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Today, Density Functional Theory (DFT) is one of the most widely applied of

the electronic structure methods. DFT lends itself to research and application in

all of the physical sciences. Known for its rigor, reliability, and efficiency, DFT

is the computational method of choice for many problems in quantum chemistry,

such as determination of reaction pathways and the kinetics and thermodynamics

of reactions. Presently, efforts are being made to apply DFT to systems of bio-

logical interest that would otherwise be unfeasible with traditional wavefunction

methods. Although much of present research in DFT development focuses on an

extension of the theory to treat time-dependence, this dissertation explores the

development of fundamental aspects of the ground state theory and applications

to systems of chemical, biological, and industrial interest. In particular, we ex-

tend the usual scaling relations used in density functional development to the low
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and high density limits and to scaling the densities of spin channels separately.

We also apply DFT to the study of models for organometallic catalysts used in

the dehydrogenation of alkanes to form alkenes and to the study of electronic

excitations in a few popular anti-cancer drugs.
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Chapter 1

Electronic Structure Methods

The power and applicability of computational chemistry is widely appreciated and

this is evidenced by the range of problems to which it is currently applied [1]. Spe-

cific problems include geometry optimizations, calculation of excitation energies,

and reactions on surfaces. Computational studies have complemented experimen-

tal studies for many years providing, for example, understanding, predictions,

and calculations on systems too expensive or dangerous to study experimentally.

The emergence of reliable, accurate methods and considerable computer power

has made it possible to study systems of increasing size. Traditionally, compu-

tational chemists use high-level wavefunction-based methods to give reasonable

descriptions and energetics of various systems. For large systems, it is extremely

difficult to perform these accurate calculations because of computational cost.

Consequently, there is a high demand for rigorous, but computationally feasible

methods that can effectively handle the many-body problem.

A promising and proven method widely used in computational chemistry since

the 1990s is density functional theory (DFT) [2, 3]. DFT produces good energetics

while scaling favorably with electron number. With the advent of DFT and

its implementation in computational chemistry, electronic structure calculations

on even larger systems are feasible. In addition, DFT provides a remarkable

balance between computational cost and accuracy. DFT is applied in many areas

including solid state physics where it was first implemented and used successfully

for decades. The impact of DFT was recognized with the award of the 1998 Nobel

prize in Chemistry to Walter Kohn for his development of the theory [4] and to
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John Pople [5] for his contributions to computational chemistry.

A particularly interesting and useful study that shows DFT’s power of pre-

dictability is the successful discovery of a new, more efficient catalyst for the

industrial production of ammonia [6].

There have been significant developments in the design of accurate functionals

since the 1990s, which has led to DFT being at the forefront of more accurate

methods being developed today. My research has been motivated largely by the

need for more accurate functionals. I shall return to a discussion of functionals

in section 1.2. First I will briefly review traditional molecular orbital methods.

1.1 Wavefunction-based Methods

There are a number of molecular orbital (MO) methods that are often used in

computational chemistry. I will briefly discuss Configuration Interaction, Møller-

Plesset Perturbation, and Coupled Cluster theories, which are applied later in

chapters 4 and 5.

Every electronic system can be described by a wavefunction according to the

Schrödinger equation (SE):

ĤΨ = EΨ (1.1)

where Ψ is the wavefunction for electrons and nuclei, E is the energy, and Ĥ is

the hamiltonian operator given by

H = −
∑

i

h̄2

2me

∇2
i −

∑

A

h̄2

2mA

∇2
A −

∑

i

∑

A

e2ZA

riA

+
∑

i<j

e2

rij

+
∑

A<B

e2ZAZB

rAB

(1.2)

h̄ is Planck’s constant divided by 2π, me and mA are the masses of the electrons

and nuclei, respectively. ∇2 is the Laplacian operator; rab is the inter-particle

separation of particles a and b; i, j run over electrons, and A, B run over the

nuclei. The wavefunction, Ψ, is then a function of 3N coordinates, where N is

the total number of particles, electrons and nuclei. Unless otherwise stated, we
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shall henceforth use atomic units (h̄ = e2 = me = 1), so that all energies are in

Hartrees and all lengths in Bohr radii.

As is evident, the motions of the particles are coupled and none moves in-

dependently of the other. This presents a very complicated problem, making it

impossible to solve exactly. For most systems, the problem can be simplified

somewhat by making the Born-Oppenheimer (BO) approximation. Since the nu-

clei move on a much longer time scale than the electrons, one can ignore the

kinetic energy of the nuclei when solving for the electrons, and treat an electronic

hamiltonian (the inter-nuclear repulsion also becomes a constant) for each point

on a potential energy surface [7].

Even within the BO approximation, it is a daunting task to solve the electronic

problem exactly for systems with more than a few electrons. Approximations

must be made to the wavefunction.

Hartree developed a self-consistent field (SCF) method wherein one makes

an initial guess of the wavefunctions of all occupied atomic orbitals (AOs) in a

system [8]. These are then used to construct one electron hamiltonian operators

which consist of the kinetic energy of the electrons, the electron-nuclear attrac-

tion potential, and an effective potential that approximates the electron-electron

repulsion (the Hartree potential). Solving the SE with these one-electron hamilto-

nians then provides an updated set of wavefunctions and the procedure is repeated

until there are no further changes in the updated wavefunctions up to a chosen

convergence. This method was extended to molecular systems by Roothaan.[9]

The Pauli exclusion principle states that the electronic wavefunction must be

antisymmetric under exchange of any two particles in the system.[10] One clever

and simple way to obtain a wavefunction that obeys this principle is to place

single-electron orbitals inside a Slater determinant. Fock later extended Hartree’s

SCF method to Slater determinants. These so-called Hartree-Fock (HF) MOs are

eigenfunctions of the set of one-electron hamiltonians. Although an improvement
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over Hartree’s method, the HF wavefunction cannot be exact because of its re-

stricted form as a Slater determinant. It contains exchange effects but completely

neglects any electron correlation.

A first way to introduce correlation is through a perturbative approach. When

one is dealing with a Slater determinant approximation, one may express the total

energy of a system as the sum of a kinetic energy of electrons, electron-nuclear

and nuclear-nuclear interaction energies, electron-electron repulsion energy, and

exchange and correlation energies. Møller-Plesset Perturbation theory is defined

by setting the exchange energy equal to the HF exchange energy and evaluating

the correlation energy from perturbation theory with the HF hamiltonian as the

zeroth order hamiltonian (Eqn. 1.3) [11, 12],

H = H(0) + λV (1.3)

where H(0) is the HF hamiltonian, λ is a dimensionless parameter that changes

in value from 0 to 1 and transforms H (0) into H, and V is a perturbing operator

that represents the potential due to electron-electron repulsion not included in

the HF potential:

V =
∑

µ<ν

1

rµν

−
∑

µ

V eff,HF
µ (1.4)

The method most frequently applied is perturbation up to second order (MP2).

Higher order MP theories are much more costly with very little improvement in

accuracy.

A further extension is to consider all excitations from the HF determinant,

called full configuration interaction (full CI). A full CI calculation with an infinite

basis is an exact solution to the non-relativistic, time- independent Schrödinger

equation within the BO approximation. Although no reoptimization of HF or-

bitals is required, it is still extremely computationally demanding to consider all

possible excitations for any reasonably sized system of more than 10 electrons [4].

One often considers a limited number of excitations to simplify the calculation.
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Most commonly used is CISD where only the complete set of single and double

excitations are considered.

Another popular method is coupled cluster theory [13, 14]. This arises from

expressing the full CI wavefunction as

Ψ = eT ΨHF (1.5)

T = T1 + T2 + ... + TN (1.6)

where T is the cluster operator, N is the number of electrons, and the Ti operators

give all possible determinants that have i excitations, e.g.

T2 =
occ.
∑

i<j

vir.
∑

a<b

tab
ij Ψab

ij (1.7)

where Ψab
ij is a slater determinant with excitations ij → ab. There are various

levels of this, depending on how many excitations are included. In our applica-

tion of the coupled cluster method in chapter 4, we consider single and double

excitations with triples treated non-iteratively (CCSD(T)).

These correlation MO methods are computationally very costly and scale

poorly with system size with the best one scaling as N 4, where N is the number of

electrons. In the next section we consider a method that is not only often as accu-

rate and reliable, but moreover is computationally less costly; this is particularly

important for systems with large numbers of electrons.

1.2 Density Functional Theory, The Method of Choice

It is clear that the external potential, that describes the interaction of the electrons

with the nuclei, determines the electronic properties of a system through the

Schrödinger equation. The Hohenberg-Kohn theorem [2] proves that the potential

is uniquely determined by the ground state electronic density; thus, either can

be used as the defining quantity. This is the foundation of Density Functional
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Theory. As the name suggests, DFT is based on the fact that all components of

the energy of a system can be exactly expressed as functionals of the electronic

density and, as such, rather than having to solve the highly-coupled SE for the

many-body wavefunction one needs only to determine the electronic density of

the system.

The practical power of DFT lies in the mapping of the interacting system

to a fictitious system of non-interacting electrons known as the Kohn-Sham (KS)

system. The KS system is defined to have the same ground state electronic density

as the true, fully interacting, physical system. The result is a set of single-particle

equations which are far simpler to solve than the highly correlated Schrödinger

equation.

In DFT, the wavefunction is given by a product of Kohn-Sham single particle

orbitals. The electronic Hamiltonian operator still consists of kinetic and potential

contributions,
{

−
1

2
∇i

2 + vS[n](r)
}

φi = εiφi (1.8)

but in DFT the break-down of the potential is different. The Kohn-Sham poten-

tial, vS, is composed of a Hartree potential (vH), an external potential (vext), and

all that remains is lumped into what is called the exchange-correlation potential

(vXC).

vS(r) = vH(r) + vext(r) + vXC(r) (1.9)

The Hartree potential is given by

vH(r) =
1

2

∫

d3r′
n(r′)

|r − r′|
(1.10)

and describes the electrostatic repulsion of the electrons. The external potential

uniquely determines the system and expresses the attraction between the nuclei

and the electrons and any external field that may be present. In practice, the

exchange-correlation potential, a functional of the ground-state density, must be
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approximated. If the exact vXC were known, the KS method would provide the

exact properties (energies, etc.) of the interacting system.

The electronic density, n(r), is obtained by summing over the occupied Kohn-

Sham orbitals, φi:

n(r) =
N
∑

i=1

|φi(r)|
2 (1.11)

and is, in principle, the exact density of the interacting system.

The total energy of the interacting electronic system is expressed as a sum of

functionals of the density (hence the name Density Functional Theory):

E[n] = TS[n] +
∫

d3r n(r)vext(r) + U [n] + EXC[n] (1.12)

TS is the kinetic energy of the KS system and differs from the kinetic energy, T ,

of the real system by the kinetic correlation energy TC:

TS = −
1

2

N
∑

i=1

∇2
i φi(r) (1.13)

The hartree energy is given by U :

U [n] =
∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′|
(1.14)

The exchange and correlation energies are defined together despite the fact that

the exact mathematical representation of the exchange energy is well known in

terms of a Fock-like expression. This is because there is a cancellation of errors

in approximations to the exchange-correlation term by defining the two together.

The exchange-correlation potential is defined as the functional derivative of the

exchange correlation energy with respect to the density:

vXC(r) =
δEXC

δn(r)
(1.15)

We note again that the theory is formally exact and would be practically so if

the functional dependence of EXC were known. To solve a problem, one need
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only approximate the exchange-correlation energy and solve equations 1.8 - 1.11

self consistently. For any given problem, the energy and its components are

expressed as functionals of the electronic density. A functional maps a function

to a number much like a function maps a number to a number. There are different

approximations for the exchange-correlation energy functional, EXC[n]. Typical

approximate functionals can be local, semi-local, non-local, or hybrid.

A local density functional depends only on the density at a particular point in

space and contains no information about neighboring points. This is the simplest

approximation that can be made. An example is the well-known and oft-used local

density approximation (LDA [3], also known to users of the popular GAUSSIAN

code [15, 16] as SVWN5). This local approximation is exact for a uniform electron

gas. The LDA functional works remarkably well despite its simplicity and is

extensively used in solid state physics, one of the largest fields where DFT is

applied.

Semi-local functionals contain information, not only about the density at a

certain point, but also about how the density changes near that point. Semi-

and non-local approximations give better descriptions and, consequently, better

energies for systems that are more rapidly varying. Generalized Gradient Ap-

proximations (GGAs) are semi-local. Examples of popular GGAs in quantum

chemistry are the PW91 [17] and PBE [18] functionals which are also often used

in solid state physics. Because they are non-empirical, they perform reliably and

robustly for a wide variety of systems.

Hybrid functionals represent the exchange energy by a mix of DFT and exact

exchange (Hartree Fock exchange). These are often empirical, but not always so

[19]. The very popular B3LYP functional [20, 21] which works well for chemical

systems is one such example.
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1.3 Formal Properties of Exact Functionals: Scaling

With the need for more accurate functional approximations to the exchange-

correlation energy, there is great interest in conditions that should be satisfied. If

functionals are designed to satisfy some exact conditions, then they will perform

better for a large range of problems. One method of testing the accuracy of

approximate functionals is to study their behavior under uniform scaling of the

electronic density. This method is central to the developmental projects discussed

in this thesis.

A scale factor, γ, is introduced which changes the length scale of the density

while maintaining normalization. Physically, this either stretches out (γ < 1) or

squeezes up (γ > 1) the density. The density scales according to

nγ(r) = γ3n(γr) (1.16)

The prefactor is defined to maintain normalization.

