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Boron trifluoride
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Boron trifluoride

FZS = A1, + E 1_‘pr = AZ, + E
[, =A +E Ly =As +E
What is the shape of the group orbitals?
2s: ? ?
Ay E'(y) E’(x)

Which combinations of the
three AOs are correct?

The projection operator method provides a systematic way to find
how the AOs should be combined to give the right group orbitals
(SALCs).



BF, - Projection Operator Method

In the projection operator method, we pick one AO in each set of
identical AOs and determine how it transforms under each
symmetry operation of the point group.

Fa
AO E C3 C32 Cz(a) C2(b) C2(C) Oy, S3 S32 0-v(a) c)-v(b) 0-V(C)
F|F, F F F F. F F F F F,  F F
Fp Fe (a1 1 1 1 1 1 1 1 1 1 11

Ay =F,+F +F_+F,+F_+F +F,+F +F_+F,+F_+F,
A, =4F, + 4F, + 4F,

A1’
The group orbital wavefunctions are determined by multiplying the

projection table values by the characters of each irreducible
representation and summing the results.



BF, - Projection Operator Method

In the projection operator method, we pick one AO in each set of
identical AOs and determine how it transforms under each
symmetry operation of the point group.

AO E C; Cy Cz(a) C2(b) C2(c) o, S; S5? Ova) Ouvb) Ouv(g)

F, | F, F, F, F, F,  F F, F, F, F, F, F

a a a C a C

Fp Fe |aA)l 10 1 1 a4 a0 a1 1 1 a0 a0

A2,=Fa+Fb+Fc_Fa_Fc_Fb+Fa+Fb+Fc_Fa_Fc_Fb

A2’=0\

There is no A, group orbital!

The group orbital wavefunctions are determined by multiplying the
projection table values by the characters of each irreducible
representation and summing the results.



BF, - Projection Operator Method

In the projection operator method, we pick one AO in each set of
identical AOs and determine how it transforms under each
symmetry operation of the point group.

Fa
AO E C3 C32 Cz(a) C2(b) C2(C) Oy, S3 S32 0-v(a) c)-v(b) 0-V(C)
Fa Fa Fb Fc Fa Fc Fb Fa Fb FC Fa FC Fb
Fo Fe |leel 2 1 a1 0o o o 2 - -1 0 0 o

E'=2F,-F,—F.+0 +0 +0+2F,—F, —F_+0 +0 +0
E' = 4F, — 2F, - 2F

E'(y)

The group orbital wavefunctions are determined by multiplying the
projection table values by the characters of each irreducible
representation and summing the results.



BF, - Projection Operator Method

FZS = A1, + E 1_‘pr = AZ, + E
Lype = A, +E Loy = Ay +E

What is the shape of the group orbitals?

5

E'(y) E'(x)

We can get the third group orbital, E’(x), by using normalization.

fll)zd’[ =1 Normalization condition




BF, - Projection Operator Method

Let’s normalize the A,’ group orbital:
Yur = CalP(2sg,) + ¢(2sp,) + d(2sg, )] A.’ wavefunction
lezdr =1 Normalization condition for group orbitals

cz f[qb(sta) + ¢(2sp,) + p(2sp )]%dr = 1 nine terms, but the six
overlap (S) terms are zero.

c? fgbz(ZSFa)dT-l-f([)z(ZSFb)dT-ngbz(ZSFC)dT =1

2l1+1+1]=1 c—p ca—%
1
NG

So the normalized A;’ GO is: | Y1 = —=[¢(2sr,) + $(2sk,) + ¢(2sg,)]




BF, - Projection Operator Method

Now let’s normalize the E’(y) group orbital:

Vel () = Cal2¢0(2sg,) — d(2sg,) — d(2sg )]  E’(y) wavefunction

c3 f[zc/)(sta) — ¢(2sp,) — p(2sp_ )]?dr =1 nine terms, but the six

cZl4+1+1]=1 —

So the normalized E'(y) GO is:

c? 4f¢2(25Fa)dT+J¢2(25Fb)dr+fc/>2(251:c)dr =1

overlap (S) terms are zero.

Cy =

1
V6

[12¢(2sg,) — ¢ (2sp,) — p(2sg,)]

s =

Ve (y) = =




BF, - Projection Operator Method

l/JA'lz\/g

1
— b (2sg,) + ¢p(2sg,) + d(2sk,)]

1
Ve (y) = NS [2¢(2s5,) — d(25F,) — p(2sg )]

c? is the probability of finding an electron in ¢; in a group orbital,
so Y. c? = 1 for a normalized group orbital.

TABLE 5.6 SALC Coefficients and Evidence of Normalization

Coefficients in Normalized SALCs Squares of SALC Coefficients Sum of the Squares =1
= 5 = for Normalization
G % > Requirement
1 1 l
A\ —= = = = . : !
V3 V3 V3 3 3 3
2 I 1 2 1 1
E(y) — -—= -— = = = 1
V6 V6 \ 6 3 6 6
1 1 1 1
E(x) 0 — Sl 0 = = 1
\ .:. \’.2 y 2
Sum of the squares for each s wave function must
total 1 for an identical contribution of each atomic 1 1 1
orbital to the group orbitals
| | » 1
So the normalized E'(x) GO is:  |igr(,) = NG [$p(2sp,) — ¢(2sg, )]




BF, - Projection Operator Method

r,=A, +E I
r

2px = AZ, +E

wz A, +E Dopy = Aq F E

What is the shape of the group orbitals?
notice the GOs are

orthogonal (S = 0).
= Je

Ay E'(y) E'(x)

Now we have the symmetries and wavefunctions of the 2s GOs.

We could do the same analysis to get the GOs for the p,, p,, and p,
orbitals (see next slide).

Three 2p, orbitals Three 2p; orbitals Three 2p, orbitals

S G



