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ABSTRACT OF THE THESIS

OSCILLATOR STRENGTHS FROM

TIME-DEPENDENT DENSITY FUNCTIONAL

THEORY

by Heiko Appel

Thesis Director: Kieron Burke

We consider different forms of single-pole approximations (SPA) for oscillator-strengths

in the response formalism of time-dependent density functional theory. Numerical cal-

culations of oscillator strengths are presented for a simple model system, Hooke’s atom,

and various ions of the Helium isoelectronic series with charges Z=2,4,10,20,80. Starting

with the Kohn-Sham Hamiltonian as an unperturbed system the oscillator strengths are

treated in first order Görling-Levy perturbation theory. It is then proven that the first

order correction for the oscillator strengths vanishes for harmonic external potentials.
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Chapter 1

Introduction

Density Functional Theory is a general approach for the calculation of properties of

interacting many electron systems such as atoms, molecules or solids. It has become

very popular in chemistry in the last decade due to the development of accurate func-

tionals. The original scheme as proposed by Hohenberg and Kohn [1] and Kohn and

Sham [2] is a ground-state theory which provides a reliable and inexpensive method for

the calculation of the ground-state energy of an interacting many electron system. As

a function of external parameters, the electronic ground-state energy can be used to

extract a wealth of observable quantities, such as bond lengths and angles in the case of

molecules, electric dipole moments, electric quadrupole moments, static polarizabilities,

infrared intensities, magnetic susceptibilities, Raman intensities, etc.

Although the rigorous legitimization and therefore origin of the theory has to be traced

back to the proof of the Hohenberg Kohn theorem and the formulation of the Kohn-

Sham equations some 30 years ago, the ideas contained in the density functional ap-

proach to the many-body problem have been influenced by different historical develop-

ments.

One of these is concerned with the notion of an effective one-particle Hamiltonian and

the issue of self-consistency. In 1928 Hartree [3] suggested an approximation to the N-

particle Hamiltonian which was aimed at the construction of an effective single particle

Hamiltonian. In this approximation every electron is assumed to move in an effective

potential composed of the external potential caused by the nuclei and a contribution

which describes the average electrostatic repulsion between the electrons. The total

approximate Hamiltonian is then the sum of the effective one particle Hamiltonians,

and the approximate wavefunction can be written as product of one particle orbitals

which are the solution of the corresponding one particle Schrödinger equation. This

approximation had, however, the problem that it ignored the antisymmetry of the total

wavefunction and that the effective one-particle potential was not self-interaction free,
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i.e., the electron whose effective potential has to be determined contributes via the total

charge density already to its own effective potential therefore causing a self-interaction

error.

The antisymmetry problem was circumvented in 1930 by Fock [4] who suggested using

an already antisymmetric Slater determinant as a trial function for the Rayleigh-Ritz

variational principle. Assuming again, as an approximation for the N-particle Hamilto-

nian, a sum of effective one-particle Hamiltonians leads then via the variational principle

to the Hartree-Fock equations [5, 6, 7]. The requirement of antisymmetry leads in ad-

dition to the classical Hartree term in the effective one-particle potential to a so called

exchange term. This contribution to the effective potential has no classical counter-

part. It depends beside the eigenstate which is considered on all other eigenstates of

the effective Hamiltonian and is a fully nonlocal contribution. The corresponding one

particle Schrödinger equation is a multidimensional integro-differential equation which

is in addition also nonlinear. The practical solution of these equations is done in a

self-consistent manner. One starts with a guess for the effective potential, solves then

the Hartree-Fock equations for the new one particle orbitals and constructs from those

a new effective potential. This cycle is iterated until self-consistency is reached. The

ideas of an effective one-particle Hamiltonian and a self-consistent solution originating

from these historical developments were later incorporated in the Kohn-Sham equations

of density functional theory.

When evaluating the total ground-state energy in the Hartree Fock approximation for

the one-particle orbitals of the free electron gas, the plane waves, the exchange term

in the Hartree Fock equations causes an additional energy contribution which is called

the exchange energy. It has the form Ex/N = 3e2kF
4π , where kF = (3π2n0)1/3. In order

to model exchange effects in interacting systems Slater suggested (1951,53) [8] to use

the exchange contribution of the homogeneous electron gas but to replace the constant

density n0 by the actual local density n(r) at the point r of the considered system. He

used then for his calculations this additional potential in the form vx(r) = α e2(3π2n(r))1/3

π

in a one-particle Schrödinger equation similar to the Hartree equations. To improve
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numerical results the constant α often was varied but this had the notion of a some-

what arbitrary choice for the potential and lead to the discussion whether or not it is

legitimate to work in an independent particle picture and if there is a unique effective

one electron potential that corresponds to the considered interacting system. Because

of the replacement of the constant density n0 by the actual local n(r), Slater’s Xα

method can be viewed as precursor of the concept of the Local Density Approximation

(LDA).

The contribution of Hohenberg and Kohn was to unify all these ideas and to give an

exact framework for the theory which is based on the Hohenberg-Kohn theorem [1].

The theorem states that the ground-state density of a system of N-interacting elec-

trons uniquely determines (to within an additive constant) the external potential of the

system. As a consequence of the theorem, it can be concluded that the ground-state

density completely determines all properties of the system such as the wavefunction,

ground-state and excited-state energies, response properties, etc. Because of this one-

to-one mapping, all the properties become then functionals of the ground state density.

The Hohenberg-Kohn theorem gives no practical guide how to construct these func-

tionals: it only ensures their uniqueness.

The one-to-one mapping between potentials and densities can be established for an ar-

bitrary particle-particle interaction, including a vanishing interaction, i.e. for a system

of non-interacting particles. This ensures the uniqueness of an effective one-particle

potential which corresponds to the ground-state density of the interacting system. The

publication of the proof in 1964 therefore stopped the discussion whether or not an

effective single particle potential is a legitimate concept. Since the theorem guarantees

the uniqueness of such a potential the focus was instead directed to the construction of

good approximations for the (correct) effective one-particle potential.
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1.1 Ground-state density functional theory

The static Hohenberg-Kohn theorem ensures that for every ground state density n(r)

which belongs to an interacting physical system of interest, there is an unique (if it

exists) effective external potential vS(r) for non-interacting particles with the same

ground state density n(r):

n(r) =
N∑

i=1

|φi(r)|2, (1.1)

where the orbitals φi(r) come from an effective one-particle Schrödinger equation with

the effective one-particle potential vS(r)
(
− h̄2

2m
∇2 + vS(r)

)
φi(r) = εi φi(r). (1.2)

The system of non-interacting particles (Kohn-Sham system) is an auxiliary mathe-

matical construct and the properties of this system like eigenfunctions and eigenvalues,

Green’s functions, response functions, etc. have a priori no direct physical meaning.

The exception is the ground state density which is, by construction, equivalent in both

systems, i.e. the interacting physical system of interest and the corresponding Kohn-

Sham system of ficticious non-interacting particles. The ground-state energy functional

is conventionally decomposed as

E[n] = TS[n] +
∫
d3r vext(r)n(r) + U [n] + EXC[n], (1.3)

where TS[n] is the kinetic energy functional for non-interacting electrons, the second

term is the contribution of the external potential (usually due to the nuclei). The

term U [n] is the classical Hartree energy and EXC[n] is the exchange-correlation energy

functional which remains as the only piece to be approximated in practical applica-

tions. By defining the exchange-correlation potential as a functional derivative of the

exchange-correlation energy functional

vXC[n](r) =
δ EXC[n]
δ n(r)

, (1.4)

a decomposition analogous to (1.3) can be obtained for the effective one-particle poten-

tial

vS(r) = vext(r) +
∫
d3r′

n(r′)
|r− r′| + vXC[n](r). (1.5)
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The effective potential vS is by virtue of the Hohenberg-Kohn theorem a functional of

the ground state density, so that eqns. (1.1,1.2, 1.5) have to be solved self-consistently.

Accurate approximations for the unknown piece EXC in the ground-state energy func-

tional (1.3), or because of (1.4) for the unknown vXC in the Kohn-Sham potential (1.5),

have been devised since the advent of the theory. Modern GGA’s typically predict

the ground-state energy of an electronic system with an error less than 0.3 eV, bond

lengths and angles are within 1% of experimental values and atomization energies typ-

ically have an absolute error of less than 0.3 eV [9], to mention just a few observable

properties. In addition (1.5) shows that vS[n](r) is a local potential, i.e. a multiplica-

tive operator. This results in connection with the self-consistency scheme to a moderate

scaling (∼ N3) when the number of atoms N is increased. Hence, compared to other

more expensive methods like configuration interaction or Møller-Plesset perturbation

theory, density functional theory has become the most popular choice in chemistry for

electronic structure calculations of medium sized and large systems.