N =
∫

d3r n(r) =
∫

d3r γ3n(γr) =
∫

d3r′ n(r′) (1.17)

Figure 1.3 is a 1d cartoon of the H atom showing the original density, n(x),

and the density scaled by γ = 2 and by γ = 0.5, n1.5(x).

Performance of approximate functionals can then be tested for their ability to

reproduce exact scaling relations. It is straightforward to show that

TS[nγ ] = γ2TS[n] (1.18)

EX[nγ] = γEX[n] (1.19)

U [nγ ] = γU [n] (1.20)

Since the correlation energy functional is approximated, how it scales can-

not be determined exactly. It can, however, be constrained with the following
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Figure 1.1: Cartoon of the scaled, n2(x) (dashed line) & n0.5(x) (dotted line), and
unscaled, n(x) (solid line), densities of the H atom.

inequality [22]

EC[nγ ] > γEC[n] γ > 1 (1.21)

One can also derive the virial theorem [23] through scaling relations by noting

that small variations in a wavefunction that extremizes the expectation value of

the Hamiltonian, < Ĥ >, will give second order changes in the energy. Therefore,

a wavefunction scaled by a tiny factor will yield second order changes in < Ĥ >

and its first derivative with respect to γ is zero. Since the Hamiltonian is a sum of

kinetic and potential terms, their first derivatives with respect to γ will total zero

for some such small variation in the wavefunction. For γ = 1 in three dimensions

we get

2T =< r · ∇V > (1.22)

The virial theorem is satisfied by any eigenstate of the Hamiltonian, so it

is a good test of whether or not the problem is solved properly. Evaluating the

functionals on scaled densities and seeing how well they reproduce these conditions

is one way to test their performance.

Scaling is also related to the adiabatic connection [22] which provides a con-

tinuous link between the Kohn-Sham and physical systems. A coupling constant,
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λ, which is inversely proportional to γ, is introduced in the Hamiltonian in the

following way

Ĥλ = T̂ + λV̂ee + V̂ λ
ext (1.23)

The interaction between the electrons in the system is varied while the density

remains fixed. λ = 0 corresponds to the non-interacting Kohn-Sham system

and λ = 1 corresponds to the fully interacting, physical system. The external

potential depends implicitly on λ as it must adjust to keep the density fixed.

These are a few manifestations of the importance of scaling in DFT. In chapter

2 we generalize scaling to spin-scaling and show its usefulness for systems with

differences in spin densities.
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Chapter 2

A New Spin-Decomposition For Density

Functionals

The success of GGAs is attributed to their fulfillment of a number of exact con-

ditions. As a result, GGAs are accurate for a range of problems and this fact

revolutionized quantum chemistry.

A prominent area of research in DFT is functional development. Of primary

importance is understanding functional behavior as a means of improving present

approximations. One aspect of my own research has been to work towards defining

exact constraints and conditions that functionals should satisfy. Towards that

end, we derive exact relations in various limits and test the ability of functionals

to reproduce and satisfy these relations.

An accepted methodology for testing approximate functionals in DFT is co-

ordinate scaling. While uniform scaling of the electronic density is a well-studied

and fundamental property, scaling the density of each spin channel independently

(spin scaling) had not been previously explored.

Proper analysis of spin contributions through spin-decomposition of energies

aid in the improvement of DFT treatment of spin polarized systems. By improving

spin considerations in present functionals we hope to get better approximations

to the exchange-correlation functional. This will increase the accuracy of density

functional methods and calculations will become more practical for a number of

applications in which spin is important.
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We study the performance of existing spin density functionals on a few spin-

scaled atoms. This method highlights the limitations of present functional ap-

proximations and may be especially important for the treatment of systems for

which spin differences are important. These systems include spin-polarized sys-

tems such as half-metals, biradicals, and other magnetic systems. This study was

completed in collaboration with Rudolph Magyar [25].

2.1 Treatment of spin in DFT

Spin considerations are incorporated into approximate functionals by means of

spin DFT [26, 27]. While the total density is the determining factor in any

problem, approximate functionals are often more accurate when written in terms

of spin densities. The density can be written as a sum of spin densities, n↑ and

n↓, where n↑ is the electronic density of up spins only and n↓ is that of the down

spins.

n(r) = n↑(r) + n↓(r) (2.1)

It can be shown that the exchange component of the energy can be spin

decomposed in the following way

EX[n↑, n↓] =
1

2
(EX[2n↑] + EX[2n↓]) (2.2)

since exchange is only allowed between like spins. This allows for better treatment

of magnetized systems and overall more accurate approximations.

The analogous decomposition for correlation is not as simple.

In this chapter, we derive a spin-dependent virial theorem which follows from

the spin transformation given above. This has several uses . . . Like the usual

virial theorem,[23]

dEXC[nγ ]

dγ
= −

1

γ

∫

d3rn(r)r · ∇vXC[n](r) (2.3)
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that can be used to check the convergence of DFT calculations, the spin-dependent

virial theorem may be used to check the convergence of spin-density functional

calculations. It also provides a method for calculating the exact dependence of the

correlation energy on spin-density for model systems for which accurate Kohn-

Sham potentials have been found. We use α to denote scaling of one spin density

only, in our demonstrations the up spin. Finally, the spin-dependent virial can

be integrated over the scale factor α to give a new formal expression for the

functional, EXC.

Considerable progress has been made in DFT by writing EXC as an integral

over the coupling constant λ in the adiabatic connection relationship [28, 29].

The success of hybrid functionals such as B3LYP [20, 21] can be understood in

terms of the adiabatic connection [30, 31]. The adiabatic connection is simply

related to uniform coordinate scaling [32, 33] as mentioned in chapter 1. Here,

in section 2.5, we extend the spin scaling relationship to a spin-coupling constant

integration, and define a suitable generalization for this definition of the adiabatic

connection with a coupling constant for each spin density.

We use several examples to illustrate our formal results. For the uniform

electron gas (section 2.3), we can perform this scaling essentially exactly. We

show how this transformation relates energies to changes in spin-polarization. In

this case, considerable care must be taken to deal with the extended nature of

the system. We also compare popular functional approximations and show their

results of spin scaling on the densities of small atoms (section 2.4). Finally, we

discuss a fundamental difficulty underlying this spin scaling approach.

Throughout this chapter, we use atomic units (e2 = h̄ = me = 1), so that all

energies are in Hartrees and all lengths in Bohr radii. We demonstrate all scaling

relationships by scaling the up spin densities. Results for scaling the down spin

are obtained in a similar fashion.
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2.2 Spin scaling theory

We extend total density functional scaling techniques to spin-density functional

theory. Scaling each spin’s density separately we write

n↑α(r) = α3n↑(αr), 0 ≤ α < ∞

n↓β(r) = β3n↓(βr), 0 ≤ β < ∞. (2.4)

Accordingly, a spin-unpolarized system becomes spin-polarized when α 6= β.

The first interesting property of spin scaling is that, although the scaled spin

density may tend to zero at any point, the total number of electrons of each spin

in the system of interest is conserved during the spin scaling transformation of

Eq. (2.4). As the value of α decreases, the two spin densities occupy the same

coordinate space, but on two very distinct length scales. Even when α → 0, the

up electrons do not vanish, but are merely spread over an infinitely large volume.

The scaled density presumably then has a vanishingly small contribution to the

correlation energy. For finite systems, we can consider this limit as the effective

removal of one spin density to infinitely far way. We will discuss what this means

for extended systems later when we treat the uniform gas.

Another interesting property of the spin scaling transformation is that one

can express the scaling of one spin density as a total density scaling with one of

the spin densities inversely spin scaled.

EXC[n↑α, n↓] = EXC[{ n↑, n↓1/α }α] (2.5)

where the parenthesis notation on the right indicates scaling the total density.

Thus, without loss of generality, we need only scale one spin density.

To understand what happens when a single spin density is scaled, we first

study exchange. Because the Kohn-Sham orbitals are single particle orbitals, the

spin up and down Kohn-Sham orbitals are independent. In addition, exchange

occurs only between like-spins. The exchange energy functional can therefore
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be split into two parts, one for each spin [24] as in equation 2.2. The scaling

relationships for total DFT generalize for each term independently. For an up

spin scaling, we spin scale Eq. 2.2 to find

EX[n↑α, n↓] =
1

2
EX[2n↑α] +

1

2
EX[2n↓]

=
α

2
EX[2n↑] +

1

2
EX[2n↓]. (2.6)

where we have also used exchange energy scaling equation 1.19. When α → 0,

we are left with only the down contribution to exchange. Scaling spin densities

independently allows us to extract the contribution from each spin channel, e.g.,

dEX[n↑α, n↓]/dα at α = 1 is the contribution to the exchange energy from the up

density. A plot of EX[n↑α, n↓] versus α between 0 and 1 yields a straight line and

is twice as negative at α = 1 as at α = 0 for an unscaled system that is spin

saturated.

Separate spin-scaling of the correlation energy is more complicated. Unlike

EX[n↑, n↓], it is not trivial to split EC[n↑, n↓] into up and down contributions.

The Levy method of scaling the exact ground-state wave-function does not yield

an inequality such as Eq. (1.21), because the spin-scaled wave-function is not a

ground-state of another Coulomb-interacting Hamiltonian. Nor does it yield an

equality as in the spin-scaled exchange case, Eq. (2.6), because the many-body

wave-function is not simply the product of two single spin wave-functions. In both

cases, exchange and correlation, the two spins are coupled by a term 1/|r− αr′|.

To obtain an exact spin scaling relationship for EXC, we take a different ap-

proach. Consider a change in the energy due a small change in the up-spin

density:

δEXC = EXC[n↑ + δn↑, n↓] − EXC[n↑, n↓]. (2.7)

Use vXC↑(r) = δEXC/δn↑(r) to rewrite δEXC as

δEXC =
∫

d3rδn↑(r) vXC↑[n↑, n↓](r). (2.8)
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to first order in δn↑. Now, consider this change as coming from the following

scaling of the density, n↑α(r) = α3n↑(αr), where α is arbitrarily close to one. The

change in the density is related to the derivative of this scaled density:

dn↑α(r)

dα
|α=1 = 3n↑(r) + r · ∇n↑(r). (2.9)

Use Eqs. (2.8) and (2.9), and integrate by parts to find

dEXC[n↑α, n↓]

dα
|α=1 = −

∫

d3rn↑(r) r · ∇vXC↑[n↑, n↓](r). (2.10)

Eq. (2.10) is an exact result showing how dEXC/dα|α=1 can be extracted from the

spin densities and potentials. For an initially unpolarized system, n↑ = n↓ = n/2,

and vXC↑ = vXC↓ = vXC. Thus the right-hand-side of Eq. (2.10) becomes half the

usual virial of the exchange-correlation potential (Eq. 2.3). This virial is equal

to dEXC[nα]/dα|α=1 = EXC + TC.[22] Thus, for spin-unpolarized systems,

dEC[n↑α, n↓]

dα
|α=1 =

1

2
(EC + TC) . (2.11)

For initially polarized systems, there is no simple relation between the two types

of scaling.

To generalize Eq. (2.10) to finite scalings, simply replace n↑ on both sides by

n↑α, yielding:

dEXC[n↑α, n↓]

dα
= −

1

α

∫

d3rn↑α(r) r · ∇vXC↑[n↑α, n↓](r). (2.12)

We can then write the original spin-density functional as a scaling integral over

this derivative:

EXC[n↑, n↓] = lim
α→0

EC[n↑α, n↓] +
∫ 1

0
dα

dEXC[n↑α, n↓]

dα
. (2.13)

This is a new expression for the exchange-correlation energy as an integral over

separately spin-scaled densities, where the spin-scaled density is scaled to the

low-density limit. With some physically reasonable assumptions, we expect

lim
α→0

EC[n↑α, n↓] = EC[0, n↓]. (2.14)
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For example, if the anti-parallel correlation hole vanishes as rapidly with scale

factor as the parallel-spin correlation hole of the scaled density, this result would

be true. Numerical results indicate that this is the case for the approximate

functionals used in this chapter. Nevertheless, Eq. (2.14) is not proven here.

A symmetric formula can be written down by scaling the up and down spins

separately and averaging:

EXC[n↑, n↓] =
1

2
lim
α→0

(EXC[n↑α, n↓] + EXC[n↑, n↓α])

+
1

2

∫ 1

0
dα
∫

d3rn↑α(r)r · ∇vXC↑[n↑α, n↓](r)

+
1

2

∫ 1

0
dβ
∫

d3rn↓β(r)r · ∇vXC↓[n↑, n↓β](r). (2.15)

This result combines ideas of spin-decomposition, coordinate scaling, and the

virial theorem. Each of these ideas yields separate results for pure exchange or

uniform coordinate scaling, but all are combined here. Notice that the poten-

tials depend on both spins, one scaled and the other unscaled. This reflects the

difficulty in separating up and down spin correlations.

