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Abstract

A thorough understanding of the scaling, energy, and density of the an atom with non-
interacting electrons is revealed. By further expanding Englert’s rate in which the elec-
trons fill the shells, y(N), sharp bounds for the energy and an exact energy density
are developed and the chemical potential and ionization energy are studied. The scaled
quantum corrections of this electronic system are explored and modeled as a sequence of
functions uniformly converging to the difference between Heilmann and Lieb’s hydrogenic
density, ρH(r), and an infinite Thomas-Fermi density. Also, implications of what may be
carried over to the real atom are discussed.

Supervised by: Kieron Burke, Department of Chemistry & Physics



Chapter 1

Introduction

1.1 Background

Originating in the 1920s, the Thomas-Fermi theory gave birth to DFT and was used
as an initial approximation for functionals [1]. By examining an electronic system as a
slowly varying homogeneous gas, the Thomas-Fermi approximation treats an electronic
system without the quantum effect of shell structure and becomes relatively exact as
the system becomes large [2]. The Thomas-Fermi theory provides computationally cheap
approximations due to its relatively simple structure. However through the improvement
upon the accuracy of Kohn-Sham self-consistent field theory (SCF), it is often only used in
particular cases with larger number of particles for which general gradient approximations,
Monte Carlo and Hartree-Fock methods are too costly [3].

Modern DFT instead has primarily expanded upon the Kohn-Sham SCF theory where
the Kohn-Sham equations map an interacting electronic system with some external po-
tential exactly to a new non-interacting electronic system with an effective potential
defined to reproduce the exact density accompanied by exchange and correlation energies
[4]. Exact functionals for the exchange and correlation energies are still unknown and
can only be approximated as of now. It follows that DFT has become an approach in
electronic structure theory where better approximations are continuously sought.

Although Kohn-Sham SCF theory has become widespread in DFT, Kohn and Sham
developed Kohn-Sham Green’s Function (GF) theory that does not use the Kohn-Sham
equations but instead improves approximations made by Thomas-Fermi theory. Using
semiclassical methods, such as the Wentzel-Kramers-Brillouin (WKB) approximation for
wavefunctions, to improve upon gradient expansion theory and complicated Green’s Func-
tions, Kohn-Sham GF theory provides highly accurate quantum corrections to Thomas-
Fermi approximations and a fundamentally different approach to traditional views of
Kohn-Sham SCF theory [5].

Kohn-Sham GF theory has lacked popularity in the development of DFT due to
successes of generalized gradient approximations [6], however recent improvements within
it have been constructed and quantum corrections have been further understood such that
closed forms for some non-interacting systems can be achieved [7]. Due to this promise
within these Kohn-Sham GF theory improvements, we study a simple electronic system
and develop a model for its density: the non-interacting atom.

The non-interacting atom as an electronic system stands very different from the real
atom, but some material we can obtain from the non-interacting atom should be able to
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provide us information for the real atom. First, the non-interacting atom has a −Z/r
potential just like the real atom and not the effective potential of the real atom, so
the Kohn-Sham equations cannot be simply applied to map information on the non-
interacting atom to the real atom. The orbitals of each of these atoms also fill in different
fashions which stands evident in the manner in which the real atom fills its 3p and its 4s
orbitals in succession while the non-interacting atom fills its 3d orbital after its 3p orbital.

Even so, some material from the non-interacting atom could help understand how to
approach the real atom, methodology of the real atom, or some results may be applicable
for both real and non-interacting atoms. The Thomas-Fermi density of both of the atoms
can be determined by

n (r) =
23/2

3π2

(
µ− Z

r

)3/2

for µ ≥ Z

r
(1.1)

with n(r) = 0 for µ < Z/r and where µ is a fixed chemical potential for each of the atoms
[1]. This indicates that each of the atom’s density will have a similar general structure
relative to its chemical potential and, as a result, its energy since the chemical potential
provides the same value as the ionization energy for an atom. Even so, there remains a
sharp distinctness in understanding the energy of each of these atoms. By Virial theorem
in classical mechanics that applies for the atom’s −Z/r potential [8], we have a simple
relation for the kinetic energy, T , and nuclear potential energy, U , for the non-interacting
atom,

2T = −U (1.2)

However, for the real atom, there exists a potential term for the electron-electron inter-
action in the system, Uee,

2T = −Uee − U (1.3)

Through this paper, we will examine the filling of the shells, the energy, chemical
potential, ionization energy, and the density of the non-interacting atom and accordingly
speculate as to what particular information can be translated to the real case. We will
expand upon Englert’s semiclassical theory for the non-interacting atom [9] to examine
the filling of the shells, the energy, chemical potential, and ionization energy of the
non-interacting atom similar to the manner in which Schwinger studied the real atom
using semiclassics [10]. Also, a model for the density of the non-interacting atom will
be obtained primarily by modeling the quantum correction that might be approximated
using semiclassical methods in Kohn-Sham GF theory at some future time. At present,
there is no formal derivation of those corrections. Regardless as to whether any of our
understanding of the non-interacting atom can be directly translated to the real atom,
if Kohn-Sham GF theory is developed for the non-interacting case to coincide with our
results, then similar theory can be applied to understand the real case.