1.2 Excitation energies in density functional theory

The Hohenberg-Kohn theorem ensures that every observable quantity of a physical

system of interest is a functional of its ground-state density. Therefore all electronic

excitation energies are also functionals of the ground-state density (e.g. E1[n0] for the

first excitation above the ground state). However, the theorem guarantees only the

uniqueness of such functionals but gives no practical guideline how to construct them.

In practice the most experience has been gained for the ground-state functional. Very

accurate approximations for this energy functional have been devised and have found

broad application in both physics and chemistry [10, 11].

In contrast to the developments for the ground-state energy functional very little is

known about the functionals for the excited states of the system under consideration.

Often the excitations of the auxiliary Kohn-Sham system are interpreted as physical

excitations, such as in the band structure of solids [12], but this has no rigorous foun-

dation and leads sometimes in practice to poor results especially for finite systems.

To date there are four distinct density functional based routes to excitation energies of



6

electronic systems which will be discussed briefly in the following sections.

1.2.1 ∆ SCF approach to excitation energies

In the perhaps oldest approach known as ∆SCF [13], differences between ground state

energies of excited configurations in the Kohn-Sham system are considered as approxi-

mation for the true excitation energies. For example the first excitation of the Beryllium

atom would in this approach be obtained by evaluating the ground state energy func-

tional at a self consistent density n1 which corresponds to the excited configuration

1s22s12p1 and subtracting the ground-state energy of the Beryllium atom, i.e.

∆SCF = E0[n1] − E0[n0] (1.6)

This is not quite correct since exchange and correlation pieces on the right hand side

are evaluated at different densities n1 and n0.

1.2.2 Ensemble DFT

Another approach to excitation energies in DFT is through ensemble density functional

theory [14, 15], where the ensemble density nensemble is a weighted sum of the ground-

state density and the density of the first excited-state

nensemble = w0 n0 + w1 n1 (1.7)

The weights have to be chosen as

w0 = η w1 = 1− η, η ≥ 1
2

(1.8)

to ensure that the ensemble density is normalized to N. The wi can be chosen equal, i.e.

η = 1/2, which is then called an equal ensemble or η can be adjusted by temperature

to give a thermal ensemble. The ensemble energy has the form

E(η) = (1− η)E0 + η E1 (1.9)

Note that (1.9) gives the ground-state energy for the choice η = 0. It follows from the

general Rayleigh-Ritz principle for ensembles that the total-energy functional has the
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variational properties

E(η)[nensemble] = E(η) (1.10)

and

E(η)[n] > E(η) for n(r) 6= nensemble(r) (1.11)

i.e. the exact ensemble energy E(η) can only be obtained for the exact ensemble density.

For all other densities the inequality in (1.11) is strictly obeyed. By subtracting now

E(η = 0) from (1.9) and dividing by η the first excitation energy can be calculated

1
η

(E(η)− E(η = 0)) = E1 − E0 (1.12)

This shows that the ensemble energy E(η) has to be known for only one value η with

η > 0 to obtain together with the ground state energy E(η = 0) the first excitation

energy. The scheme can be extended to ensembles of arbitrary size and to the case of

degenerate levels [14]. Very little, however, is known about the particular dependence of

the ensemble energy functional E(η)[n] on the parameter η and in practice the functional

is replaced by LDA or a commonly used GGA ground-state energy functional [11].

1.2.3 Görling-Levy perturbation theory

Another possibility for the calculation of excitation energies is perturbation theory in

the adiabatic coupling constant. The perturbation expansion starts with the Kohn-

Sham Hamiltonian and the Kohn-Sham Slater determinant as the unperturbed Hamil-

tonian and wavefunction respectively. Since the non-interacting Kohn-Sham system

and the corresponding interacting physical system have by construction the same den-

sity the perturbing Hamiltonian H1 cannot simply be the electron-electron interaction.

Turning on such an interaction would cause a density change in the system. In addition

to the electron-electron interaction, one has therefore to apply a compensating external

potential which ensures a fixed density for arbitrary values of the coupling constant

λ [16, 17]. The particular form of the perturbing Hamiltonian in this Görling-Levy

perturbation theory takes the form [18]

Hλ = H0 + λVee +
N∑

i=1

{
−λu(ri)− λvX(ri)− δEλ

C[n]
δn(ri)

}
(1.13)
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By using the scaling relation for the correlation energy functional the last term can be

expressed as

Eλ
C[n] = λ2EC[n1/λ] (1.14)

and since this is already second order in the coupling constant the perturbing Hamil-

tonian is, in first order in λ, given by

H1 = V̂ee − Û − V̂X (1.15)

Here the abbreviation Û =
∑N

i u(ri) and V̂X =
∑N

i vX(ri) was used. Ground state

and excited state energies at full coupling λ = 1 may then be obtained by a coupling

constant integration over the adiabatic connection parameter λ.

E0(λ = 1) = E0(λ = 0) +
∫ 1

0
dλ
dE0

dλ

Ei(λ = 1) = Ei(λ = 0) +
∫ 1

0
dλ
dEi

dλ
(1.16)

The difference of both are then an exact representation of the i-th excitation energy

Ωi(λ = 1) = Ei − E0 = εi − ε0 +
∫ 1

0
dλ

d

dλ
(Ei −E0) (1.17)

This can also be expressed in terms of matrix elements of the perturbing Hamiltonian

Ωi(λ = 1) = εi − ε0 + 〈 j |Vee − VX − VH | j 〉 − 〈 0 |Vee − VX − VH | 0 〉 (1.18)

1.2.4 Excitation energies from time-dependent DFT

The most popular density functional based approach to excitation energies is founded

on TDDFT, the time-dependent extension of the original ground-state formalism. A

recent calculation for the excitations of Chlorophyll α [19] shows that this scheme can be

successfully applied to systems of even biological interest. The method is based on the

fact that the frequency dependent density-density response of the physical system under

consideration has poles at the exact excitation energies. In the scheme as proposed

by Petersilka et al. [20], simple additive corrections shift the Kohn-Sham excitations

towards the true physical excitations. The method will be discussed in detail in section

1.4. First, however, a discussion of the underlying time-dependent density functional

formalism is necessary.
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1.3 Time-dependent density functional theory

Most physical and chemical systems of interest are not static at all, instead they exhibit

a highly dynamic behavior with frequently changing environments: complex scattering

processes, atoms and molecules in time-dependent electromagnetic fields, the breaking

and forming of chemical bonds, etc. All these examples require for their proper dy-

namical description, in principle, the full solution of the time-dependent many-particle

Schrödinger equation. Because of the success of the ground-state DFT formalism a

similar approach seems to be highly desirable for the general case of time-dependent

external potentials caused by the more realistic environments mentioned above.

The first extensions of the ground-state density functional formalism were taken by

Bartolotti (1981) [21] and Chakravarty (1979) [22]. In both cases the class of possible

time-dependent external potentials was restricted to rather special forms (potentials

periodic in time or potentials with a larger static and a smaller time-dependent part

to be treated in linear response). The most general result proven to date for the time-

dependent case is the Runge-Gross theorem [23]. It guarantees the existence of a one

to one map between time-dependent external potentials and time-dependent densities.

In particular it is shown that the time-dependent density of the system determines the

(in general) time-dependent external potential up to a purely time-dependent function.

This correspondence holds for an arbitrary particle-particle interaction especially for a

vanishing interaction. A given time-dependent density n(rt) of an interacting system

evolving under vext(rt) therefore uniquely determines the external potential vS(rt) of

non-interacting particles with the same density n(rt). The correspondence can, how-

ever, only be established if both systems evolve from a fixed initial many body state.

This has the consequence that the potentials vext(rt) and vS(rt) are not only functionals

of the time dependent density n(rt) but depend also parametrically on their fixed initial

many-body state Ψ and Φ. Similar to the static case it is then possible to formulate

time dependent Kohn-Sham equations containing the effective one particle potential

vS(rt). The TDKS equations take the form

ih̄
∂

∂t
φj(rt) =

(
− h̄

2∇2

2m
+ vS(rt)

)
φj(rt) (1.19)
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and the effective one particle potential may conventionally be written in the form

vS(rt) = vext(rt) +
∫
d3r′

n(r′t)
|r− r′| + vXC[n](rt) (1.20)

The time-dependent exchange correlation potential is defined to make eqns. (1.19)

and (1.20) exact but remains for practical applications the only unknown piece to be

approximated. With orbitals resulting from (1.19), the time-dependent density is then

constructed by

n(rt) =
N∑

j=1

|φj(rt)|2

The time-dependent Kohn-Sham scheme involves, however, contrary to the static case,

no self consistency cycle. Instead equation (1.19) describes only the propagation of the

chosen initial state in time.