The proof of Eq. (2.15) holds for exchange-correlation, but in taking the

weakly-correlated limit, the result also holds true for the exchange limit. In the

case of exchange, Eq. (2.15) reduces to Eq. (2.6) with equal contributions from

the limit terms and the virial contributions. To obtain this result, recall how

EX scales, Eq. (1.19). Since the energy contribution from each spin is separate

and since the scaling law is linear, one can take the limits in the first two terms

of Eq. (2.15) without making additional physical assumptions. The virial terms

are somewhat more difficult to handle as the exchange potentials change under

scaling. In the end, one finds that the first two terms contribute half the exchange

energy while the virial terms contribute the other half.
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Figure 2.1: Spin scaling of a uniform gas: exchange energy per particle Eq. (2.21),
εX(n↑α, n↓), at rs = 2 (dotted line) and 6 (solid line). The spin scaled exchange
energy per particle is different than what one might naively expect from Eq. (2.6).
This subtlety is discussed in section 2.4.
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Figure 2.2: Spin scaling of a uniform gas: correlation energy per particle,
εC(n↑α, n↓), at rs = 2 (dotted line) and 6 (solid line). The energy per particle
is different from what one might naively expect from Eq. (2.6). Section 2.4
discusses this subtlety in detail.
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2.3 Uniform gas

We first study the effect of spin scaling on the uniform electron gas as we have

essentially numerically exact results. Care is taken when determining quantities

for spin scaling in extended systems. We begin with a spin-unpolarized electron

gas of density n and Wigner-Seitz radius rs = (3/4πn)
1

3 . When one spin density

is scaled, the system becomes spin-polarized, and the relative spin-polarization is

measured by

ζ =
n↑ − n↓

n↑ + n↓

. (2.16)

We assume that for a spin-polarized uniform system, the exchange-correlation

energy per electron, εunif
XC

(rs, ζ), is known exactly. We use the correlation energy

parameterization of Perdew and Wang [17] to make our figures.

To perform separate spin scaling of this system, we focus on a region deep in

the interior of any finite but large sample. A simple example is a jellium sphere

of radius R >> rs. The correlation energy density deep within will tend to that

of the truly translationally invariant uniform gas as R → ∞. At α = 1, we have

an unpolarized system with n↑ = n↓ = n/2. The up-spin scaling, n↑ = α3n/2,

changes both the total density and the spin-polarization. Deep in the interior

rs(α) = rs

(

2

1 + α3

)1/3

(2.17)

where rs is the Seitz radius of the original unpolarized gas, and

ζ(α) =
α3 − 1

α3 + 1
. (2.18)

The exchange-correlation energy density here is then

eXC(α) = eunif
XC

(n↑α, n↓) = eunif
XC

(rs(α), ζ(α)), (2.19)

and the energy per particle is

εXC(α) = eXC(α)/n(α) (2.20)
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where n(α) is the interior density.

Again, for its simplicity, we first consider the case of exchange. Deep in the

interior, we have a uniform gas of spin densities n↑α and n↓, and the energy

densities of these two are given by Eq. (2.6), since the integrals provide simple

volume factors. The Slater factor of n4/3 in the exchange density of the uniform

gas produces a factor of (1 + α4). When transforming to the energy per electron,

there is another factor of (1+α3) due to the density out front. Thus the exchange

energy per electron is

εX(α) =

(

1 + α4

1 + α3

)

εunpol.
X

(n) (2.21)

This variation is shown in Fig. 2.1. This result may appear to disagree with

Eq. (2.6), but it is valid deep in the interior only. To recover the total exchange

energy, one must include those electrons in a shell between R and R/α with the

fully polarized uniform density α3n/2. The exchange energy integral includes this

contribution, and then agrees with Eq. (2.6).

Near α = 1, Eq. (2.21) yields (1 + α) εunpol.
X

/2, in agreement with a naive

application of Eq. (2.6). This is because, in the construction of the total energy

from the energy per electron, the factor of the density accounts for changes in

the number of electrons to first order. So the derivative at α = 1 remains a

good measure of the contribution to the total exchange energy from one spin

density. On the other hand, as α → 0, the exchange energy per electron in the

interior returns to that of the original unpolarized case. This reflects the fact that

exchange applies to each spin separately, so that the exchange per electron of the

down-spin density is independent of the presence of the up-spin density.

Figure 2.2 shows the uniform electron gas correlation energy per particle scaled

from unpolarized (α = 1) to fully polarized limits (α = 0). Again, the curves

become flat as α → 0, because for small α, there is very little contribution from

the up-spins. Now, however, there is a dramatic reduction in the correlation

energy per particle in going from α = 1 to α = 0 because of the difference in
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correlation between the unpolarized and fully polarized gases. Note that the

correlation changes tend to cancel the exchange variations.

2.4 Finite Systems

Next, we examine the behavior of finite systems under separate-spin scaling. We

choose the He and Li atoms to demonstrate spin scaling effects on the simplest

non-trivial initially unpolarized and spin-polarized cases. For each of these atoms,

the Kohn-Sham equations are solved using four different functionals. The result-

ing self-consistent densities are spin scaled and the energies evaluated on these

densities for each functional.

Since these are approximate functionals, neither the densities nor the energies

are exact. We are unaware of any system, besides the uniform gas, for which

exact spin-scaled plots are easily obtainable. For now, we must compare plots

generated from approximate functionals. Even the simple atomic calculations

presented here were rather demanding since, especially for very small spin-scaling

parameters, integrals containing densities on two extremely distinct length scales

are needed.

The He atom (Fig. 2.3) is spin unpolarized at α = 1. Scaling either spin

density gives the same results. In the fully scaled limit, we expect, as we have

argued in section 2.2, that the correlation energy should vanish. This is because

the two electrons are now on very different length scales and so do not interact

with each other. The LSD curve gives far too much correlation and does not vanish

as α → 0. The residual value at α → 0 reflects the self-interaction error in LSD

for the remaining (unscaled) one-electron density. The PBE curve, although on

the right scale, also has a self-interaction error as α → 0, albeit less than the LSD

error. The BLYP functional [34, 35] gets both limits correct by construction. The

functional’s lack of self-interaction error is because its correlation energy vanishes
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Figure 2.3: Spin scaling of the He atom density using various approximate func-
tionals for EC: local spin-density approximation (solid line), generalized gradient
approximation (PBE, dashed line), BLYP (bars), and self-interaction corrected
LSD (short dashes).

for any fully polarized system. This vanishing is incorrect for any atom other

than H or He. Finally, the LSD-SIC curve [36] is perhaps the most accurate in

shape (if not quantitatively) since this functional handles the self-interaction error

appropriately. We further observe that the curves appear quite different from

those of the uniform gas. The atomic curves are much flatter near α → 1 and

have appreciable slope near α → 0. This is because these energies are integrated

over the entire system, including the contribution from the entire spin-scaled

density, whereas the energy densities in the uniform gas case were only those in

the interior.

Quantitative results are listed in Table 2.1. The exact He values, including the

derivative at α = 1, using Eq. (2.11), were taken from Ref. [37, 38]. Note that

PBE yields the most accurate value for this derivative. The BLYP correlation

energy is too flat as function of scale parameter. BLYP produces too small a value

for TC leading to a lack of cancellation with EC and a subsequent overestimation

of the derivative at α = 1. LSD-SIC has a similar problem. The LSD value,
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Approx. EX EC EC[n↑, 0] dEC/dα
LSD -0.862 -0.111 -0.027 -0.022
PBE -1.005 -0.041 -0.005 -0.002
SIC -1.031 -0.058 0.000 -0.011
BLYP -1.018 -0.044 0.000 -0.005
exact -1.026 -0.042 0.000 -0.003

Table 2.1: He atom energies, both exactly and within several approximations. All
energies in Hartrees; all functionals evaluated on self-consistent densities.
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Figure 2.4: Up spin scaling of the Li atom density using various approximate func-
tionals for EC: local spin-density approximation (solid line), generalized gradient
approximation (PBE, dashed line), and BLYP (bars).

while far too large, is about 8% of the LSD correlation energy, close to the same

fraction for PBE, and not far from exact. However, the conclusion here is that

results from separate spin-scaling are a new tool for examining the accuracy of

the treatment of spin-dependence in approximate spin-density functionals.

The Li atom (Figs.2.4 and 2.5) is the smallest odd many-electron atom. We

choose the up spin density to have occupation 1s2s. As expected, the curve

resulting from scaling the up spins away, Fig. 2.4, is very similar to that of He,

Fig. 2.3. The primary difference is the greater correlation energy for α = 1.
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Figure 2.5: Down spin scaling of the Li atom density using various approximate
functionals for EC: local spin-density approximation (solid line), generalized gra-
dient approximation (PBE, dashed line), and BLYP (bars).

On the other hand, scaling away the down-density gives a very different pic-

ture, Fig. 2.5. The most dramatic changes in the correlation energy now occur

at small α. Near α → 1, the system energy is quite insensitive to spin-scaling,

especially as calculated by the GGAs. This is exactly the opposite of what we

have seen in the case of the uniform gas. Whether this would be observed with

the exact functional remains unanswered. For up spin scaling, we expect the

correlation energy to vanish as α → 0. But for down spin scaling one expects a

finite correlation energy in the limit β → 0. The two spin-up electrons remain

and are still correlated. For the reason stated earlier, the BLYP functional still

predicts no correlation energy for the remaining two electrons.

Quantitative results for Li are given in Table 2.2. The exact result for EX

is the EX of a self consistent OEP calculation. Using the highly accurate energy

prediction from [39], we deduce the exact EC = ET−ET,OEP , where ET is the exact

total energy of the system and ET,OEP is the total energy calculated using DFT

exact exchange. The other exact results are not extractable from the literature

here, but could be calculated from known exact potentials and densities [40].
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Approx. EX EC EC[n↑, 0] dEC/dα EC[0, n↓] dEC/dβ
LSD -1.514 -0.150 -0.047 -0.037 -0.032 -0.019
PBE -1.751 -0.051 -0.012 -0.004 -0.005 -0.001
BLYP -1.771 -0.054 -0.054 -0.020 0.000 -0.005
exact -1.781 -0.046 - - 0.000 -

Table 2.2: Li atom energies, both exactly and within several approximations. All
energies in Hartrees, all functionals evaluated on self-consistent densities.

Even in this simple case, an SIC calculation is difficult. For the up-spin density,

one would need to find the 1s and 2s orbitals for each value of α that yield the

spin-scaled densities.

2.5 Spin adiabatic connection

Here, we define the adiabatic connection within our spin-scaling formalism. λ

is usually a parameter in the Hamiltonian that scales the electron-electron in-

teraction, but this way of thinking becomes prohibitively complicated in spin

density functional theory. We would have to define three coupling constants: λ↑,

λ↓, and λ↑↓. Even so, it remains non-trivial to relate changes in these coupling

constants to changes in the electron density. Instead, we define a relationship

between spin-scaling and a spin dependent coupling parameter. First, for total

density scaling, the relationship between scaling and evaluating a functional at a

different coupling constant is [22, 32]

Eλ
XC

[n] = λ2EXC[n1/λ]. (2.22)

where the left hand side means the exchange-correlation energy at an interaction

scaled by λ. The adiabatic connection formula is

EXC =
∫ 1

0
dλ

dEλ
XC

dλ
=
∫ 1

0
dλ UXC(λ). (2.23)

By virtue of the Hellmann-Feynman theorem [23], UXC(λ) can be identified as

the potential contribution to exchange-correlation at coupling constant λ. The
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integrand UXC(λ) can be plotted both exactly and within density functional ap-

proximations, and its behavior studied to identify deficiencies of functionals [41].

For separate spin scaling, we apply the same ideas but now to

∆EXC[n↑, n↓] = EXC[n↑, n↓] − EXC[0, n↓], (2.24)

that is, the exchange-correlation energy difference between the physical system

and the system with one spin density removed while keeping the remaining spin-

density fixed. For polarized systems, this quantity depends on which spin density

is removed. We now define

∆E
λ↑
XC = λ↑

2∆EXC[n1/λ↑ , n↓] (2.25)

where ∆Eλ↑
XC

is the exchange-correlation energy difference with the interaction of

the up spins scaled by λ↑, and

∆UXC(λ↑) = d∆E
λ↑
XC/dλ↑, (2.26)

so that

∆EXC =
∫ 1

0
dλ↑ ∆UXC(λ↑). (2.27)

This produces a physically meaningful spin-dependent decomposition of the exchange-

correlation energy, with the integral now including the high-density limit. As

λ↑ → 0, exchange dominates, and UXC(λ↑) → UX(λ↑) which is just EX[2n↑]/2

according to the simple results for exchange in chapter 1. Furthermore, in the

absence of correlation, UXC(λ↑) is independent of λ↑. This is not true if one uses

a naive generalization of Eq. (2.22).

This spin adiabatic connection formula should prove useful for the improve-

ment of present-day functionals in the same way that the adiabatic connection

formula has been useful for improving total density functionals. For example,

it may be possible to perform Görling-Levy perturbation theory [42] in this pa-

rameter (λ↑) or to extract a correlation contribution to kinetic energy [43]. We
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Figure 2.6: Single spin adiabatic connection for a He atom: local spin-density ap-
proximation (solid line), generalized gradient approximation (PBE, dashed line),
BLYP (bars), self-interaction corrected LSD (short dashes), and exact (dash dot).

LSD PBE SIC BLYP “exact”
∆UXC(0) -0.43 -0.50 -0.53 -0.51 -0.51
∆UXC(1) -0.58 -0.57 -0.62 -0.59 -0.60
∆EXC -0.54 -0.54 -0.57 -0.55 -0.56

Table 2.3: Spin adiabatic connection ∆UXC(λ↑) for He atom, both exactly and in
several approximations.
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show the spin adiabatic connection for the He atom in Fig. 2.6. In generating

each adiabatic connection plot, we now take the scaled spin density to the high

density limit (as λ → 0). Note this is opposite to the earlier sections. For a given

approximation, ∆EXC is given by the area under each curve. To get EXC[n↑, n↓],

we must add the contribution from the unscaled spin, EXC[0, n↓]. The spin adi-

abatic connection curve quite strongly resembles the adiabatic connection curve

of total density scaling. The difference being that, for the He atom, ∆UXC(λ↑)

becomes more negative with λ everywhere and is almost linear. This suggests

that the spin-correlation effects are weak for this system, just as the correlation

effects are.