1.2 Introductory Theory

Using a relatively simple but novel approach with semiclassics, Englert derives the fol-
lowing expression for the binding energy of a doubly occupied atom with non-interacting
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electrons, −E,

−E = Z2
(
y − 1

2
+ ϕ (y)

)
(1.4)

where

y3 − 1

4
y =

3

2
N, (1.5)

〈y〉 = y −
⌊
y +

1

2

⌋
(1.6)

and

ϕ (y) :=
(
〈y〉2 − 1

4

)
y − 2

3
〈y〉

(y − 〈y〉)2 (1.7)

with bxc denoting the greatest integer less than x [9]. This Coloumb energy is a continuous
function of y, however it is not continuously differentiable due to cusps where the valence
shell is filled, e.g. N = 2, 10, 28, 60, . . .. This representation for −E has a very similar
structure to a direct calculation by summing up the energy of each shell,

−E =
M−1∑
n=1

n−1∑
l=0

Z2

n2
(2l + 1) + Eval = Z2(M − 1) + Eval (1.8)

where Mth shell is the valence shell, which has an energy −Eval.
By fixing a finite chemical potential µ = −Z/rF that is satisfied at a distance rF , we

can obtain a particular Thomas-Fermi density for the non-interacting atom from Eq.(1.1)
for 0 ≤ r ≤ rF ,

nTFZ (r) =
(2Z)3/2

3π2

(
1

r
− 1

rF

)3/2

(1.9)

with nTFZ = 0 for r > rF . From here, the fixed distance rF can be determined to satisfy
the normalization condition of the density,

rF = 21/332/3Z−1/3 (1.10)

However, before working with this Thomas-Fermi density and other functions at the
atomic level, let us scale the atom appropriately. Since the atom has a size of Z−1/3 as
shown by Eq.(1.10), let us introduce a new variable x = Z1/3r so that xF = 21/332/3 =
Z1/3rF and Z2n (x) = ñ (r). For the finite Thomas-Fermi case, we have

nTF (x) =
23/2

3π2

(
1

x
− 1

xF

)3/2

. (1.11)

with nTF (x) = 0 elsewhere. Thus the approximate radius of any finite non-interacting
atom is then xF using our new scaling. Likewise, we can scale the radial densities,

4πZ4/3x2n (x) = 4πr2ñ (r) . (1.12)
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From here, all atomic densities will assume this scaling, including the exact density for a
non-interacting atom with M fully-occupied shells, which can be computing using a sum
of radial functions [4],

n(x) = 2
M∑
k=1

k−1∑
l=0

1

4π
(2l + 1) |Rk,l(x)|2 (1.13)

where

Rk,l(x) = Z

√√√√(2

k

)3 (k − l − 1)!

2k(k + l)!
e−ρ/2ρlL2l+1

k−l−1(ρ) (1.14)

ρ =
2Z2/3

k
x (1.15)

and Lmn are associated Laguerre polynomials.

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

Thomas-Fermi
Neon
Argon

Figure 1.1: The exact Radial densities of non-interacting Neon and Argon plotted with
the Thomas-Fermi approximation, nTF (x), on the scale x = Z1/3r
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Chapter 2

Theory and Illustration

2.1 Expanding y (N) and ϕ

Englert approximates the value of y as it appears in Eq.(1.5) as a function of N using
the series

y (N) =
(

3

2
N
)1/3

+
1

12

(
3

2
N
)−1/3

+ · · · (2.1)

with the following terms alternating in sign. However, the exact value of y as a function
of N can be solved from Cardan’s cubic formula,

y (N) =
(

3

4
N
)1/3


1 +

√
1− 1

972N2

1/3

+

1−
√

1− 1

972N2

1/3
 . (2.2)

Computing a Taylor series for this solution, we have the following series expansion for
y (N),

y (N) =
∞∑
k=0

ak

(
3

2
N
)pk

(2.3)

with pk = 1/2−k−(−1/6)k for k = 0, 1, 2, . . . and the first few constants of {ak} provided
in the Appendix with a0 and a1 consistent with Englert’s first two terms provided by
Eq.(2.1).

It is key to note that y − 1
2

gives the value of how many shells of the atom have been

filled for a given N , which could even be a fractional particle number. So, the
⌊
y + 1

2

⌋
th

shell is the valence shell,
⌊
y − 1

2

⌋
shells have been filled, and y (N) provides a continuous

form in which the shells of the non-interacting atom fill as electrons are added. Once
again, the shells of the real atom do not fill in this fashion since the non-interacting atom
has its own, distinct periodic table.