To date most applications of the time-dependent Kohn-Sham formalism fall into the

linear response regime [10, 24, 25]. In addition to a static potential v0(r), a time-

dependent potential v1(rt) is switched on at time t1. The linear density response of the

interacting system

n1(rt) =
∫ ∞

t1
dt′

∫
d3r′ χ(rt, r′t′)v1(r′t′) (1.21)

exposed to this potential can then be calculated as the linear density response

n1(rt) =
∫ ∞

t1
dt′

∫
d3r′ χS(rt, r′t′)v

(1)
S (r′t′) (1.22)

of a system of non-interacting particles moving in an effective one particle potential.

The effective time dependent potential v(1)
S (rt) to first order in the perturbing potential

conventionally has the form

v
(1)
S (rt) = v1(rt) +

∫
d3r′

n1(r′t)
|r− r′| +

∫
dt′

∫
d3r′fXC[n0](rt, r′t′)n1(r′t′) (1.23)

The exchange-correlation kernel entering in (1.23) is defined as a functional derivative

of the time-dependent exchange correlation potential

fXC[n0](rt, r′t′) =
δvXC[n](rt)
δn(r′t′)

|n=n0 (1.24)
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and the non-interacting response function can be expressed in terms of the Kohn-Sham

orbitals

χS(r, r′, ω) = 2
∑

j,k

(nk − nj)
φ∗k(r)φj(r)φ∗j (r

′)φk(r′)
ω − ωjk + iδ

(1.25)

Given an approximation for the kernel fXC, eqns. (1.22,1.23) may be used to self-

consistently calculate the linear density response of the interacting system to the applied

perturbation v1(rt).

The idea of calculating excitation energies within the linear response regime of time-

dependent density functional theory is based on the fact that the frequency-dependent

linear density response of an interacting system has poles at the exact excitation energies

of the system. Analogously the frequency dependent linear response function of a non-

interacting (Kohn-Sham) system has poles at the Kohn-Sham excitations ωij = εi− εj .
Combining (1.21) and (1.23) leads to a relation between the interacting χ and the non-

interacting response function χS. This is known as the Dyson-type equation for the

linear response functions

χ(r, r′, ω) = χS(r, r′, ω) +
∫
d3r′′

∫
d3r′′′χS(r, r′, ω)

×
(

1
|r′′ − r′′′| + fXC(r′′, r′′′, ω)

)
χ(r, r′, ω) (1.26)

Here the kernel fXC(r′′, r′′′, ω) is the Fourier transform of the functional derivative of

the time-dependent exchange correlation potential.

One way to extract excitation energies and oscillator strengths from (1.26) is to solve,

with some approximation for fXC, the integral equation directly. It is then necessary

to construct the non-interacting Kohn-Sham response function (1.25) from the corre-

sponding orbitals φj(r) and Kohn-Sham eigenvalues εj . Usually the response functions

are then expanded in a local basis set so that the solution of (1.26) becomes a matrix

inversion problem [26]. This approach is rapidly becoming a standard tool in quantum

chemistry and has been implemented in Gaussian 98 [19, 27, 28].

In practical applications different sources of errors enter in this direct solution of (1.26).

Beside the truncation in the basis-set expansion the sum over all orbitals in (1.25) has

to be truncated in some way or another. Even if these error sources are considered to
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be small, the Kohn-Sham orbitals and excitation energies ωjk = εj − εk which enter

in (1.25) have to be calculated with an approximate form of the Kohn-Sham potential.

Typical Kohn-Sham potentials resulting from an LDA or commonly used GGA energy

functional exhibit, however, an incorrect asymptotic behavior as r → ∞. This results

in a missing Rydberg series and only a finite number of states are actually bound. If

states and orbitals are simply missing they obviously cannot be included in the ap-

proximation for the Kohn-Sham response function which is then likely to cause poor

approximations for χS. An improvement of this situation can be achieved by using OEP

[32]-[37] potentials for which exchange is treated almost exactly, i.e. a Rydberg series is

available in this case. Another source of errors is the approximation for the kernel fXC.

Commonly used exchange correlation kernels typically ignore the frequency dependence

in fXC. The approximations have however a minor relative importance compared to ap-

proximations for vXC. [29]

1.4 Single pole approximation

A different approach to extract excitation energies from the integral equation (1.26)

starts from the observation that the integral operator on the right of (1.26) has to

become the unit operator at the exact excitations Ωij or equivalently
∫
d3r′

∫
d3r′′χS(r, r′, ω)

(
1

|r− r′′| + fXC(r′, r′′, ω)
)
ζ(r′′ω) = λ(ω) ζ(rω) (1.27)

where the eigenvalues λ(ω) have to satisfy λ(ω) = 1 as ω → Ωij . This constitutes an

exact condition for the true excitations of the considered physical system. Petersilka

et al. [20] use this condition to find resonances in the interacting response function

directly. But there is no definite way to determine the nature of the poles, i.e., to

distinguish for example between singlet and triplet excitations.

To actually calculate the excitation energies a Laurent expansion of (1.27) in the fre-

quency variable around one particular Kohn-Sham pole ωij can be performed. The

residuum A(ωij) of the pole ωij in the expansion for the eigenvalue

λ(ω) =
A(ωij)
ω − ωij

+B + (ω − ωij)C + ... (1.28)
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can then be obtained by a comparison with the corresponding Laurent expansion of

the left hand side of (1.27). And with the exact condition λ(Ωij) = 1 the expansion in

(1.28) yields

1 = λ(Ωij) =
A(ωij)

Ωij − ωij
+B + ...

=⇒ Ωij = ωij +A(ωij) + ... (1.29)

which is a correction in lowest order for the Kohn-Sham excitations towards the true

physical excitations. The expansion coefficient A in the Laurent series is given by

A(ω) = 2
∫
d3r

∫
d3r′φk(r)φ∗j (r)

(
1

|r− r′| + fXC(r, r′, ω)
)
φ∗k(r

′)φj(r′) (1.30)

which shows that beside an approximation for the exchange correlation kernel fXC, only

known quantities from a Kohn-Sham ground-state calculation are necessary to calculate

the shifts of the Kohn-Sham excitations towards the physical excitations.

The single pole approximation (SPA) has several uses. It provides a very quick method

for finding energy shifts without solving the full Dyson-type equation (1.26) or eigen-

value equation (1.27). The additive corrections for the Kohn-Sham excitations in (1.29)

lead to quite accurate results for the excitations of the considered physical system

[20],[30]. Perhaps more importantly, it allows us to see explicitly how approximations

to the kernel fXC influence the excitation shifts, and to understand how different ap-

proximations work. For example it has recently been shown [31] that these additive

corrections for the excitations are equivalent to the energy corrections in first order

Görling-Levy perturbation theory.
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Chapter 2

Oscillator strengths from density functional theory

2.1 Oscillator strengths in atomic and molecular physics

When atomic or molecular systems interact with electromagnetic radiation, three dif-

ferent processes can appear. Similar to an oscillating classical charge distribution, an

atom can radiate spontaneously. This spontaneous emission causes in the system a

transition from an excited state to a state with lower energy. In an absorption process,

the energy of the absorbed radiation allows a transition from a state of lower energy to a

state of higher energy. And in the third possible process, stimulated emission, photons

are emitted under the influence of an applied radiation field. All these processes can

be characterized by the experimental accessible transition rates.

In a classical treatment of the electromagnetic field the time-dependent vector potential

enters in the Hamiltonian. For the case of a weak radiation field, only linear terms in

the vector potential need to be kept. The state of the system can then be expanded in

the complete set of the eigenstates of the unperturbed Hamiltonian

Ψ(r, t) =
∑

k

ck(t)ψk(r) (2.1)

The time dependent coefficients may be evaluated for the case of absorption in first

order perturbation theory, yielding [7]

|c(1)
b (t)|2 = 2π

[
eA0(ωab)

m

]2

|〈ψb | eik·rε · ∇ |ψa 〉|2 t (2.2)

In an ensemble of equivalent atomic or molecular systems under the same external

conditions the probability |c(1)
b (t)|2 can be interpreted as the percentage of systems in

the ensemble in the state b. The resulting probability (2.2) from first oder perturbation

theory increases for small t linear with time so that the transition rate for absorption,

i.e. the rate of systems in the ensemble changing to state b, can be defined as

Wba =
d

dt
|c(1)

b (t)|2 = 2π
[
eA0(ωab)

m

]2

|〈ψb | eik·rε · ∇ |ψa 〉|2 (2.3)
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In the dipole approximation (k · r) ¿ 1 the series expansion of the exponent in (2.3)

can be truncated after the constant term and one can use then the Heisenberg equation

of motion to rewrite the matrix element

Mba ≈ ε · 〈ψb |∇ |ψa 〉 = ε · im
h̄
〈ψb | ṙ |ψa 〉 =

m

h̄2 (Ea −Eb) ε · 〈ψb | r |ψa 〉 (2.4)

Expressions similar to (2.3) may be obtained for spontaneous and stimulated emission.

