Symmetry and Point Groups

Chapter 4

Monday, September 28, 2015
So far we can say staggered ethane has three operations: E, C_3, and C_3^2.
So we add three more operations: C_2, C_2', and C_2''
Now we’ve added three reflections: σ_d, σ_d', and σ_d''

Note that there is no σ_h for staggered ethane!
Ethane also has an inversion center that lies at the midpoint of the C-C bond (the center of the molecule).
Symmetry in Molecules: Staggered Ethane

Finally, staggered ethane also has an improper rotation axis. It is an S_6 (S_{2n}) axis that is coincident with the C_3 axis.

An S_6 rotation is a combination of a C_6 followed by a perpendicular reflection (i.e., a σ_h).
Finally, staggered ethane also has an improper rotation axis. It is an S_6 (S_{2n}) axis that is coincident with the C_3 axis.
Symmetry in Molecules: Staggered Ethane

It turns out that there are several redundancies when counting up the unique improper rotations:

So the improper rotations add only two unique operations.
Symmetry in Molecules: Staggered Ethane

Let’s sum up the symmetry operations for staggered ethane:

<table>
<thead>
<tr>
<th>Operation type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>1</td>
</tr>
<tr>
<td>Rotations</td>
<td>5 ((2C_3 + 3C_2))</td>
</tr>
<tr>
<td>Reflections</td>
<td>3 ((3\sigma_d))</td>
</tr>
<tr>
<td>Inversion</td>
<td>1</td>
</tr>
<tr>
<td>Improper Rotations</td>
<td>2 ((S_6 + S_6^5))</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

- These 12 symmetry operations describe completely and without redundancy the symmetry properties of the staggered ethane molecule.

- The complete set of symmetry operations possessed by an object defines its **point group**. For example, the point group of staggered ethane is \(D_{3d}\).

- The total number of operations is called the **order** \(h\) of a point group. The order is always an integer multiple of \(n\) of the principal axis. For staggered ethane, \(h = 4n \ (4 \times 3 = 12)\).
Symmetry Elements and Operations

- elements are imaginary points, lines, or planes within the object.
- operations are movements that take an object between equivalent configurations – indistinguishable from the original configuration, although not necessarily identical to it.
- for molecules we use “point” symmetry operations, which include rotations, reflections, inversion, improper rotations, and the identity. At least one point remains stationary in a point operation.
- some symmetry operations are redundant (e.g., $S_6^2 \equiv C_3$); in these cases, the convention is to list the simpler operation.
Low-Symmetry Point Groups

These point groups only contain one or two symmetry operations.

- C_1: \{E\}
- C_s: \{E, \sigma_h\}
- C_i: \{E, i\}
High-Symmetry Point Groups

These point groups are high-symmetry groups derived from Platonic solids.

- **T_d**
 \[\{E, 8C_3, 3C_2, 6S_4, 6\sigma_d\} = 24 \]

- **O_h**
 \[\{E, 8C_3, 6C_2, 6C_4, 3C_2, i, 6S_4, 8S_6, 3\sigma_h, 6\sigma_d\} = 48 \]

- **I_h**
 \[\{E, 12C_5, 12C_5^2, 20C_3, 15C_2, i, 12S_{10}, 12S_{10}^3, 20S_6, 15\sigma\} = 120 \]

The five regular Platonic solids are the tetrahedron \((T_d) \), octahedron \((O_h) \), cube \((O_h) \), dodecahedron \((I_h) \), and icosahedron \((I_h) \) respectively.
High-Symmetry Point Groups

In addition to T_d, O_h, and I_h, there are corresponding point groups that lack the mirror planes (T, O, and I).

Adding an inversion center to the T point group gives the T_h point group.