From here, let us translate how the shells fill as more electrons are added to the non-
interacting to how the shells fill in one particular non-interacting atom as the distance
from the nucleus, x, varies. Suppose a sphere of radius x is placed around the nucleus of
a non-interacting atom. We consider the atomic matter within the sphere as an ion in
its own right due to the fact there is no electron-electron repulsion and Coloumb energy
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is the only energy in this bounded system. Instead of having N electrons in its orbit,
our new atom has N

∫ x
0 n (x′) d3x′ electrons where n(x) is the density of the actual non-

interacting atom on a Z−1/3 scale. From here, we can arrive to an expression analogous
to Eq.(1.5) that assigns a value of y for this ion within a radius x and also an expression
for its energy,

y3 (x)− 1

4
y (x) =

3

2
N
∫ x

0
n (x′) d3x′ (2.4)

−E (x) = Z2
(
y (x)− 1

2
+ ϕ (y (x))

)
. (2.5)

This implicit function y(x), then, provides how many shells have been filled a distance x
from the nucleus, by(x) + 1/2c. Using Eq.(2.3), y(x) can be written as an explicit series
expansion in terms of x alone.

Englert derives an expansion for the oscillation term of the energy, ϕ, and, in turn, a
dominant piece of ϕ which is highly accurate for large y [9].

ϕ (y) =
(
〈y〉2 − 1

4

)1

y

∞∑
k=0

k + 3

3

(
〈y〉
y

)k (2.6)

ϕ (y) =
(
〈y〉2 − 1

4

)(
1

y
+ · · ·

)
. (2.7)

ϕ itself may not be periodic, however it does have an element of periodicity in 〈y〉, which
allows us to further expand ϕ using Fourier series. This brings us to the following smooth
expansion of ϕ,

ϕ (y) =

(
−1

6
+
∞∑
n=0

(−1)n

n2π2
cos (2nπy)

)
·

 ∞∑
k=0

k + 3

3

1

yk+1

( ∞∑
nπ

sin (2nπy)

)k
with a dominant piece,(

−1

6
+
∞∑
n=0

(−1)n

n2π2
cos (2nπy)

)(
1

y
+ · · ·

)
. (2.8)

From here, the oscillation of the energy as it depends on y can be “denoised” by truncating
all or only high frequency oscillations, so that the energy has little oscillation as the
shells are filled. In turn, this essentially approximates the energy of the atom without
the quantum shell-structure and may very well correspond to energy obtained using a
Thomas-Fermi approximation, but we will not explore this possibility.

2.2 An Upper Bound for −E
Now, with an expression for y in terms of N , let us derive an upper bound for −E in
terms of Z for the neutral case N = Z. Note that the periodic term 〈y〉 as provided in

Eq.(1.6) ranges in the interval
[
−1

2
, 1

2

)
and, as a result, that ϕ is nonpositive,

ϕ (y) =
(
〈y〉2 − 1

4

)
y − 2

3
〈y〉

(y − 〈y〉)2
≤ 0. (2.9)
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Figure 2.1: The number of filled shells in a non-interacting atom, by(N) + 1/2c, as it de-
pends on the number of electrons in orbit, N , compared with the smooth approximations
y(N) + 1/2 and y(N)− 1/2.

When the shells are doubly occupied, 〈y〉 attains a value of −1
2

and, thus, we have
that ϕ (y) ≡ 0 and

−E ≥ Z2
(
y − 1

2

)
. (2.10)

by the non-positivity of ϕ. This expression is essentially the same as the energy provided
by Eq.(1.8) with Eval = 0 and M − 1 = y − 1

2
. Now, applying our series for y (N) in

Eq.(2.3), the binding energy for this case can be written as

−E ≥ Z2

( ∞∑
k=0

ak

(
3

2
N
)pk

− 1

2

)
. (2.11)

If we consider the neutral case when N = Z, then E can be written in terms of Z alone,
and we have the following sharp upper bound, −EU , for −E,

−EU (Z) =
∞∑
k=0

ak

(
3

2
Z
)pk+2

− 1

2
Z2. (2.12)

2.3 A Lower Bound for −E
In order to derive a lower bound for −E, we will minimize the oscillation term ϕ. Sub-
stituting y −

⌊
y + 1

2

⌋
for 〈y〉, we can expand ϕ as so,

ϕ (y) =
1

3
⌊
y + 1

2

⌋2y3 −

1 +
1

12
⌊
y + 1

2

⌋2
 y − 1

6
⌊
y + 1

2

⌋ +
2

3

⌊
y +

1

2

⌋
. (2.13)

Now, fix y, and let k = by + 1
2
c become its own independent variable. Let us further

generalize ϕ for this fixed y by defining the following multivariable function for k ∈ [−1
2
, 1

2
)

and y ≥ 0,

ϕ∗ (y, k) =
1

k2

(
y3

3
− y

12

)
− 1

6k
+

2

3
k − y. (2.14)
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From here, we can find a lower bound for ϕ by determining the minimum value that
ϕ∗ can attain among all k for any given y. This can be done by differentiating ϕ∗ with
respect to k and equating the expression to zero and then solving for a particular k̃ in
terms of y. This critical value k̃ must globally minimize ϕ∗ since ∂2ϕ∗/∂y2 ≥ 0 for k and
y in our domain.