In every case, the transition rate is proportional to the dipole matrix element in (2.4).

For the discussion of intensities it is therefore convenient to introduce a dimensionless

quantity fba called oscillator strength

fba =
2mωba

3h̄
|〈ψb | r |ψa 〉|2 (2.5)

The oscillator strength characterizes the intensity of a transition between two states

a and b. From the definition it is clear that fba > 0 for absorption and fba < 0 for

emission. It can be shown that the fba obey a sum rule due to Thomas, Reiche and

Kuhn

∑
a

fba = 1 (2.6)

where the sum extends over all levels of the system including the continuum states.

The definition allows us to rewrite the expressions for the transition rates of the system

yielding, e.g., for spontaneous emission

W s
ba =

2ω2
ba

mc3

(
e2

4πε0

)
|fba| (2.7)

A quantity of interest related to the spontaneous emission is the lifetime of a level. If

an atom or molecule is in an excited state and no external radiation field is applied,

the only process which allows a transition to a state of lower energy is the spontaneous

emission. The rate of change for a number of atoms N(t) which are at time t in a

particular level b is given by

Ṅb(t) = Nb(t)
∑

k

W s
kb (2.8)

Since spontaneous emission is only possible to states of lower energy where the decay

is allowed by the selection rule the summation in k extends only over these states.
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Integrating this and relating the number of atoms at time t to the number at t = 0 by

N(t) = N(t = 0) exp(−t/τb) (2.9)

the life-time or half-life of the level b can then be introduced

τ−1
b =

∑

k

W s
kb (2.10)

In cases where the spontaneous emission to lower states is forbidden by the selection

rules, the sum on the right hand side becomes zero yielding in the dipole approximation

an infinite lifetime for this state. The simplest example for this would be the 2s level

in atomic hydrogen. Here only higher order effects, e.g. simultaneous emission of two

or more photons cause a finite lifetime for the level (see ref [7]).

The polarizability of atoms or molecules [38, 39] is a response property which is a

measure for the induced dipole moment that the atom or molecule acquires when applied

to an electric field. The induced dipole moment µz contains the permanent dipole

moment of the atom or molecule (if there is one) and contributions induced by the

electric field. It may be written as

µz = µ0,z + αzz E +
1
2
βzzz E E + ... (2.11)

For simplicity, the induced moment µz is assumed to be parallel to the applied field Ez in

z-direction. In general, the electric field and the induced dipole moment have different

spatial directions so that the coefficients in (2.11) become tensors of n-th order. The

coefficient α is called polarizability and β is the first hyperpolarizability. The static

polarizability for a system in state m can be obtained from standard perturbation

theory [7]

α = 2e2
∑

n

n 6=m

|〈ψn | z |ψm 〉|2
En −Em

(2.12)

And since this expression contains the expectation value of the dipole operator it can

be expressed in terms of the oscillator strengths in (2.5)

α =
3e2h̄
m

∑
n

n6=m

fnm

(En − Em)2
(2.13)
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In general, however, the applied electric field is frequency dependent, so that polar-

izabilities and hyperpolarizabilities in (2.11) also become functions of the frequency

variable. In this case, the response property α(ω) has to be considered in first order

time-dependent perturbation theory, or its equivalent the linear response formalism

discussed in previous sections. In terms of the linear density response (1.22) of the

considered atom or molecule, the frequency-dependent polarizability may be expressed

as [40]

α(ω) = − 2
E

∫
d3r z n1(rω) = − 2

E
∫
d3r

∫
d3r′ z χ(r, r′, ω) v1(r′ ω) (2.14)

For particular frequencies atoms and molecules can absorb radiation and photoionize

an electron. The polarizability (2.14) is in this case complex and the imaginary part

gives the cross section for the photoionization [38]

σ(ω) =
4πω
c
Im(α(ω) ) (2.15)

The photoionization cross section obeys the f-sum rule [41]

∫ ∞

0
σ(ω)dω =

2πZe2

mc
(2.16)

or in other words, the area under the cross section is proportional to the number Z of

electrons in the atom or molecule. This constraint is, in terms of the response func-

tions, equivalent to the Thomas-Reiche-Kuhn sum rule (2.6). As it will be seen in the

following sections, it is important that an approximation for the interacting response

function obeys this sum rule. If this constraint is not respected, oscillator strengths in

the spectrum are artificially added or removed and approximations for the transition

rates poorly represent the physical reality.

The above discussion shows that the knowledge of the oscillator strengths for an atomic

or molecular system allows us to determine the transition rates for absorption, spon-

taneous and stimulated emission and lifetimes of electronic levels as well as static po-

larizabilities. For the characterization of optical properties of atoms or molecules the

oscillator strengths play, therefore, an important role.
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2.2 Oscillator strengths from TDDFT

The definition for the oscillator strengths in the last section shows that the calculation

of these quantities involves knowledge of both the excitation energies of the system and

the excited wavefunctions corresponding to the considered levels. Neither are available

in a ground state density functional formalism so that one has to take a different route

to access oscillator strengths in a DFT based scheme.

A starting point can be the linear response formalism discussed in the last chapter. In

practical calculations the oscillator strengths can be extracted from the pole strengths

of the interacting response function. A solution of the Dyson-type equation (1.26) can

be obtained by expanding the two point functions χ and χS in a localized basis set. The

problem of solving for the interacting response function reduces then to a matrix in-

version problem [26]. This method has recently been used by van Gisbergen et. al. [42].

2.3 The single pole approximation for oscillator strengths

2.3.1 Failures of a naive SPA

The promising results obtained in practical implementations of the SPA correction for

excitation energies [19, 20, 26, 28] encourage an investigation of the same approximation

for oscillator strengths. The oscillator strength belonging to a transition characterized

by the excitation Ωij is determined by the pole strength of the interacting response

function at this particular pole Ωij . The recipe for a correction would be at a first

glance, similar to the case of excitation energies, to start from the Kohn-Sham response

function and to systematically improve the Kohn-Sham pole strengths towards the

true pole strengths of the interacting response function. A correction for the oscillator

strengths can then be extracted from the corrected pole strengths in the approximation

for χ. However, it turns out that this naive approach leads to a form of χ which does

not conserve the sum rule for the photoionization cross section (2.16) or the equivalent

Thomas Reiche Kuhn sum (2.6) rule for the extracted oscillator strengths. In this sec-

tion, the violation is explicitly shown and the next section illustrates how to circumvent
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the failure of such a naive single pole approximation.

The starting point for the discussion is the Dyson-type equation for the response func-

tions (1.26)

χ̂(ω) = χ̂S(ω) + χ̂S(ω) F̂ (ω) χ̂(ω) (2.17)

All contributions are written in terms of operators so that no reference to an explicit

representation is necessary and the shorthand F ≡ FHXC is used. Solving (2.17) now

for χ̂−1 yields

χ̂(ω)−1 = χ̂S(ω)−1
[
1̂− χ̂S(ω) F̂ (ω)

]
(2.18)

The single pole approximation assumes a distinct separation of the poles in both re-

sponse functions so that in the vicinity of a particular pole only one term contributes

significantly. The Kohn-Sham response function (1.25) then becomes e.g.