To better understand how popular approximations perform, comparisons to

the exact curve are necessary. This requires sophisticated wavefunction calcula-

tions designed to generate the exact spin-scaled densities at every point in the

adiabatic connection curve. Here, we use a simple interpolation that should be

highly accurate. Analytic formulae give exact limits for ∆UXC(λ↑). In the limit

of small λ↑, exchange dominates, and the exchange contribution from the scaled

spin to the total energy remains:

∆UXC(λ↑ = 0) =
1

2
EX[n] (2.28)

In the physical limit,

∆UXC(λ↑ = 1) = 2EXC[n↑, n↓] − 2EXC[0, n↓]

−dEXC[n↑α, n↓]/dα|α=1 (2.29)

For a spin-unpolarized two electron system like the He atom, this becomes

∆UXC(λ↑ = 1) = EX/2 + 2EC − (EC + TC)/2

(2 electrons, unpol.) (2.30)

For He at λ↑ = 1, ∆UXC(λ↑) = −0.60. To approximate the exact curve, we use a

(1,1) Padé approximant. The values ∆UXC(0), ∆UXC(1), and ∆EXC fix the three
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unknown parameters. This Padé approximation turns out to be nearly a straight

line.

Table 2.3 shows a comparison of the exact limits and those given by some

popular functionals. BLYP reproduces both limits most accurately and is mostly

linear. This should not be surprising as BLYP yields good energies and accounts

for He’s self-interaction error. Such good results are not expected when the BLYP

functional is applied to the Li atom. As we have seen in the previous section,

BLYP predicts zero correlation energy even when two electrons remain in the

unscaled spin channel. The LSD functional dramatically underestimates the single

spin exchange energy and, therefore, gets the small λ↑ limit quite wrong. This

reflects the usual error for LDA exchange. But notice how well LSD performs

performs at λ↑ = 1. The value here is only a 3% overestimate of the exact

value, much better than the 9% overestimate for the exchange-correlation energy.

Furthermore, the LSD derivative as λ↑ → 1 is almost exact. PBE and LDA-SIC

are qualitatively similar, the greater error in LSD-SIC being due to the errors in

LSD. Both show a flattening of the curve as λ↑ → 0, much more than BLYP.

Our “exact” curve is too crudely constructed to indicate which behavior is more

accurate.

Ideally, comparison to the exact adiabatic connection plot, if available, would

be made. Even so, analyses of exact limits are sufficient to garner a deeper

understanding of how functionals treat spin densities.

2.6 Conclusions

The scaling method and the adiabatic decomposition formula have proven ex-

tremely useful in studying and constructing total density functionals. We have

investigated the scaling of spin densities separately, derived a new virial theo-

rem within this spin scaling formalism, (Eq. (2.12)) shown exact results for the
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He atom, derived a spin-adiabatic connection, and indicated the difficulties of

deducing exact theorems from this decomposition. While exact calculations are

difficult to perform and exact results somewhat difficult to obtain within this ap-

proach, any result is useful and likely to improve spin density functional theory’s

treatment of magnetic properties.

We close with a significant challenge to developing separate spin scaling. In

the total density scaling of Eq. (1.16), the density is both squeezed (or spread)

and is also translated. The squeezing is independent of the choice of origin, but

the translation is not. This origin-dependence should not affect the exchange-

correlation energy because space is translationally invariant. However, when an

individual spin density is scaled, the remaining spin density remains fixed in

space. This means the resulting density depends on the choice of origin for the

separate spin-scaling. So while EC[n↑α, n↓] is a spin-density functional of n↑α and

n↓, it is not a pure spin-density functional of the original spin-densities because

of this origin dependence. Most likely, a method of transforming away this origin

dependence, as found for virial energy densities in Ref. [44], will be needed to

make this spin scaling technique more physical and useful. For atoms, we made

the obvious choice of origin at the center of the nucleus. Origin dependence will

become acute in applications to molecules and even worse for solids. On the other

hand, the non-uniform coordinate scaling of Görling and Levy [45] suffers from

the same difficulties for non-spherical densities but has still produced useful limits

for approximate density functionals [46].

However, it is important to stress that the spin virial relationship equation,

(2.12), is unaffected by this challenge. For α arbitrarily close to 1, the spin-

scaled energies are independent of the choice of origin, and these difficulties are

irrelevant. The spin virial relationship is an exact constraint and gives us a useful

measure of how the correlation energy is affected by small changes in the spin

densities. It also leads to a natural decomposition of energy changes due to



32

separate spin densities. It should be useful in determining whether calculations

are self-consistent for each spin density separately. This might be useful for

example in systems where small differences between spin densities are important

to calculate properly.
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Chapter 3

Correlation Energies in the High Density Limit

It is important to consider functional behavior of various quantities in different

limits to provide constraints for functional development. In the previous chapter,

we primarily explored the correlation energy under spin scaling to the low density

limit (i.e. as the density of one spin channel is scaled away by a scale factor

approaching zero while that of the other spin channel remains unscaled). Here, we

investigate correlation energies as they are scaled to the high density limit. In this

limit, the scale factor becomes infinitely large, the length scale shrinks, and the

density becomes hydrogenic. We expand the density, potential, and correlation

energies to second order in the inverse scale factor and extract the coefficients for

each quantity for various ions. This expansion provides yet another constraint of

proper scaling behavior; thus any given correlation functional can be tested for

proper behavior in this limit.

There are quantum chemistry benchmarks for correlation energies of various

isoelectronic series,[49, 50] i.e. sets of ions with the same numbers of electrons.

Such benchmarks do not exist for DFT despite their potential usefulness. In this

chapter we consider the behavior of the correlation energy in the high density

limit when the nuclear charge, Z, becomes infinitely large. In many ways, the

effect is similar to that of scaling in DFT.

One important difference between the coordinate scaling and scaling by in-

creasing the nuclear charge of ions is the change in the shape of the density with

Z. These changes must be accounted for and are the correction terms to the
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usual scaling expansion coefficients when relating them to the coefficients of scal-

ing in Z. It would be useful to have benchmarks on hydrogenic densities because

the ability of functionals to reproduce these benchmarks is a means of testing

their accuracy in the high density limit. There is a beautiful simplification of

the expression of the high-Z correlation coefficients in terms of the Görling-Levy

coefficients when the sum of kinetic and total correlation energies is considered.

This makes the method more easily applicable for testing.

Herein we determine, to second order in 1/Z, the expansion coefficients of

the correlation energy for non-degenerate ions, the density coefficients for N =

2, 3, and 10-electron ions, and the correlation potential coefficients for N = 2-

electron ions. The correlation energy coefficients were determined by a least

squares fit to correlation energy data reported in the literature.[49, 50] The density

coefficients were obtained from exact exchange calculations using Engel’s atomic

DFT code.[51] Finally, the correlation potential coefficients were extracted from

Umrigar’s quantum monte carlo (QMC) calculations for 2-electrons.

For non-degenerate systems, the correlation energy scales to a constant. [139]

Not all approximate correlation functionals scale correctly to the high-density

limit. The local density approximation (LDA) violates this condition. The long-

range nature of the Coulomb interaction in an infinite system (the uniform elec-

tron gas) leads to a logarithmic divergence.[17] The parametrization of the PW91

functional [17] fails to capture the correct behavior, but the PBE correlation func-

tional was designed to correct this.[18] The PBE functional yields good results

for the correlation energy of these large Z atoms.

3.1 Scaling in the high density limit

Scaling to the high-density limit is particularly simple in DFT, and a perturbation

theory has been developed to take advantage of it. Görling and Levy [215] have
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shown that

lim
γ→∞

EC[nγ ] = E(2)
C

[n] +
1

γ
E(3)

C
[n] +

1

γ2
E(4)

C
[n] + ... (3.1)

where each E
(p)
C [n] is a scale-independent functional, i.e, E

(p)
C [nγ ] = E

(p)
C [n].

It would be natural to equate γ above with Z in large-Z atoms, as both

quantities perform the same under dimensional analysis and many functions tend

to the same value as either Z or γ → ∞. But a crucial difference is that in

coordinate scaling, the density does not change shape, while as Z → ∞, it does.

We show below that this difference is irrelevant at zero-order, but requires careful

treatment for all orders beyond that.

3.2 Large Z atoms

We consider the behavior of ions of fixed electron number N , as Z → ∞. Results

for these systems are well-known [49, 50] in wavefunction theory, for many values

of Z. Many quantities can be expanded as a function of 1/Z, once their large

Z behavior is understood. We consider only those atoms that do not exhibit

degeneracies in the Z = ∞ limit. For all others, Davidson shows that in the

high Z limit, the energy for these atoms becomes degenerate and the correlation

energy does not approach a constant. [152]

Begin with the correlation energy. For atoms whose outermost electron is

in a non-degenerate orbital, the quantum-chemical correlation energy, defined as

the difference between an exact non-relativistic quantum mechanical ground-state

energy and a Hartree-Fock energy, tends to a finite limit as Z → ∞. Thus we

may write

EC(Z) = E [0]
C

+
E

[1]
C

Z
+

E
[2]
C

Z2
+ ... Z → ∞ (3.2)

We use superscript square brackets to denote powers of 1/Z. The DFT definition

of the correlation energy is via a minimization over all slater determinants aris-

ing from a one-body potential that yield the same density, thus its magnitude is
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Table 3.1: Correlation energy coefficients of 1/Z expansion in mH for select elec-
tron number, N.

N E
[0]
C E

[1]
C E

[2]
C

2 -46.68 9.98 -1.4
3 -53.62 25.1 -0.6
7 -236.9 353 -93
8 -306.0 446 -210
9 -369.1 521 -540
10 -428.2 601 -1400
11 -460.2 793 -900

smaller than that of quantum chemistry. The difference between quantum chem-

istry and density functional correlation energies is generally small,[58] and for the

purposes of this paper we ignore the difference.

The best numbers that we use are from Umrigar’s QMC calculations for N = 2

ions. We compare Davidson’s numbers for these 2-electron ions and confirm that,

as expected, there is no difference. This justifies use of Davidson’s data for other

N -electron ions.

Table 3.1 lists the coefficients of the high Z correlation energy expansion

for various atoms. These were determined by a quadratic least squares fit of

correlation energy as a function of inverse nuclear charge data. [49, 50] The

leading term, E
[0]
C , is an extrapolation to 1/Z = 0 and is the most accurate term

given in the table. The numbers agree with data previously published in Refs.,

[59, 60] the only exception being E
[0]
C for the sodium isoelectronic series. It is

clear from an extrapolation of the best fit to the data that the correlation energy

is not -453.4 mH at 1/Z = 0 as previously reported (see Fig 3.1). We believe that

our estimate of E
[0]
C for 11-electron atomic ions is more accurate. The accuracy

of our predicted coefficients decreases with order, with a large uncertainty for the

second order correction term, E
[2]
C .
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Figure 3.1: Determination of correlation energy coefficients in 1/Z for the sodium
isoelectronic series.

The density can also be expanded in powers of 1/Z:

n(Z; r) = Z3
{

nH(Zr) + ∆n[1](Zr)/Z + ∆n[2](Zr)/Z2 + ...
}

(3.3)

the leading term being the density of a Hydrogenic atom with N electrons. The

quantities nH(r), ∆n[1](r), and ∆n[2](r) are all independent of Z and finite.

We calculated these using Engel’s numerical atomic code [51] that calculates

energies and other quantities for atoms using density functional methods. For

our calculation of the densities, we use exact exchange only. This yields the

hydrogenic density and the first correction term, ∆n[1](r), exactly, and gives a

very accurate second order correction term in comparison to Umrigar’s data for

N = 2 (see Fig. 3.2). Figures 3.3 through 3.5 show the expansion coefficients

for the helium, lithium, and neon isoelectronic densities. The corrections to the

hydrogenic densities get comparatively larger as the number of electrons increases.

Lastly, we extract the large-Z limit expansion of the correlation potential:

vC[n](Z; r) = v[0]
C

(Zr) +
v

[1]
C (Zr)

Z
+

v
[2]
C (Zr)

Z2
+ ... Z → ∞. (3.4)



38

4π
r2

∆
n[2

] (r
)

exact
X−only

r

−0.2

−0.1

 0

 0.1

 0  2  4  6  8

Figure 3.2: Second order correction to the density, ∆n[2], for 2-electron ions. The
solid line is the exact curve extracted from Umrigar’s data.[37, 151] The dashed
line is the self-consistent exact exchange-only result.[51]

∆n[1](r)
∆n[2](r)

n[0](r)

4π
r2

*
de

ns
ity

r

0.6

−0.6

0

1.2

0 2 4 6
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series: the leading term (the hydrogenic density for 2 electrons) (solid line), the
coefficient of the leading correction (short dashes), and the coefficient of the sec-
ond order correction (long dashes).
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Figure 3.4: Same as Fig. 2, but for the lithium isoelectronic series.
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Figure 3.5: Same as Fig. 2, but for the neon isoelectronic series.
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Figure 3.6: Expansion coefficients for Umrigar’s correlation potential for the he-
lium isoelectronic series: the leading term, v
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Figure 3.6 shows the large-Z limit expansion coefficients of the correlation poten-

tial for the helium isoelectronic series.