∂ϕ∗

∂k

(
y, k̃

)
= 0 = − 2

k̃3

(
y3

3
− y

12

)
+

1

6k̃2
+

2

3
(2.15)

0 = k̃3 +
1

4
k̃ − y3 +

y

4
(2.16)

From here, we can once again use Cardan’s cubic formula to solve for k̃ in terms of y,
but this would provide a very convoluted expression due to the cubic and linear terms
of y. As an alternative, guess k̃ = y as a leading term for the solution to Eq.(2.16) and
then iteratively solve for the succeeding terms based on resultant error terms. Hence, the
following expansion for our critical value, k̃,

k =
∞∑
k=0

bky
1−2k. (2.17)

After computing k̃−2 and k̃−1 from Eq.(2.17), we can input this critical value of k into ϕ∗

and obtain a lower bound for ϕ and, as a result, a lower bound for −E in terms of y is
reached. Again, we can use the series expansion of y in terms of N with series expansion
for powers of y that can be derived from our expansion of y (N), and let N = Z.

ϕ ≥
∞∑
k=1

cky
1−2k (2.18)

−E ≥ Z2

(
y − 1

2

∞∑
k=1

cky
1−2k

)
(2.19)

−E ≥ Z2
∞∑
k=0

dkN
qk . (2.20)

where qk = (1 − 2k)/3. This brings us to a sharp lower bound for −E in terms of N
alone, −EL (N), to accompany −EU (N),

−EL (N) =
∞∑
k=0

dkZ
qk+2 (2.21)

Note that the first two terms of the upper and lower bounds coincide with one another
while the range of oscillation of −E grows like Z5/3 ∼ Z2y−1, which can be understood
as the difference between the upper and lower bounds or the range in which ϕ oscillates.
This oscillation of the energy occurs at a higher power of Z than it does for the real atom,
which is at Z4/3 [11].
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Figure 2.2: (1) is −EU − (−E). (2) is the dominant piece of ϕ as provided in Eq.(2.7).
(3) is −EU − (−EL). (4) is a zero line.

2.4 An Exact Energy Density

Now that we have studied how the energy of the non-interacting atom depends on the
particle number, let us examine the energy of just particular non-interacting atom. Dif-
ferentiating the energy of a particular non-interacting atom within a radius x, −E(x) in
Eq.(2.5) with respect to x, we have

−dE
dx

= Z2

(
1 +

dϕ

dy

)
dy

dx
. (2.22)

We can determine dy/dx by differentiating Eq.(2.4) implicitly and find dϕ/dy by differ-
entiating Eq.(1.7) and, from here, come to a simple expression for −dE/dx, the energy
density of the atom,

dy

dx
=

4πx2Nn (x)

2y2 (x)− 1
6

(2.23)

dϕ

dy
=

1⌊
y (x) + 1

2

⌋2 (y2 (x)− 1

12

)
− 1 (2.24)

−dE
dx

=
1

2
NZ2 4πx2n (x)⌊

y (x) + 1
2

⌋2 . (2.25)

Integrating both sides, then, provides an exact density functional for the energy of the
entire atom,

−E [n] =
1

2
NZ2

∫ n (x)⌊
y (x) + 1

2

⌋2d3x. (2.26)

Within this functional, we see a resemblance to the first expression for −E in Eq.(1.8).
The value of n in Eq.(1.8) designates which shell is being filled, which is essentially the
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Figure 2.3: −E (x) plotted along with −E (x) + Eval and Eval.

same as
⌊
y (x) + 1

2

⌋
, while summing 2l+ 1 and integrating Nn (x) each provide the filling

of these shells with electrons for their respective computations.
Using the Euler-Lagrange equation, we have that the universal function, F [n], which

provides a value for the kinetic energy and energy by electron-electron interaction of the
atom, can be expressed as follows,

F [n] =
∫ (

Z4/3

x
− NZ2

by(x) + 1/2c

)
n(x)d3x. (2.27)

Now, since we are working in particular with a non-interacting atom, there is no electron-
electron interaction, which indicates that this is a functional that provides the kinetic
energy. This functional is particularly interesting to compare to the Thomas-Fermi kinetic
energy functional,

T0[n] = As

∫
n5/3(x)d3x (2.28)

to test its accuracy on this simple non-interacting system.

2.5 Examining Chemical Potential & Ionization En-

ergy

Using µ = −Z/rF as the fixed chemical potential of the atom from Eq.(1.10), we can
approximate the chemical potential as follows,

µ = α0Z
4/3. (2.29)

where α0 = −(21/332/3)−1. For this non-interacting atom, the ionization energy and the
chemical potential should be the same quantity, so, let us study the ionization energy as
means to determine the accuracy of the Thomas-Fermi approximation for the chemical
potential.

The ionization for the kth shell of this atom can be written as

εk = − Z
2

2k2
. (2.30)
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Now, if we use the sharp inequality y(Ñ) − 1
2
≤ k = by(Ñ) + 1

2
c ≤ y(Ñ) + 1

2
where Ñ

is the number of electrons within the first k shells, we can construct the following lower
and upper bounds for the ionization energy, εUk and εLk respectively, with the magnitude
of the lower bound being greater due to the negativity of εk,

εLk = − Z2

2
(
y(Ñ)− 1

2

)2 = Z2
∞∑
j=0

αjÑ
sj (2.31)

εUk = − Z2

2
(
y(Ñ) + 1

2

)2 = Z2
∞∑
j=0

(−1)jαjÑ
sj . (2.32)

where sj = (−2− j)/3 for j = 0, 1, 2, . . .. Specifically for the valence Mth shell, we have
for the neutral case,

εLM =
∞∑
j=0

αjZ
sj+2 (2.33)

εUM =
∞∑
j=0

(−1)jαjZ
sj+2 (2.34)

with the first term α0Z
4/3 of each bound agreeing with the value of the Thomas-Fermi

chemical potential in Eq.(2.29). Note that both bounds for the ionization energy and
Thomas-Fermi approximation for the chemical potential differ by a linear term with
respect to Z.