χ̂SPA
S (ω) = 2(nk − nj)

Φ̂jk ⊗ Φ̂∗jk
ω − ωjk + iδ

≡ Âjk

ω − ωjk + iδ
(2.19)

Inserting this in (2.18) gives

χ̂(ω)−1 = (ω − ωjk + iδ) Â−1
jk

[
1̂− Âjk

ω − ωjk + iδ
F̂ (ω)

]

= Â−1
jk

[
(ω − ωjk + iδ)1̂− ÂjkF̂ (ω)

]
(2.20)

It can be shown that, if the kernel F is frequency independent, the operator ÂjkF̂ can

assumed to be diagonal in the spatial variables with a degenerate eigenvalue ajk. For

simplicity, we may anticipate this result and abbreviate ÂjkF̂ = ajk 1̂. The inverse of

(2.20) becomes then

χ̂SPA(ω) =
Âjk

ω − ωjk − ajk + iδ
(2.21)

The result shows that in the single pole approximation the position of the pole is

shifted by ajk, i.e. the Kohn-Sham excitation ωjk (pole of the Kohn-Sham response

function (2.19)) is corrected towards the physical excitation (pole of (2.21)). This is

the known result discussed in section 1.4. However, the pole strength which corresponds

to the transition Ωjk ' ωjk + ajk is equivalent to the pole strength of the Kohn-Sham
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response function (2.19) at the Kohn-Sham pole ωjk. In other words, the single pole

approximation corrects the Kohn-Sham excitation towards the physical excitation but

provides no correction for the pole strength of this excitation.

The expression in (2.21) holds for all Kohn-Sham poles provided a distinct separation

from the neighboring poles is assumed. The approximation for the interacting response

function then becomes

χ̂(ω) '
∑

jk

Âjk

ω − ωjk − ajk + iδ
(2.22)

This is now readily seen to violate the sum rule (2.16). Evaluating the photoionization

cross section (2.15) with (2.22) and integrating over frequency gives

∫ ∞

0
σ(ω)dω =

2πe2

c

∑

jk

(nj − nk) (ωjk + ajk) |〈 k | z | j 〉|2

=
2πe2 Z
mc

+
2πe2

c

∑

jk

(nj − nk) ajk |〈 k | z | j 〉|2 (2.23)

The shifts ajk in the excitation energies cause an additional second term on the right

hand side which violates the sum rule for the photoionization cross section (2.16).

The reason for this behavior of the approximation in (2.22) is that only the poles in

the response function are shifted while the pole strengths remain unchanged. While

turning on the shifts ajk, the pole strengths of the response function have to change in

a proper way to compensate the effects of the ajk. Hence, a more sophisticated single

pole approximation has to account for a correction of both the poles of the response

function and the corresponding pole strength.

2.3.2 Restoration of the sum-rule

To circumvent the violation of the sum rule caused by the naive SPA described in the

last section a single pole approximation has to start from the operator ωχ̂ instead of χ̂.

Again a distinct separation between the poles is assumed. The approximate form of

ω χS in the vicinity of the Kohn-Sham pole ωjk is then

ω χ̂S =
Ãjk

w − wjk + iδ
(2.24)
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or equivalently

χ̂S =
Ãjk

(w − wjk + iδ)ω
(2.25)

To guarantee that this form of χS has at the pole ωjk exactly the same residuum as

χ̂SPA
S the operator Ãjk has to be chosen as

lim
ω→ωjk

(ω − ωjk)χ̂S =
Ãjk

ωjk
≡ Âjk = lim

ω→ωjk
(ω − ωjk)χ̂SPA

S (2.26)

Note that (2.25) exhibits at a certain distance away from the pole a different frequency

dependence as (2.19). The relation in (2.26) ensures only that both are equivalent at

the pole. This is vital since a correction of the pole strength has to start from the right

point, i.e. the Kohn-Sham pole strength corresponding to ωjk. Proceeding now in a

similar fashion as in the last section and inserting (2.25) in the Dyson-type equation

for the response functions to obtain

χ̂(ω) =
Ãjk

(w − wjk − aik + iδ)ω
(2.27)

The pole strength at the physical excitation is then

αjk = lim
ω→ωjk+ajk

(ω − ωjk − ajk)χ(ω) =
Ãjk

wjk + aik
=

wjk

wjk + aik
Âjk (2.28)

which allows the formulation of the approximate interacting response function

χ̂(ω) '
∑

jk

wjk

wjk + aik

Âjk

ω − ωjk − ajk + iδ
(2.29)

The additional factor in this approximation for χ̂ ensures now that the sum rule is pre-

served. This can be seen by evaluating the photoionization cross section and integrating

over all frequencies

∫ ∞

0
σ(ω) dω =

2πe2

c

∑

jk

(nj − nk)
wjk

wjk + aik
(ωjk + ajk) |〈 k | z | j 〉|2

=
2πe2 Z
mc

(2.30)

The term (wjk + aik) is exactly cancelled which restores the sum rule. A legitimation

for the kind of operator for which the single pole approximation has to be performed

can only be given in terms of the sum rule. One can imagine starting with a different
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operator e.g. ωn χ. However, the only choice for n which preserves the sum rule is n = 1.

Although the pole strength is corrected with this modified single pole approximation

the oscillator strengths which can be extracted from (2.28) do not change

fphys
jk =

2
3

(ωjk + ajk)αjk =
2
3

(ωjk + ajk)
wjk

wjk + aik
Âjk

=
2
3
wjk Âjk =

2
3
wjk |〈 k | z | j 〉|2 ≡ fKS

jk (2.31)

It is therefore obvious why this approximation preserves the Thomas-Reiche-Kuhn sum

rule. To get an explicit correction formula for the f values it is necessary to include more

than one pole in the consideration from above. Work along these lines is in progress.

2.3.3 Spin decomposed SPA: Identifying the nature of excitations

The discussion so far has suppressed the spin-dependence of the response functions.

The inclusion of spin degrees of freedom allows us to identify the nature of excitations.

To illustrate this, consider (2.25) in spin form

χ̂Sσσ′ = δσσ′
Ãjk σσ′

(w − wjk + iδ)ω
(2.32)

Note that this is diagonal in spin space so that it can be treated as scalar. The Dyson-

type equation has now to be extended to a (2x2) matrix equation

χ̂σσ′(ω)−1 = χ̂Sσσ′(ω)−1
[
1̂− χ̂Sσσ′(ω) F̂σσ′(ω)

]
(2.33)

For spin saturated systems, F↑↑ = F↓↓ and F↑↑ = F↓↓ so that the insertion of (2.32) in

(2.33) gives

χ̂(ω)−1 = ω Â−1
jk σσ′




(ω − ωjk + iδ)− Âjk,↑↑F̂↑↑(ω) −Âjk,↑↓F̂↑↓(ω)

Âjk,↓↑F̂↓↑(ω) (ω − ωjk + iδ)− Âjk,↓↓F̂↓↓(ω)




Assuming now again a frequency independent kernel and abbreviating Ajk σσ′Fσσ′(ω) =

ajkσσ′ the inverse can be written

χ̂(ω) =
Âjk σσ′

((ω − ωjk + iδ − ajk ↑↑)2 − a2
jk ↑↓)ω




(ω − ωjk + iδ)− ajk ↑↑ ajk ↑↓

ajk,↑↓ (ω − ωjk + iδ)− ajk,↑↑






23

where we have used the fact that ajk,↑↑ = ajk,↓↓ and ajk,↓↑ = ajk,↓↑. The linear density-

response for the spin densities is now in terms of the spin decomposed response function

given by


n1,↑

n1,↓


 =



χ↑,↑ χ↑,↓

χ↓,↑ χ↓,↓






v1,↑

v1,↓


 (2.34)

Assume now the case of a spin independent perturbing potential v1(r) = v1,↑(r) =

v1,↓(r). The total linear density response n1(r) = n1,↑(r)+n1,↓(r) can then be obtained

from a scalar equation equivalent to (1.21) where the scalar linear response function χ

has obviously to be taken as sum over all matrix elements in (2.34), i.e.

χ̂(ω) =
∑

σσ′
χ̂σσ′(ω) =

2Âjk σσ′

(ω − ωjk − ajk ↑↑ − ajk ↑↓ + iδ)ω
(2.35)

In the result only the spin decomposed excitation energies

Ωjk = ωjk + ajk ↑↑ + ajk ↑↓ (2.36)

appear. Since the potential is spin-independent no spin-flip processes can occur and

the excitations (2.36) can be assigned unambiguously to either singlet-singlet transitions

or to triplet-triplet transitions (in both cases ∆S = 0). All singlet-triplet excitations

correspond to

Ωjk = ωjk + ajk ↑↑ − ajk ↑↓ (2.37)

and have in this case a vanishing pole strength, i.e. are missing in (2.35).