3.3 Relation between different limits

In this section, we carefully derive the relationships between the large Z expan-

sion and the high-density limit of density functional theory. In addition to the

expansion of the energy and density, we also need the expansion of the correlation

potential, vC[n(Z; r)]. From the definition of the functional derivative, one can

show:

vC[nγ ](
r

γ
) =

δEC[nγ ]

δn(r)
(3.5)

Thus, in the high density limit, from Eq. (3.1),

vC[nγ ](
r

γ
) =

δE
(2)
C [n]

δn(r)
+

1

γ

δE
(3)
C [n]

δn(r)
+ ... γ → ∞

= v(2)
C

[n](r) +
1

γ
v(3)

C
[n](r) + ... (3.6)
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Applying this expansion to the large Z limit, we obtain

vC(Z;
r

Z
) = vC[(nH(r) +

1

Z
∆n[1](r) + ...)Z ]

(

r

Z

)

= v(2)
C

[nH +
1

Z
∆n[1]](r) +

1

Z
v(3)

C
[nH](r) + ... (3.7)

Take the limit to get

lim
Z→∞

vC[n(Z; r)]
(

r

Z

)

= v(2)
C

[nH](r) +
1

Z

{

v(3)
C

[nH](r)

+
∫

d3r′∆n[1](r) f (2)
c [nH](r, r′)

}

+... (3.8)

where f
(2)
C [n](r, r′) is the second functional derivative of the leading term in the

GL expansion, E
(2)
C [n]. We deduce:

v[0]
C

[nH](r) = v(2)
C

[nH](r) (3.9)

and

v[1]
C

[nH](r) = v(3)
C

[nH](r) +
∫

d3r′∆n[1](r) f (2)
c [nH](r, r′) (3.10)

Thus the leading term in the corrlation potential as Z → ∞ is exactly the high-

density limit of the correlation potential of the hydrogenic density, but this is not

true for the first correction.

We are ready to deduce formulas for the coefficients of the 1/Z-expansion in

Eq. (3.2).

E [0]
C

= lim
Z→∞

EC[Z3nH(Zr) + ...] = E(2)
C

[nH] (3.11)

This shows that, in the high density limit, the correlation energy approaches

the GL second-order correlation energy coefficient, evaluated on the hydrogenic

density for a given number of electrons. Similarly,

E [1]
C

= lim
Z→∞

Z(EC(Z) − E [0]
C

). (3.12)

Expanding n(Z; r) around nH,Z(r), the hydrogenic density, substituting, and tak-

ing the limit, we obtain

E [1]
C

= E(3)
C

[nH] +
∫

d3r∆n[1](r) v(2)
C

[nH](r). (3.13)
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Thus the next terms in the two expansions differ, due to the change in shape of

the density. Continuing to the next order, we find several corrections:

E [2]
C

= E(4)
C

[nH] +
∫

d3r∆n[1](r) v(3)
C

[nH](r)

+
∫

d3r∆n[2](r)v(2)
C

[nH](r)

+
1

2

∫

d3r
∫

d3r′∆n[1](r) ∆n[1](r′) f (2)
C

[nH](r, r′) (3.14)

To second order, the correlation energy is a sum of GL correlation energy coef-

ficients evaluated on the hydrogenic density and integrals over their derivatives

and corrections to the hydrogenic density. In density functional terms, changes in

EC due to changes in nuclear charge are accompanied by changes in the electronic

density.

Next we discuss how further information can be extracted from highly accurate

quantum calculations on atoms for large Z, if another key quantity is available.

The kinetic contribution to the correlation energy, TC, is defined as the difference

between the kinetic energy of the physical system, T , and that of the Kohn-Sham

system, TS. This quantity is not usually calculated by standard codes. In fact, TC

can be extremely demanding to calculate, as it involves a small difference between

two large numbers. In particular, one needs the non-interacting kinetic energy of

the Kohn-Sham orbitals corresponding to the exact density. The kinetic energy of

a Hartree-Fock calculation will yield a good approximation, but not good enough

for reliable values for TC. Fortunately, Umrigar has calculated TC for the two-

electron series for many values of Z.

We can write expressions for the high density limit expansion of TC similar to

those of EC in sections 3.2 and 3.3. Thus TC[n] may be expanded in the high-

density limit in terms of scale-independent functionals T
(p)
C [n], as in Eq. (3.1); or

TC(Z) can be expanded around Z → ∞ in terms of T
[p]
C , as in Eq. (3.2). If we

define its potential by

vTC
[n](r) =

δTC[n]

δn(r)
(3.15)
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and expand it around Z → ∞, we find analogs of Eqs. (3.11), (3.13), and (3.14),

relating the two expansions for TC.

However, the kinetic correlation and correlation energies are related by scaling:[38]

γ
dEC[nγ ]

dγ
= EC[nγ ] + TC[nγ ] (3.16)

Expanding Eq. (3.16) around γ → ∞, we determine that the high-density limit

of the kinetic contribution is simply:

T (p)
C

[n] = −(p − 1)E(p)
C

[n] p = 2, 3, 4, ... (3.17)

and that

v
(p)
TC

[n](r) = −(p − 1)v(p)
C

[n](r). (3.18)

Particularly useful is the fact that v2
TC

[n] = −v2
C
[n], so that the potential correc-

tions to E
[1]
C + T

[1]
C cancel, yielding

E [1]
C

+ T [1]
C

= E(3)
C

+ T (3)
C

= −E(3)
C

[nH ], (3.19)

that is, expansion of EC + TC in powers of 1/Z yield E
(3)
C [nH ] directly. Similarly

all integrals with potentials of order (2) in the next order term cancel, yielding

E [2]
C

+ T [2]
C

= −2E(4)
C

−
∫

d3r∆n[1](r)v(3)
C

[nH ](r), (3.20)

a less useful result.

The high density limit expansion was first tested on the helium isoelectronic

series for which Umrigar et.al. [37, 150, 151] have calculated exact values for

the density and potential as well as EC and TC. The components necessary to

evaluate EC(Z) + TC(Z) were extracted. When compared, the correlation energy

terms for the helium isoelectronic series extracted using data from Davidson’s

exact calculations correspond well with those of Umrigar (Table 3.5).

One can also write a virial expression for EC[n] + TC[n]:

−
∫

d3r n(r) r · ∇vC(r) = EC[n] + TC[n] (3.21)
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This virial may also be expanded in 1/Z to give a leading term:

−
∫

d3r nH(r) r · ∇v(2)
C

[nH ](r) = 0 (3.22)

and a first order correction:

−
∫

d3r
{

nH(r)r · ∇v[1]
C

(r) + ∆n[1](r)r · ∇v[0]
C

(r)
}

= E [1]
C

+ TC[1]. (3.23)

This first order virial correction may be written in terms of GL coefficients:

∫

d3r
{

nH(r)r · ∇v(3)
C

(r) + ∆n[1](r)r · ∇v(2)
C

(r)
}

= E(3)
C

[nH ]. (3.24)

The kinetic correlation may also be expressed in terms of a virial of total corre-

lation potentials and derivatives:

vTC
[n](r) = − r · ∇vC[n](r) −

∫

d3r r · ∇fC[n](r, r′)

− vC[n](r) (3.25)

3.4 Neutral atoms

In this last section, we use insight gained from the exact large Z limit to deduce

approximate results for Z = N , thereby demonstrating that such studies have

practical as well as methodological implications.

Correlation energies for a few atoms are listed in Table 3.4. The correlation

energy is consistently underestimated by the Morrison and Zhao [40](MZ) esti-

mate, which are determined from configuration interaction calculated reference

densities using Slater type orbital basis sets. [50, 62, 63] The MZ estimate is good

for small electron number, but its error consistently increases with electron num-

ber. This indicates the difficulty in calculating correlation energies rather than

correlation energy differences. Our expansion-constructed correlation energy is

an extrapolation from the high density limit to the physical (Z = N) limit. We

take the correlation energy coefficients determined in Table 3.1 and substitute
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Z = N into Eq. (3.2). This extrapolated correlation energy gives a surprisingly

good approximation for the neutral atoms, with smaller errors than those due to

basis sets in the MZ estimate.

As mentioned in the previous section, accurate calculation of TC is very de-

manding, and only limited results are available in the literature. In particular,

Morrison and Zhao used a clever algorithm to construct the exact Kohn-Sham po-

tential and orbitals for the densities discussed above.[147, 191, 222] This produced

a list of TC for neutral atoms up to argon.

If we ignore changes in shape of the density, we can approximate EC[nγ ] by

EC(Z), equating changes with Z with changes with γ. That is, the change in

shape of the density caused only a 15% error in the correlation energy first order

correction term, E
(3)
C . This method was used by Frydel et. al.,[38], but a cor-

rection using the potential was used there, making it extremely accurate. The

correction is not accessible here, requiring as it does the exchange-correlation

potential.

We must still devise a method for choosing the ’best’ relation between Z and

γ. We know that under exact scaling

γ =
EX[nγ ]

EX[n]
=

√

√

√

√

TS(Z∗)

TS(Z)
(3.26)

We can approximate the latter relationship with ease for atomic ions. In a

Hartree-Fock calculation, by virtue of the virial theorem,[23] T HF = −EHF ' TS,

where T HF and EHF are the Hartree Fock kinetic and total electronic energies.

Thus knowledge of EHF (Z), for fixed N, as reported by Davidson et. al. allows

us to estimate γ(Z) for a given neutral, and Eq. (3.16) then yields TC. Figure

3.7 shows EC[nγ ] estimated in this way for N=10. Note that, for example, the

γ → ∞ value differs from E
[0]
C , as this curve approximates EC[nγ ] for the neutral

atom density. Lastly, in the spirit of Table 3.4, we use the slope as γ → ∞, to

estimate EC + TC from Eq. (3.16). Clearly, at γ = 1, the density changes are too
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E
c

1/γ

Ec[nγ ]
−0.425

−0.415

−0.405

−0.395

−0.385

0 0.2 0.4 0.6 0.8 1
−0.424+0.050*x

Figure 3.7: Correlation energy of the 10-electron series with γ estimated from Z.
The line represents the inital slope and is assumed to be the slope at γ = 1 when
estimating EC[n] + TC[n].

Table 3.2: EC[n] + TC[n] in mH, where N is the number of electrons.

N Exact[37, 151] Extrapolation MZ[40] PBE LYP
2 -5.5 -5.7 -5 -4.3 -9.9
3 -9.0 -7 -4.6 -14.8
7 -50 -30 -22 -64
8 -55 -50 -34 -81
9 -53 -70 -40 -90
10 -65.0 -50 -80 -45 -98
11 -92 -70 -44 -102

great to be accurately estimated by our crude approximation.

There is interesting structure in the EC + TC data. In particular, a closer

look at extrapolation values in Table 3.2 shows a jump in the magnitude of the

correlation energy sum when an electron is placed in a new shell as in going from

He to Li and from Ne to Na. In contrast, filling the p orbitals does not appear

to be costly. While there is an increase in order of magnitude of correlation,

the energy levels off as this subshell is being filled. Trends in the M&Z data are

different; there are no marked increases in filling a new shell or subshell.
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Table 3.3: TC[n] in mH, where N is the number of electrons.

N Exact[37, 151] Extrapolation MZ[40] PBE LYP
2 36.6 36 37 38 34
3 36 38 47 39
7 138 151 161 129
8 199 194 206 184
9 265 237 257 236
10 328.0 332 299 307 286
11 304 311 329 307

Table 3.4: Exact,[49, 50] our expansion constructed, and the Morrison & Zhao
[40] correlation energies of neutral atoms in mH.

N Exact Extrap Extrap % error MZ MZ % error
2 -42.04 -42.05 < 1 -42.02 < 1
3 -45.33 -45.32 < 1 -45.17 < 1
7 -188.31 -188.4 < 1 -180.5 -4
8 -257.94 -253.6 -2 -244.3 -5
9 -324.53 -317.8 -2 -307.1 -5
10 -390.47 -382.3 -2 -378.9 -3
11 -395.64 -395.5 < 1 -381.1 -4
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Table 3.5: Correlation energy coefficients of 1/Z expansion for select XC-
functionals in mH, where N is the number of electrons.

N Method E
[0]
C E

[1]
C E

[2]
C

2 LYP -55.1 1076 -90276
PBE -48.4 5.1 15

Davidson -46.7 10.0 -1.4
3 LYP -99 221 -383

PBE -59 2.4 58
Davidson -54 25 1

10 LYP -524 2733 -77818
PBE -459 623 4424

Davidson -428 601 -1423

Table 3.5 shows the performance of the PBE and LYP correlation functionals

in the high density limit. PW91 and LDA do not behave correctly in this limit.

LYP correlation is poor at best in this limit. The higher order terms are especially

poor. The PBE functional behaves better in this limit, although there is much

room for improvement.

In a recent paper, Staroverov et. al. show that two conditions must be satisfied

for a functional to accurately reproduce the total energy in this limit.[67] The first

is that the functional must accurately predict the leading term in the Z-expansion

of the exchange energy and the second is that the correlation energy predicted

by the functional must scale properly in the high density limit according to Eq.

(1.21). Their paper reports the behavior of a number of functionals in this limit.

While this work was being written, we learned of the work of Staroverov et.

al..[67] We thank Staroverov et. al. for sharing results prior to publication.
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Chapter 4

A Computational Study of Rh and Ir Catalysts

Using DFT and MO Methods

The previous two chapters presented studies in the area of density functional de-

velopment. This chapter, as well as the next, involves the application of electronic

structure methods to systems of chemical interest.