The leading term of the ionization energy can be reached using the energy of the non-
interacting atom. Taking the difference in energies when only one electron is removed
with a constant −Z/r potential, we have,

E (Z,N)− E (Z,N − 1) = α0N
4/3 + . . . (2.35)

Computing the functional derivative of the density functional in Eq.(2.26) also obtains
the exact chemical potential as a step function,

δE

δn
= − Z2

2by(x) + 1
2
c2

= εby(x)+ 1
2
c (2.36)

which in fact confirms that our density functional is in fact correct.
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Chapter 3

Modeling Densities

3.1 Regions and Convergence of the Non-Interacting

Densities

As means to understand the non-interacting densities, let us model the exact densities
as a sequence of functions. Consider the sequence of functions {nM}, where nM(x) is
the density of a neutral non-interacting atom with M full, doubly occupied shells. Only
the index M will be used since Z can be determined by Eq.(1.5) with y(Z) = M + 1/2,
and so as Z → ∞, it follows that M → ∞. Then, let {nmodM (x)} be the corresponding
sequence of functions we will construct that model the exact sequence {nM(x)}.

Lieb approached the real atom by dividing it into five regions in which the density
takes different forms [2]. We will begin to examine the density of the non-interacting atom
in a similar fashion by defining three regions on our Z−1/3 scale in which the density takes
different form: the inner region, [0, β]; the intermediate region (β, η]; and the outer region,
(η,∞) where

β = 0.4632Z−2/3 and η =
(

1

xF
+ 0.512993Z−0.23058 + 0.590131Z−0.558412

)−1

. (3.1)

β is an approximation of the first nonzero intersection point of the Thomas-Fermi density,
nTF (x), and the exact density, n(x), while η is the second to last intersection point. The
beginning of the outer region, η does not scale nicely with the nucleus as the beginning
of the intermediate region, β, does, but instead the value of the Thomas-Fermi density
at that distance away, nTF (η), scales as a polynomial of Z. The inner region collapses
as Z → ∞ and, also, we have that the outer region vanishes since Z−1/3xF = rF → ∞
as Z → ∞. This indicates that the intermediate region should dominate as the atom
becomes large.

The non-interacting densities scale differently through each region, so different func-
tions will be used for each region by constructing {nmodM } in a piecewise format. There
may exist more than three regions in which the non-interacting atom scales differently,
but for modeling purposes, we will only consider these three. The inner and outer regions
will be constructed in a direct fashion while modeling the intermediate region will be
guided by Heilmann and Lieb’s hydrogenic density [12], ρH , which is is the limit function
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Figure 3.1: The inner, intermediate, and outer regions of the radial density of non-
interacting Helium labeled by 1, 2, and 3, respectively.

for the densities of these non-interacting atoms as Z →∞,

ρH(r) =

√
2

π2
r−3/2

 ∞∑
j=0

aj(8r)
−j − sin(

√
32r)

∞∑
j=1

bj(8r)
−j

+ cos(
√

32r)
∞∑
j=1

cj(8r)
−j−1/2

 (3.2)

on a scale length of Z−1 with respect to r and typical amplictude Z3. The infinite scaled
Thomas-Fermi function asymptotic to the hydrogenic density on this scaling is ρTF (x) =
23/2(3π2)−1x−3/2, which remains consistent with Eq.(1.5) as Z → ∞. It would likely be
difficult to study the convergence of the finite densities to the hydrogenic densities since
the Thomas-Fermi densities for the finite and infinite case are different and the Thomas-
Fermi density becomes exact as Z → ∞ [2]. So, let us examine how the difference
between non-interacting densities and Burke’s finite Thomas-Fermi density converge to
the difference between the hydrogenic density and its respective Thomas-Fermi density.
Define the sequence of functions {ξZ} by

ξM(x) :=
[
nM(Z−2/3x)− nTF (Z−2/3x)

]
Z1/3 (3.3)

which uniformly converge to the limit function

ξ∞(x) := ρH(x)− 23/2

3π2
x−3/2 (3.4)

as Z → ∞ on the intermediate region. Essentially, this sequence of functions, {ξM}, is
just the scaled quantum correction to the Thomas-Fermi density. Thus, to obtain the a
model for {nM(x)}, a model for {ξZ} will be constructed and then added to the Thomas-
Fermi density on the intermediate region. These functions scale like Z−1 due to a strong
resemblance of shell location in the quantum correction on this scale for different non-
interacting atoms as demonstrated in Fig.(3.2). It is important to note that on this Z−1

scaling, the inner region does not collapse but remains at a constant size since β ∼ Z−2/3

on a Z−1/3 scale while the intermediate region dominates the remainder of the domain
as Z becomes large.
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Figure 3.2: 4πx2ξ5(x) and 4πx2ξ8(x) plotted on their respective inner and intermedi-
ate regions along with their limit function 4πx2ξ∞(x) on a Z−1 length scale. A strong
similarity is shown as x→ 0.