2.4 Comparison with Görling-Levy perturbation theory

A possible second approach for a correction of the Kohn-Sham oscillator strengths is

perturbation theory. The following considerations describe the first order correction

for oscillator strengths in ordinary Schrödinger perturbation theory. The result is ex-

pressed in terms of matrix elements of the perturbing Hamiltonian so that no specific

form for H1 is assumed. By setting H1 = Vee, the ordinary perturbation theory would

be obtained whereas a perturbation like (1.15) would correspond to Görling-Levy per-

turbation theory [18].
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The first order correction for the states in terms of the unperturbed Slater determinants

and energies is given by

Ψ(1)
n (r1, ..., rn) =

∑
m

m6=n

〈Φn(r1, ..., rn) |H1 |Φm(r1, ..., rn) 〉
E0

n −E0
m

Φm(r1, ..., rn)

=
∑
m

m6=n

MnmΦm (2.38)

where for ease of notation the abbreviationMmn for the coefficients has been introduced.

The first order correction for the energies with the above shorthand is simply

E(1)
n = Mnn (2.39)

To construct oscillator strengths, the dipole matrix elements in first order in the cou-

pling constant are necessary

〈Φn + λΨ(1)
n |

∑

j

zj |Φm + λΨ(1)
m 〉 (2.40)

Inserting this and the perturbation expansion for the excitation energies in the definition

of the oscillator strengths (2.5), the expansion for the transition rates becomes

fnm =
2
3
ωnm|〈Ψn |

∑

j

zj |Ψm 〉|2

=
2
3
(E0

n + λE(1)
n + λ2E(2)

n + ...−E0
m − λE(1)

m − λ2E(2)
m − ...)(anm + λbnm + ...)

=
2
3
(E0

n −E0
m)anm +

2
3
λ(E0

n − E0
m)bnm +

2
3
(E(1)

n −En(1))anm + ...

= f0
nm + λcnm + λ2dnm + ... (2.41)

With some algebra the correction matrix cnm for the first order correction can be

evaluated to give

cnm =
2
3
(E0

n − E0
m)





∑

ij




∑

l

l 6=n

(Aj
mlMnlA

i
nm +Aj

lmMnlA
i
mn)

+
∑

l

l 6=m

(Aj
lnMmlA

i
nm +Aj

nlMmlA
i
mn) +Aj

nmMnnA
i
mn −Aj

nmMmmA
i
mn








(2.42)
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Here the abbreviation Ai
nm = 〈Φn | zi |Φm 〉 has been used. By summing equation (2.41)

over all states n, and using the fact that the oscillator strengths for the physical system,

as well as the strengths for the Kohn-Sham system obey the sum rule, one obtains

∑
n

fnm =
∑
n

f0
nm + λ

∑
n

cnm + λ2
∑
n

dnm

1 = 1 + λ
∑
n

cnm + λ2
∑
n

dnm

0 = λ
∑
n

cnm + λ2
∑
n

dnm (2.43)

This is valid for arbitrary λ which leads to

∑
n

cnm = 0,
∑
n

dnm = 0, ... (2.44)

The same argument holds for the summation over m

∑
m

cnm = 0,
∑
m

dnm = 0, ... (2.45)

i.e. the sum of all elements in one row/column of the matrix cnm is zero. In addition

all diagonal elements of the matrix cnm are zero which can directly be seen from (2.42)

since in this case the energy prefactors vanish.

2.4.1 Special case: harmonic external potentials

In the last section all considerations have been general. Consider now as special example

harmonic oscillators. Φn is then a Slater determinant of oscillator orbitals and since

all oscillator eigenfunctions can be chosen to be real, the symmetry Ai
nm = Ai

mn can

be assumed. As a consequence, the first order correction for the oscillator strengths

is proportional to Ai
nm (see (2.42)). The dipole operator can then be expressed by

creation and annihilation operators for oscillator orbitals and one finally obtains

cnm ∝
∑

i

Ai
nm = 〈Φn |

∑

i

zi |Φm 〉 ∝ 〈Φn |
∑

i

(ai + a†i ) |Φm 〉

∝ αn δn,n+1 + βn δn,n−1 (2.46)
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The diagonal of cnm has already shown to be zero, so that the matrix cnm has in this

specific case the form

c =




0 −u 0

u 0 −v
v 0 −w

w 0
. . .

0
. . . . . .




(2.47)

Applying now the sum rule
∑

n cnm = 0 to the first column, i.e.
∑

n cn1 = 0 shows that

u = 0. Application of the sum rule to the second column and usage of u = −u = 0

leads then to v = 0. This argument can be iterated which shows that all entries of

the matrix are zero, i.e there is no first order correction in perturbation theory to the

oscillator strengths when the Slater determinant Φn is composed of oscillator orbitals.
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2.5 Numerical Results

2.5.1 Hooke’s atom

To investigate the relationship between the Kohn-Sham oscillator strengths and their

corresponding physical counterparts we have chosen a simple model system as a first

test where the physical oscillator strengths can be evaluated analytically. Our choice,

Hooke’s atom [43, 44], consists of two interacting electrons exposed to a harmonic ex-

ternal potential. The oscillator strengths for this interacting system are simply those

of a 3-D harmonic oscillator, since electromagnetic radiation couples in the dipole ap-

proximation only to the center of mass coordinate of the two electron system. In the

Schrödinger equation for the Hooke’s atom this coordinate however can be separated

yielding a simple 3-D harmonic oscillator and showing therefore that the oscillator

strengths for this system are equivalent to the strengths of the 3-D harmonic oscillator.

These are readily evaluated from the known wavefunctions and energies (see Appendix

D). The strengths for the 3-D oscillator are independent of the spring constant k as can

be seen by a simple scaling argument when inserting the orbitals and energies in the

definition of the oscillator strengths (2.5).

With the Kohn-Sham orbitals and energy eigenvalues, resulting from the exact Kohn-

Sham potential (see Appendix B) of Hooke’s atom with k = 1
4 , the expression in (2.5)

was evaluated to obtain the Kohn-Sham oscillator strengths. Table (2.1) shows that

Transition KS strengths 3-D oscillator % deviation

0s − > 0p 0.9982115 1 0.179
1s − > 0p -0.6647319 -0.6666667 0.291
1s − > 1p 1.6634432 1.6666667 0.194
2s − > 1p -1.3316362 -1.3333333 0.127
2s − > 2p 2.3308559 2.3333333 0.106
3s − > 2p -1.9986767 -2 0.066

Table 2.1: Oscillator strengths for the Kohn-Sham system of Hooke’s atom at k = 1
4

compared with the physical oscillator strengths of Hooke’s atom which are those of a
3-D harmonic oscillator.
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the Kohn-Sham oscillator strengths of Hooke’s atom deviate only within approximately

0.3% from their physical counterparts. In figure (2.1), the oscillator strength f of the

lowest allowed transition is plotted as a function of the non-interacting length scale

r0 = ( 4
k )(1/4). In the high density limit of Hooke’s atom (r0 → 0) the coulomb interac-

tion between the two electrons becomes negligible compared to the dominating external

potential so that the system behaves like two independent harmonic oscillators. In the

case of two independent oscillators however, the first order correction in perturbation

theory for the oscillator strengths vanishes (see argumentation in section 2.4.1). The

non-interacting length scale is now a good measure for the coupling parameter λ. The

almost parabolic shape of the curve in (2.1) for small values of r0 is therefore consistent

with a vanishing term to first order in λ. The fact that the correction vanishes to first

order in λ is also the reason that the oscillator strengths of the Kohn-Sham system of

Hooke’s atom at k = 1
4 are a very good approximation for their corresponding physical

values. By going out to low values of the spring constant which correspond to increas-

ing values for the length scale r0 and similar to an increasing coupling parameter λ,

the values for the oscillator strengths of the Kohn-Sham system begin to differ more

distinctly from their corresponding physical values.

0.0 0.5 1.0 1.5
0.9990

0.9995

1.0000

r0 = (4/k)(1/4)

fab

Figure 2.1: transition 0s → 0p (allowed absorption for 3DO)

The vanishing first order correction for the oscillator strengths is however an artifact

of the harmonic external potential, for general potentials there will be a first order
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correction and the oscillator strengths in the Kohn-Sham system can differ significantly

from their corresponding physical counterparts.