Alkanes are abundant and inexpensive in nature, but not very reactive. It is

useful to find effective catalysts for the conversion of alkanes to alkenes which can

then be easily functionalized to create a wealth of compounds. A good catalyst

is able to functionalize alkanes by efficient methods such as oxidation and dehy-

drogenation. Such methods involve oxidative addition reactions to coordinatively

unsaturated metal complexes, some of which may even be able to undergo this

process twice. The ML2X (where M=Rh, Ir; L=a tertiary phospine; X=an an-

ionic ligand) group of organometallic catalysts is known to be effective in these

processes.

A considerable amount of research has been done to determine whether catal-

ysis proceeds by an oxidative addition/reductive elimination mechanism or via

a series of concerted displacements [72, 73]. With the establishment of effec-

tive core potentials (ECP) and accurate first principles methods, computational

predictions in organometallic chemistry are feasible.

In this chapter, I discuss the ability of electronic structure methods to predict

reaction pathways for the oxidative addition of dihydrogen to M(PH3)3Cl,M =

Rh, Ir complexes. Kinetic and thermodynamic parameters are determined for
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these reactions. All calculations involving Ir were done by Margaret Czerw [74].

4.1 Computational Details

In our study, we compared the performances of Møller-Plesset Perturbation The-

ory to second and fourth orders (MP2,MP4)[75], coupled-cluster single and double

excitation method with triple excitations treated non-iteratively (CCSD(T))[13,

14], and the BLYP [34, 35] and B3LYP [20] GGA and hybrid density functionals.

These methods are all discussed in chapter 1.

For the Rh and Ir metal atoms, the Hay-Wadt relativistic small-core ECPs

with corresponding split valence double-zeta basis sets (LANL2DZ) [76] were

used. Within these ECPs the penultimate and valence shell electrons are released

for explicit treatment. Third row elements (P,Cl) were described by the Dun-

ning/Huzinaga all-electron, full double-zeta plus polarization function basis sets

[77]. Hydrogen atoms that become hydrides in the products were described by

the 311G(p) basis set [78] and those in phosphine groups by the 21G basis set [79].

In cases where hydrogens in phosphine groups were replaced by methyls, these

methyl hydrogens were described by the STO-3G basis set [80] and the carbons

by the Dunning/Huzinaga double-zeta plus polarization basis set (D95d) [77].

Thermodynamic corrections for finite temperature and vibrational zero-point

energy corrections calculated from vibrational frequencies were used to convert

internal energies to enthalpies (∆H; T = 298 K, P = 1 atm) [81]. MP4(SDTQ)

and CCSD(T) calculations were performed on MP2 optimized geometries and

MP2 data was used for conversions to enthalpy. All calculations were done using

the GAUSSIAN 98 series of computer programs [15].
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Cl M

PH3

PH3

        cis-1
a, M=Rh; b, M=Ir

Cl M

PH3

PH3

     trans-1
a, M=Rh; b, M=Ir

Figure 4.1: Isomers of structure 1

4.2 Molecular Structures and Spin States of M(PH3)2Cl,

M = Rh and Ir

The two most stable isomers of d8 metal ML3 are the trans (T) and cis (Y)

structures, all having C2v symmetry [82]. If one ligand is different, other structures

become possible. Originally it was believed that the lowest energy conformer was

the trans-1a structure with Cl at the base of the T [83]. Margl et. al. [84]

performed calculations which included relativistic energy corrections. They found

the energies of triplet and open-shell singlet states for 1a to be well above those

of the closed-shell singlet states. In their density functional study, they calculated

the true ground state to be a T-type structure with a phosphine at the base of

the T (cis-1a, TPH3
), computed to be 16.5 kcal/mol below the TCl structure. In

contrast, Su and Chu [85] report a triplet ground state for trans-1a. They did

not, however, consider any cis structures.

Our calculations unanimously predict that both trans-1a (TCl) and cis-1a

(TPH3
) structures of Rh(PH3)2Cl exist as discrete minima in singlet states, and
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there are no additional minima (YCl, etc.). The singlet cis-trans enthalpy dif-

ference is calculated to be 10-12 kcal/mol by density functional methods, 14-16

kcal/mol from perturbation theory, and 8.0 kcal/mol from CCSD(T), the most

accurate MO method used in this study. The electronic configuration of both

structures is dxy(2)dyz (2)dxz (2)dz2 (2)dx2−y2 (0) where Rh, P, and Cl form the xy

plane. In the case of the low-lying triplet state, one electron is promoted from

the dz2 orbital to the dx2−y2 orbital. More than 10 kcal/mol above the singlet

state is the triplet trans-1a structure which maintains C2v symmetry by the DF

methods, but breaks symmetry and collapses to a cis conformation with MP2. All

three methods predict planar minima for the triplet cis-1a, with the exception

being BLYP predicting a slightly pyramidal structure. The cis-1a triplet mini-

mum is also higher in energy than the corresponding singlet state (11-13 kcal/mol

by DFT, 8-9 kcal/mol by MPn, and 5.6 kcal/mol by CCSD(T)).

The global minimum for Rh(PH3)Cl is determined by all methods used to

be the singlet cis-1a (TPH3
) state (Table 4.1). According to the DF methods,

the energetic ordering of conformers is as follows: cis-1a (singlet) < trans-1a

(singlet) < cis-1a (triplet) < trans-1a (triplet), in agreement with Margl et.

al. [84]. By MO methods, the ordering is slightly different: cis-1a (singlet) <

cis-1a (triplet) < trans-1a (singlet). Margl et. al. [84] attribute this stability

of the cis structures over the trans structures to a larger trans influence exerted

by PH3 relative to Cl [86]. Trans influence is enhanced by covalent metal-ligand

interactions and are more pronounced in Ir (see below) which bonds covalently

more strongly than Rh.

Now we consider the Ir analog, Ir(PH3)2Cl, and, not surprisingly, find a

potential energy surface that closely resembles that of Rh. Again, the trans-1b

(TCl) structure has been extensively studied [85, 87, 88, 89], but a triplet state

is found to be lower in energy than the singlet state [85]. In previous work, only

the TCl structure was considered. It was argued that, although a cis-phosphine
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Table 4.1: Relative Enthalpies (∆H, kcal/mol) of M(PH3)2Cl (1) Species

Species Isomer State BLYP B3LYP MP2 MP4(SDTQ) CCSD(T)
M = Rh

1a cis Singlet 0.0 0.0 0.0 0.0 0.0
1a cis Triplet 13.3 10.7 8.4 9.3 5.6
1a trans Singlet 11.8 9.9 14.3 15.9 8.0
1a trans Triplet 19.4 12.6 a

M = Ir
1b cis Singlet 0.0 0.0 0.0 0.0 0.0
1b cis Triplet 20.0 18.5 27.6 23.2 21.0
1b trans Singlet 18.3 17.4 26.0 25.4 18.4
1b trans Triplet a 23.5 a

a The structure collapses to cis; see text.

Ir

       PH3

               PH3

Cl Ir
PaH3

PH3

Cl

2.348
2.330
2.315

2.309
2.301
2.289

2.308
2.303
2.276

2.232
2.228
2.163

P-Ir-P
 179.5
 178.2
 175.1

Cl-Ir-P
 90.3
 89.1
 87.6

Pa-Ir-P
 88.9
 90.1
 86.4

Cl-Ir-Pa

146.4
113.8
136.8

trans-1b cis-1b

Rh

       PH3

               PH3

Cl Rh PaH3

PbH3
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2.350
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2.321

2.328
2.326
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2.331
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P-Rh-P
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 172.5
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Cl-Rh-P
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 86.2
 84.5
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177.7

trans-1a cis-1a

2.284
2.282
2.227

2.195
2.174
2.163

Figure 4.2: k Optimized geometries of M(PH3)2Cl isomers, M = Rh and Ir
(singlet trans-1, singlet cis-1). Bond lengths in Å, angles in degrees. BLYP:
regular font; B3LYP: italics; MP2: bold.
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structure could exist (YCl or TPH3
), for steric reasons a trans conformation would

be favorable when the ligands are bulky phosphines (tBu, iPr,Ph, etc.)[88].

In this study, all three methods predict that singlet trans-1b and cis-1b

isomers exist with the global minimum being the singlet, distorted TPH3
-type cis-

1b structures. The calculated difference in cis-trans enthalpy is 17-18 kcal/mol

with DFT, 25-26 kcal/mol at the MP2/MP4 levels, and 18.4 kcal/mol at the

CCSD(T) level (Table 4.1).

The cis-1b structure, unlike Rh(PH3)2Cl, distorts towards a YCl geometry

with the P-Ir-P angle being close to 90◦. This deviation from a T geometry is

also evidenced by the near equality of the two Cl-Ir-P angles with the largest

distortion given by BLYP and the smallest by B3LYP (Fig. 4.2).

MP2 and BLYP predict a collapse of the triplet trans-1b to a cis-1b struc-

ture. The calculated singlet-triplet enthalpy difference for cis-1b is approximately

20 kcal/mol by DFT, 23-27 kcal/mol by perturbation theory, and 21.0 kcal/mol

by CCSD(T). This large increase in singlet-triplet enthalpy difference may be due

to the difference in electronic configurations, the magnitudes of the atomic exci-

tation energies to the lowest doublet states (large in Ir and small in Rh), and the

larger ligand field splitting in going from Rh to Ir [90]. The energetic ordering

of states is similar to that of 1a: cis-1b (singlet) < trans-1b (singlet) < cis-1b

(triplet) with the global minimum significantly lower than the lowest local min-

imum in 1b than in 1a. As indicated above, Ir bonds covalently and exhibits

more trans influence than Rh with a cis-trans enthalpy difference of 18 kcal/mol

versus Rh’s 8 kcal/mol difference (Table 4.1).

To investigate the argument stated above that bulky phosphine ligands will

favor a trans geometry, we performed B3LYP calculations with the hydrogens of

the phosphines substituted with methyl groups. The methyl groups model the

usual bulky substituents on phosphines required as blocking groups in experiments

involving these catalysts. Methyl substituents make the phospines better σ-donors
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Table 4.2: Relative Enthalpies (∆H, kcal/mol) for Dimerization of M(PH3)2Cl
(Reaction 1) and for H2 Addition to M(PH3)2Cl Species (Reactions 2-4)

Reaction BLYP B3LYP MP2 MP4(SDTQ) CCSD(T)
M = Rh

2 -39.1 -43.8 -64.1 a a

3 -7.9 -7.9 -21.5 -16.6 -17.9
4 -27.0 -26.2 -46.7 -42.7 -35.0
5 -15.2 -16.3 -32.5 -26.7 -27.0

M = Ir
2 -40.5 -45.9 -66.7 a a

3 -23.6 -25.7 -35.8 -32.6 -36.6
4 -49.0 -51.2 -71.9 -66.9 -64.0
5 -30.7 -33.8 -45.9 -41.5 -45.6

a Calculation not attempted.

(more basic) [91], while being computationally manageable.

From our B3LYP calculations we find slightly larger cis-trans energy differ-

ences when phosphine hydrogens are replaced with methyls. For Rh(PMe3)2Cl

the difference is 13.3 kcal/mol and 21.7 kcal/mol for Ir(PMe3)2Cl. These differ-

ences are 3-4 kcal/mol larger than the differences in the parent complexes (10.2

kcal/mol and 17.6 kcal/mol, respectively). When methyls are replaced with tert-

butyls, the energetic ordering is reversed and the trans structure (TCl) becomes

more stable by 9.7 kcal/mol. The TPH3
structure, while highly distorted, remains

cis (P-Ir-P = 123.3deg, P-Ir-Cl = 98.9deg and 137.0 deg).

There are major experimental difficulties in the application of tricoordinate

Rh- and Ir-halide complexes due to thermal (phosphine) degradation and dimer

complex formation. The dimerization reaction

2M(PH3)2Cl → (PH3)2M(Cl)(Cl)M(PH3)2 (4.1)

is extremely exothermic (Table 2). The dimerization product (Fig. 4.3) has C2

symmetry and Cl atoms bridging the metal centers.

In the case of Rh, ∆H = -39.1 kcal/mol (BLYP), -43.8 kcal/mol (B3LYP),
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82.6 92.6
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RhRh
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86.3 93.7
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90.0 2.1782.174 Cl

Cl

H3P

H3P

Cl

Cl

H3P

H3P

Figure 4.3: B3LYP-optimized geometries of the (PH3)2M(Cl)(Cl)M(PH3)2

dimer. Bond lengths in Å, angles in degrees.

and -64.1 kcal/mol (MP2). The experimental value for the dimerization enthalpy

of Rh(P iPr3)2Cl is -17.4 kcal/mol [92] and provides a lower limit for our calcula-

tions. Based on this, a lower limit of 32.5 kcal/mol was calculated for the exother-

micity of the hydrogenation reaction Rh(P iPr3)2Cl + H2. The hydrogenation

enthalpy was later refined [88] to be up to 39 kcal/mol (i.e. ∆H(H2 addition) <

-39 kcal/mol), which implies that the dimerization enthalpy for Rh(P iPr3)2Cl

must exceed 23.9 kcal/mol. Although our results are not in disagreement with

experiments, there is cause for concern given the range of predicted dimeriza-

tion enthalpy [-24 kcal.mol (exp.); -39 kcal/mol to -64 kcal/mol (theory)]. One

may conclude that the presence of bulky phosphine and/or solvation significantly

affects the dimerization enthalpy. When M = Ir, the dimerization energy is cal-

culated to be 1-2 kcal/mol greater than when M = Rh.