3.2 Modeling the Inner Region

Since the external potential dominates the Schrödinger equation for distances near the
nucleus, Kato’s Cusp Condition holds for small δ [13],

dn

dx

∣∣∣
x=δ

= −2Z2/3n(δ). (3.5)

Provided with the initial condition n(0) = 2Z3/π as computed using Eq.(1.13), we now
can solve this simple first order linear homogeneous initial value problem to obtain the
following exponential function,

n(δ) =
2Z

π

M∑
k=1

1

k3
exp(−2Z2/3δ) (3.6)

This exponential function actually serves as a highly accurate approximation for the exact
density on the entire inner region, so we can define

nmodM (x) =
2Z

π

M∑
k=1

1

k3
exp(−2Z2/3x) (3.7)

for x ∈ [0.β].
Since β is an intersection point between the exact and Thomas-Fermi densities, it

would be ideal for the condition

lim
x→β−

[
nmodM (x)− nTF (x)

]
= 0 (3.8)

to be met. However, based off of this exponential construction, this is not the case,
though this limit is very small due to the high accuracy of the estimation.

This very same exponential function can be obtained simply by the dominant term
in the normalized sum of radial functions given by Eq.(1.13) as x → 0, which is the
first radial function multiplied by a sum of the inverse cubes of each shell number,
2
∑M
k=1(1/k

3)|R1,0|2.
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Figure 3.3: 4πx2nmod5 (x) plotted in the inner region as a model for 4πx2n5(x) as an
improvement over the Thomas-Fermi approximation.
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Figure 3.4: The relative difference 1− nmod5 (x)/n5(x) in the inner region.
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3.3 Modeling the Intermediate Region

Let us now model the density of the intermediate region of the atom such that when
scaled appropriately, it roughly approaches Heilmann and Lieb’s hydrogenic density, ρH

in Eq.(3.2), as Z → ∞. So, let us implement the same structure as ρH in our model as
so for x ∈ (β, η],

nmodM (x) = nTF (x) + Z−1/3A(x;Z) sin
[
Z1/3θ(x)− l(x; β; η)

]
+ Z1/3S(x) (3.9)

where

A(x;Z) =
3

8
√

2π2
x−5/2 exp(k1x

2 − k2Z
−2/3x−1) (3.10)

θ(x) = 2π
(

3

2

∫ x

0
nTF (x′)d3x′

)1/3

+ 6π

1−
(
π2

6

)1/3
x2nTF (x) (3.11)

S(x) =
1

32
x−2 d

dx

(
x2nTF (x)

)
+ k3n

TF (x) + k4x
−2
∫ x

0
nTF (x′)d3x′ (3.12)

l(x) =

(
θ(η) +

S(η)

A(η;Z)
− 2Mπ

)
(x− β)

(η − β)
+

(
θ(β) +

S(β)

A(β;Z)
− π

)
(x− η)

(β − η)
(3.13)

with k1 = 1/3, k2 = 2/5, k3 = 0.0013, k4 = 0.0143239 as roughly estimated coefficients.
The hydrogenic density closely reflects the exact finite densities as x → β → 0, so as
x→ β → 0, we appropriately have

nmodM (Z−2/3x)→
√

2

π2
r−3/2

[
(a0 + a1)(8r)

−j − sin(
√

32r)b1(8r)
−j
]

(3.14)

with constants provided by those in the hydrogenic density. The fact that the dominant
pieces of nmodM (Z−2/3x) only approach the dominant pieces of the hydrogenic density,
we have that the sequence {ξM} does not actually converge to {ξ∞} but only provides a
sense of ‘near convergence’. Only this near convergence is achieved for the sake of relative
simplicity of our model to only consider dominant pieces.

Both of A(x;Z) and S(x) are constructed based off of the structure of their respective
parts in the hydrogenic density and adjusted just to fit the sequence of functions {ξM}
appropriately. The amplitude, A(x;Z), uses the dominant x−5/2 piece along with an
exponential factor which approaches 1 as x→ 0. The adjustments for S(x) do not scale
with Z, which indicates that there is likely one unique function in the exact quantum
correction that applies for any M . All analytic constants for these two functions are
determined so that we have this element of ‘near convergence’ to ρH while numerical
constants are simply chosen for an appeared higher achieved accuracy.