2.5.2 Helium isoelectronic series

For the calculation of oscillator strengths for the ions in the Helium isoelectronic series

(Z=2,4,10,20,80), the numerically exact Kohn-Sham potentials for the ions have been

employed [55]. The results summarized in the tables of this section show the Kohn-

Sham oscillator strengths for the lowest 5 transitions out of the ground state into p

levels. The Kohn-Sham oscillator strengths in Table 2.2 are compared with accurate

nonrelativistic variational calculations from Ref. [51]. Similar to the spring constant in

transition KS He KS Be2+ KS Ne8+

1s − > 2p 0.32429 0.27617 0.60824 0.55156 0.75183 0.72263
1s − > 3p 0.08473 0.07343 0.13359 0.12685 0.15070 0.14916
1s − > 4p 0.03407 0.02986 0.05099 0.04923 0.05610 0.05597
1s − > 5p 0.01708 0.01504 0.02494 0.02427 0.02712 0.02719
1s − > 6p 0.00976 0.00863 0.01408 0.01377 0.01522 0.01530

mean abs. dev. 14.7% 4.8% 1.2%

Table 2.2: Oscillator strengths for the Kohn-Sham (KS) system of several ions in the
Helium isoelectronic series. Lit. values taken from Ref. [51].

the case of Hooke’s atom is here the nuclear charge Z the parameter, which models the

adiabatic connection between interacting and noninteracting system. For Z →∞, the

coulomb attraction of the core becomes dominant compared to the electron-electron

repulsion, so that the electrons become essentially non-interacting in this limit. This

is reflected in the fact that the oscillator strengths of the two-electron systems in the

isoelectronic series approach twice the corresponding value of the hydrogen atom (i.e.

non-interacting system) for increasing values of Z. The plot of the f-values as function

of 1/Z illustrates this behavior. The Kohn-Sham oscillator strengths in the Kohn-Sham

system lie always above but are approaching their physical counterparts while reaching

the hydrogen limit as 1/Z → 0. (For a calculation of hydrogenic oscillator strengths

see Appendix C).
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transition Ca18+ Hg78+ 2fab of Hydrogen

1s − > 2p 0.79900 0.82253 0.83239
1s − > 3p 0.15533 0.15736 0.15820
1s − > 4p 0.05729 0.05779 0.05798
1s − > 5p 0.02761 0.02780 0.02788
1s − > 6p 0.01547 0.01556 0.01560

Table 2.3: Oscillator strengths for the Kohn-Sham system (KS) of several ions in the
Helium isoelectronic series. Lit. values taken from Ref. [51]. The last column shows
the non-interacting limit (see Appendix C).

The calculation shows that the Kohn-Sham oscillator strengths are a good first

estimate for their physical counterparts. All calculations were, however, performed

with the exact Kohn-Sham potential which in realistic situations is only available in

an approximate form. Kohn-Sham potentials resulting from commonly used LDA or

GGA energy functionals exhibit the wrong asymptotic behavior which in turn causes

poor approximations or even missing higher lying Kohn-Sham eigenvalues and orbitals.

The oscillator strengths calculated from these approximate energies and orbitals are

then obviously inferior to the exact KS values. It will be useful to explore the effects

of approximations for the static Kohn-Sham potential on the oscillator strengths.
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Figure 2.2: Transition 1s → 2p for the isoelectronic series compared to KS values
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0.05

0.1

0.15

Lit.
KS
2 x Hydrogen

1/Z

fab

Figure 2.3: Transition 1s → 3p for the isoelectronic series compared to KS values
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Chapter 3

Conclusions and Outlook

3.1 New results

• We have presented a modified single pole approximation (SPA) for oscillator

strengths which respects the Thomas-Reiche-Kuhn sum rule.

• We show that the correct single pole approximation does not alter the Kohn-Sham

oscillator strengths.

• A spin-decomposed version of our SPA shows how to distinguish singlet and triplet

transitions.

• We have calculated the Kohn-Sham and the exact oscillator strengths for the

Hooke’s atom.

• The Kohn-Sham oscillator strengths for several ions (Z=2,4,10,20,80) of the He-

lium isoelectronic series have been reported.

• The consideration of oscillator strengths in GL perturbation theory resulted in

a first order correction expression. This result is for practical applications less

suited because it contains sums over all states (continuum included) which causes

difficulties in actually calculating these terms.

• The explicit form for the first order term allowed us, however, to prove that the

first order correction for the oscillator strengths vanishes for systems exposed to

harmonic external potentials.

3.2 Overall Conclusions

The Kohn-Sham oscillator strengths are an accurate first approximation to the exact

physical oscillator strengths of the considered physical system. This is, however, only

the case for the exact Kohn-Sham oscillator strengths. If approximate potentials, as in
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every practical application employed, are used, the resulting oscillator strengths will be

inferior to the exact Kohn-Sham values.

3.3 Work to be done

• It will be useful to consider simple ω-dependent models for the response functions,

in order to investigate the validity of the approximations when more than one pole

is considered. As a next step beyond a single pole approximation, the inclusion

of two poles has to be examined. Since the single pole approximation is exact

for infinitely separated poles, a double pole approximation will give a leading

order correction if the poles are not infinitely far apart but, are well separated in

the frequency domain. Similar to our modified single pole approximation, such a

double pole approximation has, as important constraint, to satisfy the sum rule.

• Further insight may be gained, if the interacting response function can be ex-

pressed in terms of the eigenfunctions (1.27) and matrix elements (1.30) which

appear in the single pole approximation to (1.26)

• Since all calculations, presented in this work, were done with the exact Kohn-

Sham potentials, it will be interesting to compare them to the corresponding

oscillator strengths which come from approximate potentials (e.g. LDA, GGA or

OEP). We expect poor results, given the poor quality of the orbital energies in

these approximations.

• It will be necessary to investigate, if the single pole approximation for the pole

strengths is exact to first order. In this case there is no correction term in the

parameter 1/Z, i.e. the slopes of the physical and KS curve in Fig. 2.2 and 2.3

are identical for 1/Z → 0. A judgment cannot be made reliably with the results

obtained so far.
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Appendix A

Basis set expansion for Hooke’s atom

The separation for the Schrödinger equation of Hooke’s atom yields for the radial part

of the relative coordinate the following radial equation

{
− 1
u2

∂

∂u
u2 ∂

∂u
+
l(l + 1)
u2

+
1
4
ku2 +

1
u

}
Rnl(u) = ERnl(u) (A.1)

This equation can be solved numerically e.g. by a basis-set expansion. One possible

choice for the basis functions are gaussians multiplied by a power in u.

Rnl(u) =
∑

j

cj
1

π3/4u
3/2
0

(
u

u0

)j

exp

(
− u2

2u2
0

)

=
∑

j

cj〈u | j 〉 (A.2)

〈u | j 〉 =
1

π3/4u
3/2
0

(
u

u0

)j

exp

(
− u2

2u2
0

)
, u0 =

√
2
ω

(A.3)

At the values k, for the spring constant of the external potential, for which an

analytical solution exists [43] this expansion collapses to a finite sum. It is therefore

expected, that for values of k where no analytical solution is available the series con-

verges rapidly, i.e. the expansion coefficients are expected to be sufficiently small for

big j, so that a truncation can be performed without loss of accuracy. The set has also

the advantage that all appearing matrix elements can be evaluated analytically:

• Overlap matrix element

〈m |n 〉 =
Γ

(
m+n+3

2

)

Γ
(

3
2

) (A.4)

• Kinetic energy

〈m | − 1
2
∇2

r |n 〉 = − ω

16

{
(m− n)2 − 2(m+ n)− 3

} Γ
(

m+n+1
2

)

Γ
(

3
2

) (A.5)



35

• Centrifugal barrier potential

〈m | l(l + 1)
2u2

|n 〉 = −ω
4
l(l + 1)

Γ
(

m+n+1
2

)

Γ
(

3
2

) (A.6)

• Oscillator potential

〈m | 1
2
k u2 |n 〉 =

ω

4

{
(m+ n)2 + 4(m+ n) + 3

} Γ
(

m+n+1
2

)

Γ
(

3
2

) (A.7)

• Particle-particle interaction

〈m | 1
u
|n 〉 =

(
ω

2

) 1
2 Γ

(
m+n+2

2

)

Γ
(

3
2

) (A.8)
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Appendix B

Sternheimer method and analytic form for the

Kohn-Sham potential of Hooke’s atom

For a system with two non-interacting electrons the ground-state density is simply given

by

n(r) =
2∑

i=1

|φi(r)|2 = 2|φ(r)|2 (B.1)

One can solve this for the orbital φ(r) and invert the Kohn-Sham equation to express

the effective one particle potential in terms of the ground state density. Some straight-

forward algebra leads to

vKS = E +
1

2φ(r)
∆φ(r)

= E − 1
2

(∇n(r)
2n(r)

)2

+
1
4

∆n(r)
n(r)

(B.2)

The two electron model system ”Hooke’s atom” can be solved analytically for an infinite

but discrete set of values for the spring constant k of the external potential [43]. The

ground state density at k = 1
4 is for example given by [44]

n(r) =
π
√

2π
4π5/2(5

√
π + 8)r

exp

(
−r

2

2

) [
7r + r3 +

8√
2π

r exp

(
−r

2

2

)