The use of rigid pincer ligands such as tridentate 1,5-bis(dialkylphosphino-

methyl)phenyl (PCP) avoids the degradation and dimerization problems stated

above. These PCP-based catalysts are stable above 200◦C, do not form dimers,

and are efficient catalysts for the dehydrogenation of alkanes to form alkenes and

dihydrogen [93, 72, 73, 121].
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H
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(4)

H-H

H-H

Figure 4.4: Oxidative addition of dihydrogen to M(I) complexes to form M(III)
complexes.

4.3 Oxidative Addition of H2 to M(PH3)2Cl, M = Rh and

Ir: Reaction Products and Transition States

Oxidative addition of dihydrogen to the two singlet conformers of the three-

coordinate M(I) complexes (cis-1, trans-1) identified in the previous section

yield M(III) complexes. The cis-1 reactants form the square pyramidal prod-

ucts (SQP)cis-2 (reaction 2) whereas the trans-1 complexes lead to the trigonal

bipyramidal (TBP) products trans-2 (reaction 3).

Addition of dihydrogen to cis-1a is exothermic by 8 kcal/mol at the DFT level

and more than twice that at the MPn/CCSD(T) levels (Table 4.2). The distorted

SQP cis-2a product has one hydride apical (Fig. 4.5). Addition to trans-1a is
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Table 4.3: Relative Enthalpies (∆H, kcal/mol) of H2M(PH3)2Cl (2) Species

Species Isomer BLYP B3LYP MP2 MP4(SDTQ) CCSD(T)
M = Rh

2a trans 0.0 0.0 0.0 0.0 0.0
2a cis 7.3 8.4 10.9 10.2 9.1

M = Ir
2b trans 0.0 0.0 0.0 0.0 0.0
2b cis 7.1 8.1 10.0 9.8 8.7

exothermic by 26-27 kcal/mol at the DFT level and more than 40 kcal/mol at the

MPn levels; the CCSD(T) value is 35.0 kcal/mol. The TBP trans-2a product

has a YCl shape with a narrow H-Rh-H angle of approximately 62◦. All methods

used predict that the trans-2a structure is approximately 10 kcal/mol lower in

enthalpy than cis-2a conformer (Table 4.2)[83].

Reaction (3) is 15-18 kcal/mol more exothermic when M = Ir (Table ??). For

reaction (4), when M = Ir the enthalpy is about 25 kcal/mol more exothermic

than when M = Rh regardless of method. The trans-2b structure is again lower

in energy, also regardless of method, with a small H-M-H angle of approximately

65◦ (YCl shape; Fig. 4.5).

A look at the orbitals involved in going from a 14-electron M(I) species to a

16-electron M(III) species shows that this reaction is allowed by orbital symme-

try [95] (Fig. 4.6). The LUMO of the three-coordinate species is a hybrid orbital

composed of (n)dx2−y2 , (n+1)s, and (n+1)p orbitals extending into the space of

the vacant, in-plane coordination site. This orbital has perfect symmetry and ori-

entation to interact with the two electrons in the H2 σ-bond orbital. Conversely,

one of the doubly occupied, in-plane d orbitals (dxy) has the proper pi-type sym-

metry and extension to interact with the antibonding LUMO of H2 (σ∗). The

formation of the two M-H bonds progresses smoothly as the H-H bond dissociates.

The spherical symmetry of the H 1s-orbitals makes it possible not only to achieve
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Figure 4.5: Optimized geometries of H2M(PH3)2Cl isomers, M = Rh and Ir
(trans-2, cis-2). Bond lengths in Å, angles in degrees. BLYP: regular font;
B3LYP: italics; MP2: bold.
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Figure 4.6: Favorable orbital interactions between 1 and H2
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M-H orbital overlap early, and possibly even form a M(PH3)2Cl−H2 “precursor”

complex, but also to maintain strong overlap throughout the concerted addition

process.

LUMO of H2 (σ∗). This allows for strong overlap and concerted formation of

the M-H bonds as the H-H bond dissociates.

As the Hammond principle [96] predicts, there are low or non-existent energy

barriers for reactions (3) and (4), and this is clear in their large exothermicities.

For M = Ir there are no transition state or precursor structures predicted by any

method for reaction (4). It is possible to locate a strongly bound precursor (∆H

-15.5 kcal/mol relative to reactants, H-H = 1.00A) by the B3LYP method only.

However, this precursor complex is only 0.3 kcal/mol below the transition state.

There does not appear to be an activation energy barrier for the reaction of 1b

and H2.

At first glance, the situation appears more complex for Rh. Again, for reaction

(4), B3LYP predicts a precursor complex (Rh-H = 1.63 A, H-H = 0.96 A) with a

binding energy ∆E = -27.6 kcal/mol relative to the reactants. The energy of the

transition state is only 0.2 kcal/mol above that of the precursor (Rh-H = 1.58

A, H-H = 1.15 A), and the product (Rh-H = 1.54 A, H-H = 1.61 A) is only 0.8

kcal/mol below the precursor.

All methods predict precursor complexes and/or transition states for the less

exothermic reaction (3). B3LYP locates a precursor (Rh-H = 1.75 A, H-H =

0.83 A) with binding energy ∆E = -11.8 kcal/mol with respect to the reactants.

B3LYP also finds a transition state 5.7 kcal/mol higher [than the precursor] in

energy (Rh-H = 1.56 A and 1.54 A, H-H = 1.32 A), and the cis-2a product

(Rh-H = 1.51 A and 1.55A, H-H = 1.98 A) is 2.0 kcal/mol higher in energy

than the precursor complex. At the MP2 level, only a transition state was found

16.8 kcal/mol below the reactants. These calculations are in the gas phase and

neglect dynamics, therefore we do not believe there is an activation barrier for
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H2 addition to 1 (cis or trans) under experimental conditions.

A mix of cis-1 and trans-1 isomers would contain mostly the cis-1 conformer,

since it is by far the more stable of the two. It is reasonable to assume that cis-2

would be the major product of H2 addition. However, trans-2 is more stable

than cis-2 by approximately 10 kcal/mol (Table 4.3) and it is conceivable that

addition of H2 may bypass formation of cis-2. We identified the transition state

for conversion of cis-2 to trans-2 to be 10 kcal/mol above cis-2a regardless of

the metal involved. So this conversion should occur fairly easily and the activa-

tion energy is expected to be even lower for bulky phosphine substituents which

destabilize cis-2.

It seems reasonable to consider reaction enthalpies of lowest energy reactants

and products (i.e. cis-1 and trans-2) since this is the overall reaction that takes

place (reaction (5) and Table4.2). For Rh(PH3)2Cl and M = Rh, the density func-

tional methods predict exothermicities of 15-16 kcal/mol, MPn methods predict

27-32 kcal/mol, and CCSD(T) predicts 27.0 kcal/mol. When M = Ir the exother-

micities are more than 15 kcal/mol larger. When the phosphine is methylated

(B3LYP only), the exothermicity decreases by 3-4 kcal/mol. The DF methods

predict significantly different enthalpies from those predicted by MO methods.

For reaction (5), it appears that the DFT-based exothermicities are too low. It is

possible that bulky phosphine substituents will destabilize the TPH3
structure and

increase the exothermicity of H2 addition. In the case of Ir, however, the calcu-

lated exothermicities (especially the CCSD(T) values) are close to experimental

values.

The experimental H2 bond dissociation enthalpy is 104.2 kcal/mol [97]. The

BLYP and B3LYP enthalpies bracket this value at 103.9 kcal/mol and 104.5

kcal/mol, respectively. The MP2/MP4 energies are not as good: 95.2 kcal/mol

and 99.9 kcal/mol, respectively, and 100.3 kcal/mol from CCSD(T).

Using the calculated exothermicities of reaction (5), we determine the M-H
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Figure 4.7: Reaction (5): Oxidative addition of dihydrogen to M(i) complex.

bond energies in the trans-2 product. For M = Rh, we get 59.6 kcal/mol (BLYP),

60.4 kcal/mol (B3LYP), 63.8 kcal/mol (MP2), 63.4 kcal/mol (MP4(SDTQ)),

and 63.6 kcal/mol (CCSD(T)). For M = Ir, we get 67.3 kcal/mol (BLYP), 69.2

kcal/mol (B3LYP), 70.1 kcal/mol (MP2), 70.7 kcal/mol (MP4(SDTQ)), and 72.9

kcal/mol (CCSD(T)). The 5d orbitals of Ir extend further than the 4d orbitals

of Rh, giving better overlap with ligand orbitals, so the M-H bond strength is

enhanced when M = Ir. Close inspection of Fig. 4.2 show that Ir-L bonds tend

to be shorter than Rh-L bonds, indicating a stronger bond.

4.4 Oxidative Addition of H2 to H2M(PH3)2Cl, M = Rh

and Ir: Reaction Products and Transition States

As discussed in the previous section, the addition of dihydrogen to three-coordinate

M(I) complexes to form five-coordinate M(III) complexes proceeds with a small or

no barrier. We will now consider addition of a second dihydrogen to form seven-

coordinate M(V) polyhydride species. 18-electron seven-coordinate polyhydride

complexes are known for Ir(V) but not for Rh(V) [98]. Metals in complexes con-

taining molecular dihydrogen [99] most often have d6 configuration [100, 101].

Therefore, possible conformers of the seven-coordinate species are: (a) a classical

isomer with four M-H bonds, (H)4M(PH3)2Cl (3); (b) nonclassical isomers that
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have one dihydrogen molecule coordinating cis, (cis−(H2)−η2−H2)M(PH3)2Cl

(4), or trans, (trans − (H2) − η2 − H2)M(PH3)2Cl (5), to the Cl atom; (c)

nonclassical isomers with two dihydrogen molecules coordinated to the metal,

(η2 − H2)2M(PH3)2Cl (6).

When M = Rh, we are unable to locate isomer 3a as a minimum. With the

BLYP and MP2 methods, 3a possesses one imaginary frequency and is hence a

transition state; at the B3LYP level, the structure is a second-order saddle point.

All computational methods predict a minimum corresponding to the nonclassical

cis-isomer 4a (Fig. 4.9). In addition, the DFT methods predict a minimum cor-

responding to trans-isomer 5a, whereas MP2 fails to locate a minimum for the

tetrahydride. However, the computed 4a-5a difference is more than 20 kcal/mol

(Table 4.4) in favor of 4a. This result may be yet another manifestation of the

strong trans-influence exerted by H, which renders 5a with two hydrides as a

trans pair disfavored [86, 102]. Structure 6 appears as a transition state with

the B3LYP method; at the BLYP and MP2 levels, any attempt at locating a

di-dihydrogen stationary point failed. Although the calculations do not present

a fully uniform picture, they clearly favor non-classical over classical structures

for H4Rh(PH3)2Cl. Lin and Hall have pointed out that the presence of con-

tracted metal d-orbitals will tend to favor the non-classical isomers, where metal-

hydrogen electron transfer is minimized [102, 103]. Cis-isomer 4a is hardly bound

relative to trans-2a and H2 with the computed enthalpy for the formation re-

action ranging from slightly negative (∆H = -1.3, -0.5, and -1.2 kcal/mol with

MP2, MP4(SDTQ), and CCSD(T), respectively) to positive (∆H = 2.0 kcal/mol

and 2.9 kcal/mol with B3LYP and BLYP, respectively). Since stronger electron

donating phosphines favor H2 addition, it is likely that the formation enthalpies

for 4a will become more negative by a few kcal/mol, when alkylated phosphines

are employed. However, ∆G for this bimolecular reaction will remain substan-

tially positive, and the equilibrium for the formation of 4a will thus lie far toward
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Figure 4.8: Isomers of the seven-coordinate M(V) complex.



65

Ir

Ha

H

Hb

H

Cl

2.543
2.513
2.487 1.601

1.585
1.557

Cl-Ir-Ha

 81.4
 81.9
 81.7

Ha-Ir-Hb

 65.5
 65.3
 65.5

 4b

Ir

Ha

Hd

Hb

Hc

Cl

2.572
2.543
2.514

Hb-Ir-Hc

 81.2
 81.0
 79.9

1.601
1.587
1.572

1.874
1.849
1.731

Hc-Ir-Hd

 25.5
 25.5
 29.6

1.656
1.642
1.619

3b

Ha-Ir-Hb

 84.7
 84.6
 82.1

Cl-Ir-Ha

 91.2
 91.7
 88.4

 4a

Rh

Ha

Hd

Hb

Hc

Cl

2.541
2.550
2.502

Hb-Rh-Hc

 83.5
 84.0
 87.0

1.579
1.558
1.522

2.000
1.990
1.959

Hc-Rh-Hd

 22.6
 22.5
 22.9

Ha-Rh-Hb

 82.1
 81.6
 77.8

Cl-Rh-Ha

 96.2
 97.3
 98.5 Rh

Ha

Hb

Hd

Hc

Cl

2.448
2.418

Hb-Rh-Hc

 32.3
 31.2

1.672
1.671

1.667
1.652

Ha-Rh-Hb

 74.9
 75.0

Cl-Rh-Ha

 88.9
 89.4

5a

Cl-Rh-Hb

 163.8
 164.4

Figure 4.9: Optimized geometries of H4M(PH3)2Cl isomers, M = Rh and Ir.
Bond lengths in Å, angles in degrees. Phosphine groups omitted for clarity.
BLYP: regular font; B3LYP: italics; MP2: bold.

the reactants (trans-2a, H2) under normal experimental conditions.