The frequency of the oscillation, θ(x), is first motivated by the continuous form of
Englert’s rate in which the electrons fill the shells, y(x), as provided by Eq.(2.4), which
should give some basic form to the manner in which the shells appear as oscillations in
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each {ξM}. As x → 0, we have a major piece of θ(x) within an amproximation for y(x)
as the frequency,

y(x)→
(

3

2
Z
∫ x

0
nTF (x′)d3x′

)1/3

(3.15)

Only the dominant term of y(x) is used so that θ(x) can accurately scale like Z1/3 since
the remainder of a series expansion does not actually do so, which is evident in Eq.(2.3).
The appropriate adjustment to this estimation for the frequency is contributed by the
Thomas-Fermi radial density since it appears as though the actual shape of the density
that contributes to the offset of the shell oscillations in each {ξM} spawns from the
actual filling of shells in y(x). Once again, analytic coefficients are determined for ’near
convergence’ so that θ(x)→

√
32x. Like S(x), θ(x) does not scale with Z, and indicates

that there is likely one unique function for the angular frequency in the exact quantum
correction that applies for any M .

The alter in phase of the oscillation provided by l(x; β; η) is a Lagrange interpolation
line constructed under the conditions

lim
x→β+

[
nmodM (x)− nTF (x)

]
= 0 and lim

x→η−

[
nmodM (x)− nTF (x)

]
= 0 (3.16)

set by the notion that β and η are intersection points of the exact and Thomas-Fermi
densities. Since the condition set by Eq.(3.8) is nearly met, we then do not have nmodM

continuous at β though we do have a sense of ‘near continuity’ due to the high accuracy
of approximation in the inner region.

The estimated frequency θ(x)+l(x; η; β), though quite accurate, is only an estimate, so
as M grows, the approximation for the frequency differs from that of the exact frequency
of {ξM} and the two can become completely out of phase for a given distance away from
the nucleus. So, an approximation for the bound of the error in the intermediate region
for a given x∗ can be as large as 2A(x∗;Z), which is quite poor.
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Figure 3.5: 4πx2
(
nmod5 (Z−2/3x)− nTF (Z−2/3x)

)
Z1/3 plotted in the intermediate region

as a model for 4πx2ξ5(x).
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3.4 Modeling the Outer Region

Let us begin to examine the non-interacting density in the outer region through an
understanding of the radial functions for the outer shell provided in Eq.(1.13) as Z →∞.

2
M−1∑
l=0

1

4π
(2l + 1)|RM,l(ρ)|2 → 1

2π
|RM,0|2 (3.17)

→ 2Z3

πM6
e−ρ

(
L1
M−1(ρ)

)2
(3.18)

→ 22M−1Z4M/3

πM2M+3((M − 1)!)2
x2(M−1) exp

(
− 2

M
Z2/3x

)
(3.19)

We can also arrive to this asymptotic function using other quantum mechanical meth-
ods. When deviating far from the nucleus, the N -electron ground state wavefunction of
any atom collapses to the product of the square root of the density and the (N−1)-electron
ground state wave function. This results in a certain differential equation resembling the
Schrödinger equation that is solved by√

n(x)→ A
(
Z−1/3x

)β
exp

(
−αZ−1/3x

)
(3.20)

where α =
√

2I, β = Z/α − 1, and I is the first ionization potential [14][15]. The first
ionization energy as explored in Section 2.5 can be written as I = −εM = Z2/(2M2),
which indicates that α = Z/M and β = M − 1. This indicates that the expression in
Eq.(3.19) provided by radial functions then satisfies the condition in Eq.(3.20) with the
amplitude, A, scaling with both Z and M .

Using the structure of the expression in Eq.(3.19), we can construct a model for the
non-interacting density in the outer region by adding a second term within the exponential
function determined numerically,

nmodM (x) =
22M−1Z4M/3

πM2M+3((M − 1)!)2
x2(M−1) exp

(
− 2

M
Z2/3x+ γx−0.855Z0.065

)
(3.21)

γ = η0.855Z0.065
[

2

M
Z2/3 + log (ζ)

]
(3.22)

ζ =
25/2−2M

3π

(
1

η
− 1

xF

)3/2

M2M+3((M − 1)!)2Z−
4
3
Mη−2M+2 (3.23)

for x ∈ (η,∞). The value of γ has been chosen particularly so that

lim
x→η+

[
nmodM (x)− nTF (x)

]
= 0 (3.24)

which provides continuity of our model at x = η. It is important to note that by adding
this second term within the exponential that the argument within the exponential does
not scale in a simple fashion. Hence, this ‘outer region’ may actually embody two different
regions in the non-interacting atom that scale differently and combine the two of them
into what resembles a complete expression of the exact density on (η,∞).
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Figure 3.6: 4πx2nmod5 (x) plotted in the outer region as a model for 4πx2n5(x) as an
improvement over the Thomas-Fermi approximation.
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Figure 3.7: The relative difference 1− nmod5 (x)/n5(x) in the outer region.
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3.5 Complete Model

Now that each region has been modeled, we have a complete piecewise model for the
density of the non-interacting atom, {nmodM (x)}. Once again, exact convergence to the
hydrogenic density, ρH , does not occur, however we do have a notion of ‘near convergence’
since limZ→∞ n

mod
M (Z−2/3x) → ρH(x) as x → 0. Also, we cannot determine a bound for

the error of our model that would better than the error for the Thomas-Fermi density due
to the fact that the estimation for the frequency of the oscillation for {ξM} can become
completely out of phase in the intermediate region. Our model is continuous at x = η
and ‘nearly continuous’ at x = β since nM(β) ≈ nmodM (β). As for the normalization for
our model, we have on this particular scaling,

