,l (r)) for given

n and l. Degeneracy by magnetic quantum numbers (m) and spins (mS) are handled by

multiplication of the semiclassical radial density by 2(2l+ 1). Hence, the total semiclassical

radial density will be the sum of each of the radial densities for the given angular momentum

quantum numbers:

4πr2nsemi(r) =
∑

{n,l}
2(2l + 1)4πr2nsemi

n,l (r) . (5.114)

We compare the semiclassical result with SCF LDA density from OPMKS code in Fig. 5.15
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Figure 5.15: Comparison of SCF-LDA and semiclassical densities of Kr. Eq. (5.93) is used
from r = 0 to rI. (l + 1/2)2 is used for all orbitals instead of l(l + 1).

and find they show good agreement, superficially. However, if we enlarge Fig. 5.15 and focus

on the region where r < 1.2, we can find the phase shift and incorrect amplitude visible in
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Fig. 5.16. Langer(75) stated that, “Whenever the number l is small the turning point lies
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Figure 5.16: Comparison of SCF-LDA and semiclassical densities of Kr. Eq. (5.93) is used
from r = 0 to rI. (l + 1/2)2 is used for all orbitals instead of l(l + 1).

very near to the point r = 0, and this is true also in the case of the turning point whenever

the energy is very large. The use of the formulas under such circumstances is questionable,

and is generally less satisfactory than otherwise.” Also, Berry and Mount (79) mentioned

“inaccuracies in Langer’s method for low l, when the turning point after the modification

comes very close to the origin.”

We here adjust Langer’s modification for s and p orbitals to eliminate these effects. We use

(l + 0.53)2 for l = 0 and (l + 0.51)2 for l = 1. Although we do not present the result in this

dissertation, the semiclassical radial density becomes more accurate than the density with

Langer’s original modification. This refinement seems to work for other atoms, but we need

to show that this adjustment is justified.

5.8.2 Semiclassical orbital-free potential-density functional

Since vSσ(r) in Eq. (5.110) depends on the (spin)-density, we solve the KS equations itera-

tively and find a self-consistent solution. The flow chart of the KS-SCF procedure is depicted
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in Fig. 5.17. By applying the Hohenberg-Kohn(2) theorem to the non-interacting system,

Figure 5.17: SCF procedures for KS-DFT (left) and orbital-free potential-density functional
theory (right).

the KS potential, vSσ(r), which gives the ground-state spin density, nσ(r) for the system, is

unique. If nσ(r) can be expressed as a functional of vSσ(r), we can state

nσ[vSσ](r)
1:1←→ vSσ[nσ](r) . (5.115)

Using our semiclassical approximation to the density as a potential functional, we can directly

obtain the radial density from a given KS potential without ever solving the KS equations.

Since vSσ(r) is a density functional, we have to find a self-consistent solution. Hence we set

up a new SCF procedure for orbital-free potential-density functional theory (OF-pDFT) in

Fig. 5.17.

For OF-pDFT calculations, we need an initial guess for the density in order to construct

vSσ(r). The initial density comes from a SCF calculation with an exact exchange (exchange-
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only) (18) functional using OPMKS code(38) for Ar. In our procedure, the potential for a

given l is defined as

veffsσ (r; l) = vext(r) + vH[n](r) + vXCσ[n↑, n↓](r) +
(l + 1/2)2

2r2
, (5.116)

where vXC(r) is the LDA exchange(29; 30) and correlation (VWN5)(31) functional, vext is

−Z/r, and vH is the Hartree potential. For closed-shell atoms, we use the spin-unpolarized

LDA functional, and the Hartree potential can be obtained without solving the Poisson

equation:

vH(r) =
Z

r
− 1

r

∫ ∞

r

dr′
∫ ∞

r′
dr′′4πr′′n(r′′) . (5.117)

So, from the initial density, n0(r), we calculate the LDA KS potential. Ar has [Ne]3s23p6 as

its electronic configuration. To calculate the semiclassical radial density, we need {n, l} =

{(3, 0), (3, 1)}. Then the total semiclassical radial density with the LDA KS potential will

be

4πr2nsemi(r) =
∑

{n,l}
2(2l + 1)4πr2nsemi

n,l (r) . (5.118)

The convergence criteria is the density difference (i.e., ∆n(r) < 10−5) between the previous

and current iterations. If this condition is satisfied, then SCF is terminated and, if not, the

SCF procedure will be repeated to achieve the convergence criteria.