TABLE 4.5 Symmetry Operations for High-Symmetry Point Groups and Their Rotational Subgroups

<table>
<thead>
<tr>
<th>Point Group</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_h</td>
<td>E \hspace{1cm} $12C_5$ \hspace{1cm} $12C_5^2$ \hspace{1cm} $20C_3$ \hspace{1cm} $15C_2$ \hspace{1cm} i \hspace{1cm} $12S_{10}$ \hspace{1cm} $12S_{10}^3$ \hspace{1cm} $20S_6$ \hspace{1cm} 15σ</td>
</tr>
<tr>
<td>I</td>
<td>E \hspace{1cm} $12C_5$ \hspace{1cm} $12C_5^2$ \hspace{1cm} $20C_3$ \hspace{1cm} $15C_2$</td>
</tr>
<tr>
<td>O_h</td>
<td>E \hspace{1cm} $8C_3$ \hspace{1cm} $6C_2$ \hspace{1cm} $6C_4$ \hspace{1cm} $3C_2(=C_4^2)$ \hspace{1cm} i \hspace{1cm} $6S_4$ \hspace{1cm} $8S_6$ \hspace{1cm} $3\sigma_h$ \hspace{1cm} $6\sigma_d$</td>
</tr>
<tr>
<td>O</td>
<td>E \hspace{1cm} $8C_3$ \hspace{1cm} $6C_2$ \hspace{1cm} $6C_4$ \hspace{1cm} $3C_2(=C_4^2)$</td>
</tr>
<tr>
<td>T_d</td>
<td>E \hspace{1cm} $8C_3$ \hspace{1cm} $3C_2$ \hspace{1cm} \hspace{1cm} $6S_4$ \hspace{1cm} \hspace{1cm} $6\sigma_d$</td>
</tr>
<tr>
<td>T</td>
<td>E \hspace{1cm} $4C_3$ \hspace{1cm} $4C_3^2$ \hspace{1cm} $3C_2$</td>
</tr>
<tr>
<td>T_h</td>
<td>E \hspace{1cm} $4C_3$ \hspace{1cm} $4C_3^2$ \hspace{1cm} $3C_2$ \hspace{1cm} i \hspace{1cm} $4S_6$ \hspace{1cm} $4S_6^5$ \hspace{1cm} $3\sigma_h$</td>
</tr>
</tbody>
</table>

T_h example:
Linear Point Groups

These point groups have a C_∞ axis as the principal rotation axis

$C_{\infty v}$
\{E, $2C_\infty$, \cdots, $\infty \sigma_v$\}

$D_{\infty h}$
\{E, $2C_\infty$, \cdots, ∞C_2, i, $2S_\infty$, $\infty \sigma_v$\}

\[\text{H} \equiv \text{C} \equiv \text{N} \quad \text{H} \equiv \text{C} \equiv \text{C} \equiv \text{H}\]
D Point Groups

These point groups have nC_2 axes perpendicular to a principal axis (C_n)

D_n

{E, (n-1)C_n, $n \perp C_2$}

D_{nh}

{depends on n, with $h = 4n$}

D_{nd}

{depends on n, with $h = 4n$}

$$D_3$$

{E, 2C_3, 3C_2, σ_h, 2S_3, 3σ_v}

$$D_{3h}$$

$$D_{2d}$$

{E, 2S_4, C_2, 2C_2', 2σ_d}

allene (propadiene)
C Point Groups

These point groups have a principal axis (C_n) but no $\perp C_2$ axes

C_n

$\{E, (n-1)C_n\}$

C_{nv}

$\{E, (n-1)C_n, n\sigma_v\}$

C_{nh}

$\{\text{depends on } n, \text{ with } h = 2n\}$

C_2

$\{E, C_2\}$

C_{3v}

$\{E, 2C_3, 3\sigma_v\}$

C_{2h}

$\{E, C_2, i, \sigma_h\}$
S Point Groups

If an object has a principal axis (C_n) and an S_{2n} axis but no $\perp C_2$ axes and no mirror planes, it falls into an S_{2n} group.

S_{2n}

{depends on n, with $h = 2n$}

$cyclopentadienyl (Cp)$ ring =

Co_4Cp_4

S_4

{E, S_4, C_2, S_4^3}