1 =
∫
nM(x)dx =

∫
nTF (x)dx ≈

∫
nmodM (x)dx (3.25)

because we have
∫ (
nTF (x)dx− nmodM (x)

)
≈ 0. For the most part, many of the important

properties of the exact density are met by the model, which include Kato’s cusp condition
at the nucleus and exponential decay for large x, but others are only ‘nearly’ met as means
to keep our model relatively simple in construction. In turn, this provides a relatively
accurate overall model, which holds well for the non-interacting Helium, which has the
largest deviation from its Thomas-Fermi approximation as shown in Fig.3.9, but not quite
for larger M where the oscillation of the model can become out of phase for particular
values of x.

It is important to note that there is a dependence on both M and Z in the model,
and that both variables can be expressed in terms of one another. So, if a closed form
of n∞(x) is achieved, it remains likely that some expressions in our model in terms of Z
may be found as more accurate expressions in terms of M and vice versa.
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Figure 3.8: The full piecewise model 4πx2nmod5 (x) plotted with the exact 4πx2n5(x) as
an improvement over the Thomas-Fermi approximation.
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Figure 3.9: The full piecewise model 4πx2nmod1 (x) plotted with the exact 4πx2n1(x) as
an improvement over Thomas-Fermi approximation.

21



Chapter 4

Summary

Overall, a thorough understanding of the non-interacting atom has been achieved. The
energy of the system has been very well-studied with upper and lower bounds, its os-
cillation expressed as a smooth expansion, and many approaches have been taken to
understanding the ionization energy and chemical potential. These results are rooted
within an expansion of Englert’s y(N), which has been exposed to be a very significant
factor in understanding the non-interacting atom. By extending y(N) to y(x) for just
one particular atom, an exact energy density has been derived in terms of the density and
has provided a guide for the structure for the frequency of the oscillation of the quantum
correction of the density.

Since such a simple function, y, has been so useful for the non-interacting atom, it
might seem appropriate to begin to study the real atom in the same fashion. However,
the real system does not fill one shell at a time as more electrons are added. So, the only
relatively similar function that can be for a real case would be a vector valued function
~y where the kth component provides how full the kth shell is. From here, it would likely
be difficult to develop a closed form for the energy of the real atom in terms of a y for
the real case. There could be usefulness, though, in a ~y(x) for the real case though as
it could definitely provide information about the density and the quantum correction for
the real atom as was the case with the non-interacting atom.

Once again, it is difficult to directly apply our results for the energy of the non-
interacting atom to the real atom due to the electron-electron repulsion. Even so, the
energies of both systems scale like Z7/3 with a ratio of leading constants of 1.48907 ≈ 3/2,
and with agreeing second terms [10]. This only further entices a search for similarities
between the two systems. The exact functional developed from the energy density of the
non-interacting atom may provide a fairly good approximation for the energy of the real
atom. The energy oscillation could even provide insight into the oscillation of the energy
in the real case. The two systems are inherently different, however this similarity between
the quantized energies of each might indicate more similarity than initially thought.

By studying three different regions, the density of the non-interacting atom has been
well-modeled. In the inner and outer regions, quantum conditions derived from the
Schrödinger equation are used to develop forms for the density. On the intermediate re-
gion, a more involved approach was taken using the quantum correction to the Thomas-
Fermi density and a limit function in the hydrogenic density. From a Kohn-Sham GF
perspective, understanding this quantum correction first provides a guide for a semiclas-
sical expansion that can provide even more accurate results than this model and can also
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gateway to results for the real atom. On top of this, the model also provides a quantum
correction of the density in terms of its Thomas-Fermi density, which could be particu-
larly helpful in examining the density of the real atom. The quantum correction to the
density of the real atom may have a similar expansion in terms of the real density due
to a similar structure in Thomas-Fermi densities for both atoms based on their chemcial
potentials as provided in Eq.(1.1).

Understanding both the energy and the density of the non-interacting atom provide
no direct results for the real atom which is primarily why the non-interacting atom has
been little studied as an electronic system. Now, with the energy thoroughly dealt with
and the density modeled, the methodology used in understanding the non-interacting
atom may provide insight or machinery that can be used for the real case, which could
have a significant impact in studying the real atom.
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Chapter 5

Appendix

A table of constants for Section 2.

k ak bk ck dk αk

0 1 −1
4

(
3
2

)1/3
−1

2

(
2
3

)2/3

1 1
12

−1
6

− 1
36

−1
2

−1
3

2 − 1
5184

− 1
72

− 7
1296

−1
6

(
2
3

)1/3
− 7

36

(
2
3

)1/3

3 1
62208

− 5
2592

− 19
15552

− 1
216

− 1
12

(
2
3

)2/3

4 − 1
6718464

− 1
3456

− 55
186624

− 1
3888

(
2
3

)2/3
− 1

54

5 5
322486272

− 5
124416

− 493
6718464

− 1
139968

(
2
3

)1/3
1

216

(
2
3

)1/3
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