+4(1 + r2) erf
(
r√
2

)]
(B.3)

By inserting this result in the above relation (B.2) an analytical expression for the

Kohn-Sham potential of Hooke’s atom (k = 1
4) can be obtained

vKS(r) =
{

32 r2 (−1− 8 r2 + r4) + 8 e
r2

2

√
2π r (r3 (−45− 2 r2 + r4) + 4 (1− 5 r2

−7 r4 + r6) erf(
r√
2
)) + er

2
π (r4 (−210− 55 r2 + 4 r4 + r6) +

8 erf(
r√
2
) (r3 (−13− 43 r2 − r4 + r6) + 2 (−1 + 2 r2 − 8 r4 − 6 r6 + r8)

erf(
r√
2
)))

}
/

{
8π r2 (4

√
2
π
r + e

r2

2 (r (7 + r2) + 4 (1 + r2) erf(
r√
2
)))2

}

(B.4)
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Figure B.1: KS potential of Hooke’s atom compared with the 3D Oscillator potential

An asymptotic expression can be found in Ref. [57], and an exact expression for the

correlation potential is given in Ref. [56]. The Hartree and exchange potentials for

two electron systems are simply related and since the ground state density in (B.3) is

spherically symmetric both can be evaluated by an integral over the radial coordinate

vH(r) = −1
2
vX(r) =

∫
d3r′

n(r)
|r− r′| = 4π

∫
dr r2 n(r)

1
r>

(B.5)

vH(r) =
1

(8 + 5
√
π) r

{
16 erf(r)−

√
2

(
r + 12 erf(

r√
2
)
)

exp(−r
2

2
)

+2
√
π

(
2 r + erf(

r√
2
)

(
5− 2 r erf(

r√
2
)
))}

(B.6)
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Figure B.2: Hartree and exchange potential for Hooke’s atom
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Appendix C

Oscillator strengths for the hydrogen atom

Since the wavefunction in this particular case is known analytically [7]

ψ(r) = −




(
2Z
naµ

)3
(n− l − 1)!

2n [(n+ l)!]3





1/2

exp(−ρ/2) rl L2l+1
n+l (ρ)Ylm(θ, φ) (C.1)

where

ρ =
2Z
naµ

, aµ =
4πε0h̄2

µe2
(C.2)

the oscillator strengths fab = 2 ωab
3 |〈 a | z b 〉|2 may be evaluated exactly, yielding simple

fractions for the transition rates within the dipole approximation. The table below

gives the result for allowed transitions between the lowest s and p levels.

The calculations of the oscillator strengths for the hydrogen atom were performed with

MATHEMATICA [61]. The required Notebook can be retrieved from my webpage [62].

2p 3p 4p 5p 6p 7p 8p

1s -0.41620 -0.07910 -0.02899 -0.01394 -0.00780 -0.00481 -0.00318
2s 0 -0.43487 -0.10277 -0.04193 -0.02163 -0.01274 -0.00818
3s 0.04077 0 -0.48471 -0.12102 -0.05139 -0.02737 -0.01655
4s 0.00913 0.09675 0 -0.54415 -0.13812 -0.05965 -0.03227
5s 0.00364 0.02228 0.15872 0 -0.60776 -0.15488 -0.06737
6s 0.00185 0.00910 0.03701 0.22361 0 -0.67356 -0.17153
7s 0.00108 0.00474 0.01528 0.05248 0.29015 0 -0.74065
8s 0.00069 0.00282 0.00805 0.02180 0.06835 0.35770 0

Table C.1: Oscillator strengths for transitions in atomic hydrogen
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Appendix D

Oscillator strengths for the 3-D harmonic oscillator

Analogous to the case of atomic hydrogen, the 3-D oscillator is exactly solvable so that

the oscillator strengths can be evaluated analytically. The wavefunction of the oscillator

in spherical coordinates is given by [49, 50]

ψ(r) = C rl exp(−
√
k

2
r2) 1F1(−nr, l + 3/2;

√
kr2)Yl,m(θ, φ) (D.1)

Here, 1F1, is the hypergeometric function in the standard notation. The oscillator

has, in addition to the selection rules for atomic potentials, a further selection rule.

This is due to the fact that the dipole operator can be expressed in terms of creation

and annihilation operators for the oscillator quanta. Matrix elements of this operator

connect only states with ∆ (2n+ l) = ±1

fij =
2
3
ωij |〈 i | z | j 〉|2 =

2
3
ωij |〈 i | (a+ a†)

(4k)
1
4

| j 〉|2 (D.2)

The calculations of the oscillator strengths for the 3-D oscillator were performed with

MATHEMATICA [61]. The required Notebook can be retrieved from my webpage [62].

0p 1p 2p 3p 4p 5p 6p

0s -1 0 0 0 0 0 0
1s 2

3 -5
3 0 0 0 0 0

2s 0 4
3 -7

3 0 0 0 0
3s 0 0 2 -3 0 0 0
4s 0 0 0 8

3 -11
3 0 0

5s 0 0 0 0 10
3 -13

3 0
6s 0 0 0 0 0 4 -5
7s 0 0 0 0 0 0 14

3

Table D.1: Oscillator strengths for the 3-D harmonic oscillator
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Appendix E

Implementation of the SPA correction for excitation

energies

The correction of the Kohn-Sham excitation energies towards the excitations of the

corresponding physical system within the TDDFT approach are given by [20]

Ωjk = ωjk +Re(Mjk,jk) (E.1)

where the matrix elements Mjk,jk have the form

Mjk,jk = 2(nk − nj)
∫
d3r

∫
d3r′ φk(r)φ∗j (r)

×
(

1
|r− r′| + fXC(r, r′, ω)

)
φ∗k(r

′)φj(r′) (E.2)

In any practical calculation an approximation for the kernel fXC has to be made. A

particularly simple form can be obtained from the time dependent optimized effective

potential method [32]-[37]

fXC[n0](r, r, ω) = −2|∑k nkφk(r)φ∗k(r
′)|2

|r− r′|n0(r)n0(r′)
(E.3)

The result shows that the frequency dependence of the kernel is completely ignored in

this approach. For the case of a two electron systems treated within a TD exchange-only

theory, this becomes exact and can be further reduced to

fXC[n0](r, r, ω) = − 1
2|r− r′| (E.4)

Assuming, furthermore, the form

φn,l,m(r) = Rn(r)Y m
l (θ, φ) (E.5)

for the Kohn-Sham orbitals and using for the coulomb operator the expansion, in terms

of associated Legendre functions,

1
|r− r′| =

1
r>

∞∑

n=0

(
r<
r>

)n

Pn(cos(θ)) (E.6)
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the matrix elements in (E.2) can be written as

Mjk,jk = −1
2
(nk − nj)

∞∑

i=0

Ii
n,n′,l,l′ bi(l,m, l

′,m′) (E.7)

Here the bi are Slater coefficients (see Appendix F) and the integrals Ii
n,n′,l,l′ are given

by

Ii
n,n′,l,l′ =

∫ ∞

0
r2dr

∫ r

0
r′2dr′

(
r′

r

)i 1
r
Rnl(r), R∗n′l′(r), R

∗
nl(r

′), Rn′l′(r′)

+
∫ ∞

0
r2dr

∫ ∞

r
r′2dr′

(
r

r′

)i 1
r′
Rnl(r), R∗n′l′(r), R

∗
nl(r

′), Rn′l′(r′) (E.8)
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Appendix F

Integrals of the product of three spherical harmonics and

Slater coefficients

Integrals of the product of three spherical harmonics appear in the calculation of oscil-

lator strengths as well as in the calculation of matrix elements in perturbation theory.

Conventionally they can be written as Slater coefficients (see Ref. [48])

bk(l1,m1, l2,m2) =
4π

2k + 1

[∫
dΩY m2 ∗

l2
Y m2−m1

k Y m1
l1

]2

(F.1)

A simple way to evaluate these coefficients may be obtained by their relation to Clebsch-

Gordan coefficients

∫
dΩY m1

l1
Y m2

l2
Y m3

l3
= (−1)m3

(
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

) 1
2

〈 l1l200 | l30 〉〈 l1l2m1m2 | l3 −m3 〉

(F.2)

Using then the relation

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ) (F.3)

the Slater coefficients can finally be expressed as

bk(l1,m1, l2,m2) =
2l1 + 1
2l2 + 1

[〈 l1k00 | l20 〉〈 l1km1m2 −m1 | l2m2 〉]2 (F.4)
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