In Fig. 5.18, we plot the LDA-SCF radial density and the converged semiclassical radial

density from OF-pDFT. The semiclassical radial density still shows a slight phase shift, but

this is due to the inaccuracy in Langer’s method discussed in the previous Section 5.8.1.

We can also define the total energy as a potential functional. In Ref. (77), the kinetic energy

for 3D spherical systems can be obtained from the virial theorem for the v-representable non-

91



0 1 2 3 4 5
0

5

10

15

20

25

4π
r2
n
(r
)

r

Figure 5.18: Comparison of LDA-SCF and semiclassical SCF densities of Ar.
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Figure 5.19: Convergence of total energies in each iterations

interacting density:

TDF
s [vS] =

3

2

∫
d3r

∫ ∞

r

dr′n[vS](r
′)
dvs(r

′)

dr′
. (5.119)

So the total energy of the spherical system is

E[vS] = TDF
s [vS] + Eext[n[vS]] + EH[n[vS]] + EXC[n[vS]] . (5.120)

We plot the total energy from each iteration in Fig. 5.19. Since we use the approximate XC
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(LDA) functional, the total energies are not variational. However, the total energies almost

converge after 30 iterations and the energy difference is less than 4.8× 10−6 H.
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Chapter 6

Conclusion

In this dissertation, I have discussed three topics. I first explained how reasonably accurate

electron affinities can be obtained via approximate density functionals. Incomplete cancella-

tion of self-interaction in approximate density functionals results in positive HOMO energies

and thus, unbound HOMO state. By studying the KS and XC potentials, I show that shifting

the KS potential by a constant does not affect the total density and, therefore, the meaning

of the positive HOMO becomes ambiguous. Hence, I show that an accurate density and

EA can be obtained with density functional approximations, despite the positive HOMO

energy. In addition, I suggest a simple and practical way to evaluate the EAs on HF and

EXX densities that bind a valence electron. The results from HF and EXX densities are

reasonable and slightly better than those of the traditional approaches. However, if the HF

density inaccurately describes the system due to a lack of correlation, then our method will

fail to get accurate EAs.

Second, I gave a condition on the KS kinetic energy. It is shown here that the asymptotic

expansion of total energies with atomic number Z gives a vital condition that the non-

interacting KS kinetic energy should satisfy. I construct the modified gradient expansion
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approximation to the fourth order, which gives the correct asymptotic expansion coefficients.

I apply this modified GEA to atoms, molecules, and the jellium surface/sphere. I find that,

for atoms and molecules, our modified GEA improves the kinetic energies, when compared

to those generated with TF and original GEA kinetic energy functionals. However, for the

atomization process, the TF kinetic energy functional gives better mean absolute errors

(0.25) than GEAs. This is because the GEA does not include quantum corrections by the

turning points. I have also studied the existing kinetic energy functional approximations

and found the corresponding asymptotic expansion coefficients. This modified GEA cannot

be used in orbital-free density functional calculation, since if I take the functional derivative

of the fourth order modified GEA to evaluate the kinetic energy potential, the derivatives of

the fourth and higher terms will diverge for atoms. Furthermore, if I include the sixth order

term in the GEA to improve the accuracy, the sixth order term of TGEA will also diverge

for atoms. Hence, the development of kinetic energy functionals based on the GEA is not

appropriate.