When M = Ir, we locate the classical, four hydride isomer, 3b, and the non-

classical cis isomer, 4b, as minima with all computational methods. With the

singular exception of MP2, the methods agree that 4b is slightly more stable

than 3b. The 3b-4b enthalpy difference (Table 4.4) is more than 5 kcal/mol

with the DFT methods, but decreases to 2 kcal/mol or less at the highly corre-

lated levels (MP4(SDTQ): 1.3 kcal/mol; CCSD(T): 2.0 kcal/mol). Lin and Hall

found that the use of PH3 rather than PMe3 in calculations tended to favor the

non-classical isomers [103], but there are no indications of the non-classical trans



66

Table 4.4: Relative Enthalpies (∆H, kcal/mol) of H4M(PH3)2Cl Species

Species BLYP B3LYP MP2 MP4(SDTQ) CCSD(T)
M = Rh

4a 0.0 0.0 0.0
5a 21.0 22.3 a

M = Ir
4b 0.0 0.0 0.0 0.0 0.0
3b 5.6 7.3 -1.3 1.3 2.0

a Not a stationary point on the MP2 surface.

isomer 5b (or of 6) when the computational method used for geometry optimiza-

tion includes electron correlation [104]. Relativistic effects (destabilization of the

5d orbitals) should preferentially favor classical isomers [105], and, indeed, we

could not locate the classical tetrahydride when M = Rh (see above). There is

NMR evidence pointing to a non-classical structure for H4Ir(P iPr3)2Cl [106], in

accord with the computational results (Table 4.4). According to the MO based

correlation methods, the seven-coordinate species 4b is moderately bound with

respect to trans-2b and H2 (∆H = -8.6 kcal/mol (MP2), -8.1 kcal/mol (MP4),

-6.8 kcal/mol at CCSD(T)). However, the formation reaction is predicted to be

essentially thermoneutral at the DFT levels (∆H = 0.1 kcal/mol (BLYP), -1.9

kcal/mol (B3LYP)).

The transition state leading to the non-classical cis-isomer (7, Fig. 4.10) finds

H2 at a large distance ( 2.6 Å) from the metal center and only slightly activated

(H-H ∼ 0.75 Å). The transition state leading to 4 is only 1-3 kcal/mol above the

reactants for both M = Rh and Ir. We have been unable to find a transition

state, which leads directly to the classical isomer 3b or to the trans non-classical

isomer 5a from the separated reactants. However, 3b should be readily formed by

intramolecular rearrangement. Transition state 8b (Fig. 4.10), which connects

4b and 3b is located only 2.8 kcal/mol (CCSD(T)) above 4b. The classical

tetrahydride 3b forms only a shallow minimum, since 3b and 8b are computed to
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Figure 4.10: Optimized geometries for transition states 7 and 8. Bond lengths in
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be very close energetically (0.3 kcal/mol at CCSD(T)) and structurally (cf. Figs.

4.9 and 4.10) by all methods. On the MP2 surface for M = Rh, the four hydride

species 8a represents the transition state for the degenerate interconversion of the

two equivalent non-classical cis-isomers 4a; 8a is 13.0 kcal/mol higher in enthalpy

than 4a.

4.5 Conclusions

All three computational methods used here for geometry optimizations (BLYP,

B3LYP, and MP2) produce comparable structures for all the isomers. Bond

lengths from MP2 are shorter than those obtained from DFT (Figs. 4.2, 4.5, 4.9,

4.10); bond lengths from B3LYP tend to be slightly shorter than those from BLYP,

probably reflecting the small admixture of Hartree-Fock exchange present in the

B3 functional. There is also general agreement among the methods regarding the

relative energies of isomers (Tables 4.1 and 4.3). In particular, for M(PH3)2Cl

(M = Rh and Ir) the singlet TPH3
structure is clearly the preferred isomer. It

is noteworthy that the enthalpy differences among the M(I) and M(III) isomers

predicted by the B3LYP method are very similar to those predicted by the far

more elaborate CCSD(T) method [107]. Large differences appear in computed

reaction enthalpies for dihydrogen addition with the MO-based methods (MPn,

CCSD(T)) predicting considerably higher exothermicities, which translate into

larger M-H bond energies. The MO-based results appear to be closer to the

available (limited) experimental data, and the DFT methods thus underestimate

the M-H bonding energies, although they do produce the better results for the

intrinsic H-H bond enthalpy. The apparent ability of the MPn/CCSD methods

to form stronger M-H bonds is on display in the Ir(V) complexes, where a very

small enthalpy difference is predicted between classical and non-classical isomers.

The structural and energetic influences exerted by bulky phosphines continue
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to be of interest. Unfortunately, the dramatic scaling of MPn/CCSD(T) calcu-

lations with molecular size makes it impossible to perform these highly accurate

calculations on large systems [108]. DFT calculations scale less unfavorably with

molecular size and would seem to be the method of choice for further investiga-

tions of such ”substituent” effects.
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Chapter 5

Computational Determination of the Electronic

Spectra of Anticancer Drugs

Significant advances have been made in site-specific drug delivery and time release

polymeric systems.[123] Amongst these advances, drug delivery systems for use

in anti-cancer treatment are perhaps the most significant.[124] A number of these

anti-cancer drugs are strongly fluorescent and therefore may be traced continually

during the drug delivery and degradation process.

The study presented in the previous chapter involved application of ground

state theories. Here we study electronic excitations within molecules, an applica-

tion of time-dependent density functional methods. I describe on-going computa-

tional studies to determine the spectra of two drugs: 20-S-camptothecin (CPT)

and Methotrexate (MTX). While their spectra can be determined experimentally

without much difficulty, it is important to establish reliability in predicting ex-

citations within these compounds. For drugs that are harmful upon exposure,

one can easily see how it is useful to be able to predict their properties without

having to actually handle the drugs. All calculations in this chapter were done

using the GAUSSIAN03 code [16].

5.1 20-S-Camptothecin

The ability of CPT (Fig. 5.1) to inhibit tumor growth has long been known [125].

However, a major problem is that the potent anti-tumor properties of CPT and



71

NO

O

O

N

S

Et OH

Figure 5.1: Lactone form of 20-S-camptothecin. This is the active tumor-
inhibiting form of the drug.

its derivatives are lost and the drug becomes toxic upon opening of the α-hydroxy-

lactone ring to form a carboxylate (Fig. 5.2). This lactone hydrolysis reaction

occurs in non-acidic media including under physiological conditions. Therefore,

CPT has not been extensively used in clinical applications. Interest in a number

of CPT derivatives [126, 127] and their abilities to hinder tumor growth in humans

was revived in the late 1980s [128, 129, 130]. CPT’s fluorescent properties lend

it to monitoring as it is absorbed in the body and as it interacts with DNA and

other molecules.

Optimization of the ground state of CPT was performed at the B3LYP/6-

31G* level. We performed time-dependent DFT calculations on ground and CIS



72

HO

-OOC

N

O

NEt OH

Figure 5.2: Carboxylate of 20-S-camptothecin formed by α-hydroxy-lactone ring
opening under physiological conditions. This form of CPT is inactive and toxic.



73

Table 5.1: TD B3LYP predicted wavelengths (nm) of the first ten excitations of
the ground-state optimized 20-S-CPT molecule in various solvents.

Excitation vacuum heptane THF ethanol acetonitrile DMSO water
*<1 *1.92 *7.58 *24.6 *36.6 *46.7 *78.4

1 376.9 372.7 364.4 361.9 361.4 362.5 361.0
2 317.9 321.4 325.3 326.2 326.3 326.8 326.3
3 304.1 301.1 296.1 294.7 294.5 294.6 294.0
4 303.2 299.7 296.0 294.5 294.2 294.5 293.9
5 300.0 293.7 285.9 285.6 285.5 285.7 285.4
6 285.3 286.1 284.2 281.5 281.1 281.2 280.4
7 275.9 268.3 261.5 260.1 259.9 259.8 259.8
8 257.9 256.6 255.5 255.3 255.2 255.5 255.2
9 256.5 250.7 252.3 252.3 252.6 253.1 252.6
10 247.6 250.0 243.2 241.3 241.2 241.3 241.2

*value of the dielectric constant, ε.

optimized excited state geometries. To simulate solvent effects and environments,

calculations were done using the TD B3LYP method at various values of the

dielectric constant, ε, ranging from < 1 to ∼80.

Tables 5.1 and 5.2 summarize the results of our CPT calculations. We study

solvent effects on excitations in the molecule by varying the dielectric constant,

ε, which increases from left to right in the tables. The general trend observed

is that the transition energy increases with increasing dielectric constant; the

only exception being in the presence of the DMSO solvent where there is a slight

decrease in absorption energy relative to acetonitrile. Tables 5.3 and 5.4 list the

wavelengths and oscillator strengths of the first ten excitations of CPT in water

at the ground and excited state geometries, respectively.

Experimental studies of the absorption and fluorescence spectra of CPT and

its derivatives are given in Reference [131]. The measured maximum excitation

wavelength, λabs, of CPT in aqueous solution at a pH of 5.0 or 7.3 is 370 nm.

Our DFT predicted absorption wavelength is 361.0 nm for the optimized ground

state geometry (Tables 5.1 and 5.3). This is a remarkably accurate prediction,
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Table 5.2: TD B3LYP predicted wavelengths (nm) of the first ten excitations of
the CIS optimized 20-S-CPT molecule in various solvents.

Excitation vacuum heptane THF ethanol acetonitrile DMSO water
*<1 *1.92 *7.58 *24.6 *36.6 *46.7 *78.4

1 404.9 405.0 397.0 394.1 393.5 395.6 393.1
2 330.0 333.0 336.5 337.5 337.6 337.9 337.6
3 319.9 312.3 309.0 307.7 307.5 307.6 306.9
4 313.3 310.2 302.5 300.8 300.5 300.8 300.2
5 310.0 307.9 299.7 296.7 296.3 296.3 295.4
6 292.9 290.6 290.4 290.2 290.1 290.4 290.0
7 288.4 283.8 276.2 273.8 273.5 273.9 273.3
8 262.4 260.7 258.9 258.5 258.4 258.5 258.3
9 254.2 250.3 250.2 250.1 250.0 250.5 249.9
10 249.3 246.2 240.4 240.1 240.2 240.2 240.2

*value of the dielectric constant, ε.

Table 5.3: TD B3LYP predicted wavelengths (nm) and oscillator strengths of the
first ten excitations in water at the CPT ground state geometry.

Excited state Wavelength (nm) Oscillator strength
1 361.0 0.4778
2 326.3 0.0341
3 294.0 0.0807
4 293.9 0.0143
5 285.4 0.1184
6 280.4 0.0002
7 259.8 0.0051
8 255.2 0.1176
9 252.6 0.3194
10 241.2 0.0249
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Table 5.4: TD B3LYP predicted wavelengths (nm) and oscillator strengths of the
first ten excitations in water at the CIS optimized CPT excited state geometry.

Excited state Wavelength (nm) Oscillator strength
1 393.1 0.5981
2 337.6 0.0481
3 306.9 0.0012
4 300.2 0.0480
5 295.4 0.0123
6 290.0 0.1806
7 273.3 0.0019
8 258.3 0.0334
9 249.9 0.3571
10 240.2 0.0188

Table 5.5: TD B3LYP computed Stokes shift (cm−1) of CPT in the gas phase
and various solvents.

vacuum heptane THF ethanol acetonitrile DMSO water Expt.a

<1 *1.92 *7.58 *24.6 *36.6 *46.7 *78.4
1835 2140 2253 2258 2257 2308 2262 3879

* value of the dielectric constant, ε.
a experimentally determined value in water[131].
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especially given the limited basis set applied, and is an excellent illustration of

the power and predictability of DFT. The emission wavelength, λem, on the other

hand, is grossly underestimated with a TD B3LYP predicted value of 393.1 nm

and an experimentally observed λem = 432 nm.

Fluorescent emissions correspond to longer wavelengths than those typically

observed in absorption. This shift to longer wavelengths is called the Stokes shift

and is computed by taking the difference between the fluorescence and absorption

wavelengths, 1
λabs

− 1
λem

. Table 5.5 shows the TD B3LYP computed Stokes shift

of the CPT molecule in various environments.

5.2 Methotrexate

Methotrexate (MTX) is a popular anti-cancer/anti-rheumatic drug. It blocks an

enzyme required for cell life, thereby killing cancer (as well as healthy) cells.

My calculations on MTX have not been as successful as those on CPT because

the number of geometrical degrees of freedom in MTX is significantly greater

than that of the more rigid, planar CPT (compare Figs. 5.1 and 5.3). This

makes optimization of MTX very difficult. Therefore, at this time, I am only able

to report results for the excited states of MTX as predicted by time-dependent

B3LYP/6-31G* calculations on the ground state optimized geometry in vacuum.

The wavelengths and oscillator strengths of the first ten excitations are listed in

table 5.6.

5.3 Future Directions

One study not considered here is the spectrum of the ring-opened carboxylate

form of the CPT molecule as well as the CPT derivatives known to be cancer

inhibitors. The thermodynamics and kinetics of the ring-opening process would

also be interesting to consider. Calculations for determination of the fluorescence
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Figure 5.3: Structure of the Methotrexate molecule.

Table 5.6: TD B3LYP predicted wavelengths (nm) and oscillator strengths of the
first ten excitations in the gas phase at the MTX ground state geometry.

Excited state Wavelength (nm) Oscillator strength
1 353.95 0.1178
2 368.87 0.0021
3 421.86 0.0001
4 292.77 0.0019
5 288.04 0.0028
6 284.20 0.0022
7 281.74 0.0172
8 278.72 0.0028
9 273.12 0.0644
10 271.98 0.5117
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spectrum of MTX remains to be completed and solvent effects explored.
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