In the final section, the uniform semiclassical Green’s function using Langer’s uniformization

is constructed. Using a specifically chosen contour, I have derived the semiclassical density

and kinetic energy density as potential functionals for 1D systems with turning points. I have

demonstrated the accuracy of our semiclassical formalism for both the harmonic oscillator

and the Morse potential. With the kinetic energy functional from the virial theorem, I can

define the total energy as a potential functional. Since spherical 3D systems such as 3D

spherical harmonic oscillators and Bohr atoms can be reduced to quasi-1D systems, I can

apply our semiclassical scheme to obtain radial densities.

Also the radial part of the KS equation for real atoms is a 1D differential equation. The KS

potential is a functional of the density, and the semiclassical radial density is a functional

of the KS potential. Hence, I can set up a SCF procedure to find the density and the

potential. For Ar, I have used the LDA XC functional for the KS potential and found the
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converged, self-consistent, semiclassical radial density. The kinetic energy functional of a

spherical system can also be obtained from the virial theorem, so I define the total energy

potential functional for real, spherical atoms and get the converged total energy using this

functional.

The semiclassical scheme is only applicable to 1D and spherical 3D systems. For general

3D problems including non-spherical systems, I need to explore other approaches, such as a

path integral formalism and Gutzwillers semiclassical Green’s function(82). There are many

accurate approximations to EXC[n] such as GGAs for general 3D systems. This means that

a highly accurate approximation to the density as a potential functional automatically leads

to an electronic structure method that scales linearly with the number of particles, N . I will

then be able to study large biological molecules with orbital-free potential-density functional

theory, avoiding any QM/MM or empirical force field methods.
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Appendices

A Construction of modified GEA

To construct the modified GEA (MGEA) which gives the second and third coefficients in the

asymptotic expansion exactly, we multiply the T (2) and T (4) terms of the gradient expansion

by new coefficients a and b respectively, i.e. a = 1, b = 0 would simply be the second order

GEA.

TMGEA = T (0) + aT (2) + bT (4) (A.1)

TMGEA − T (0) = aT (2) + bT (4) (A.2)

= (cMGEA
1 − cTF

1 )Z2 + (cMGEA
2 − cTF

2 )Z
5
3 (A.3)

If a=1 and b=0, then the above equation gives TGEA2nd

T (2) = TGEA2nd − T (0)

= (cGEA21 − cTF
1 )Z2 + (cGEA22 − cTF

2 )Z
5
3 (A.4)
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If a=1 and b=1, then the above equation gives TGEA4th

T (2) + T (4) = TGEA4th − T (0)

= (cGEA41 − cTF
1 )Z2 + (cGEA42 − cTF

2 )Z
5
3 (A.5)

According to the linearity between the coefficients of Z-expansion and the 2nd/4th GEA,

then there will be a matrix to map (a,b) into (c1-c
TF
1 , c2-c

TF
2 )



c1 − cTF

1

c2 − cTF
2


 =



m11 m12

m21 m22






a

b


 (A.6)



cGEA21 − cTF

1

cGEA22 − cTF
2


 =



m11 m12

m21 m22







1

0


 (A.7)



cGEA41 − cTF

1

cGEA42 − cTF
2


 =



m11 m12

m21 m22







1

1


 (A.8)

Hence,



m11 m12

m21 m22


 =



cGEA21 − cTF

1 cGEA41 − cGEA21

cGEA22 − cTF
2 cGEA42 − cGEA22


 (A.9)

Using the coefficients in Table. 4.1, I could get the M matrix and the corresponding (a,b).



m11 m12

m21 m22


 =




0.1246 0.0162

−0.0494 0.0071


 (A.10)
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If (cMGEA
1 ,cMGEA

2 ) are chosen to give exact expansion, i.e. (cMGEA
1 ,cMGEA

2 )=(-0.5, 0.2699),

then



cMGEA
1 − cTF

1

cMGEA
2 − cTF

2


 =




0.1608

−0.1155


 (A.11)



a

b


 =




1.789

−3.841


 (A.12)

Using these coefficients, we can find:

TMGEA4[n] = TTF[n] + 1.789 T (2)[n]− 3.841 T (4)[n] . (A.13)
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