MO Diagrams for More Complex Molecules

Chapter 5

Wednesday, October 14, 2015

Boron trifluoride

1. Point group $D_{3 h}$

3. Make reducible reps for outer atoms

4. Get group orbital symmetries by reducing each Γ
$\underset{\underset{R}{\text { rep }}}{\begin{array}{c}\text { \# of irreducible } \\ \text { ref a giventations type }\end{array}}=\frac{1}{\text { order }} \sum_{R}\left(\begin{array}{c}\begin{array}{c}\# \text { of } \\ \text { operations } \\ \text { in the class }\end{array}\end{array} \underset{\begin{array}{c}\text { character of } \\ \text { reducible } \\ \text { representation }\end{array}}{\times} \begin{array}{c}\text { character of } \\ \text { irreducible } \\ \text { representation }\end{array}\right)$

$$
\begin{array}{cl}
\Gamma_{2 \mathrm{~s}}=A_{1}^{\prime}+E^{\prime} & \Gamma_{2 \mathrm{px}}=A_{2}^{\prime}+E^{\prime} \\
\Gamma_{2 \mathrm{pz}}=A_{2}^{\prime \prime}+E^{\prime \prime} & \Gamma_{2 \mathrm{py}}=A_{1}^{\prime}+E^{\prime}
\end{array}
$$

Boron trifluoride

$$
\begin{array}{cl}
\Gamma_{2 \mathrm{~s}}=A_{1}^{\prime}+E^{\prime} & \Gamma_{2 \mathrm{px}}=A_{2}^{\prime}+E^{\prime} \\
\Gamma_{2 \mathrm{pz}}=A_{2}^{\prime \prime}+E^{\prime \prime} & \Gamma_{2 \mathrm{py}}=A_{1}^{\prime}+E^{\prime}
\end{array}
$$

What is the shape of the group orbitals?

Which combinations of the three AOs are correct?

The projection operator method provides a systematic way to find how the AOs should be combined to give the right group orbitals (SALCs).

BF_{3} - Projection Operator Method

In the projection operator method, we pick one AO in each set of identical AOs and determine how it transforms under each symmetry operation of the point group.

$\mathbf{A O}$	E	C_{3}	$C_{3}{ }^{2}$	$C_{2(a)}$	$C_{2(b)}$	$C_{2(\mathrm{c})}$	σ_{h}	S_{3}	$S_{3}{ }^{2}$	$\sigma_{\mathrm{v}(\mathrm{a})}$	$\sigma_{\mathrm{v}(\mathrm{b})}$	$\sigma_{\mathrm{v}(\mathrm{c})}$
F_{a}	F_{a}	F_{b}	F_{c}	F_{a}	F_{c}	F_{b}	F_{a}	F_{b}	F_{c}	F_{a}	F_{c}	F_{b}
$A_{1}{ }^{\prime}$	1	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{A}_{1}{ }^{\prime}=\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{c}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{c}}+\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{c}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{c}}+\mathrm{F}_{\mathrm{b}}$												
$\mathbf{A}_{\mathbf{1}}{ }^{\prime}=\mathbf{4} \mathrm{F}_{\mathrm{a}}+4 \mathrm{~F}_{\mathrm{b}}+4 \mathrm{~F}_{\mathrm{c}}$												

The group orbital wavefunctions are determined by multiplying the projection table values by the characters of each irreducible representation and summing the results.

BF_{3} - Projection Operator Method

In the projection operator method, we pick one AO in each set of identical AOs and determine how it transforms under each symmetry operation of the point group.

| AO | E | C_{3} | $C_{3}{ }^{2}$ | $C_{2(a)}$ | $C_{2(b)}$ | $C_{2(\mathrm{c})}$ | σ_{h} | S_{3} | $S_{3}{ }^{2}$ | $\sigma_{\mathrm{V}(\mathrm{a})}$ | $\sigma_{\mathrm{V}(\mathrm{b})}$ | $\sigma_{\mathrm{V}(\mathrm{c})}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F_{a} | F_{a} | F_{b} | F_{c} | F_{a} | F_{c} | F_{b} | F_{a} | F_{b} | F_{c} | F_{a} | F_{c} | F_{b} |
| $A_{2}{ }^{\prime}$ | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 |
| $\boldsymbol{A}_{\mathbf{2}}{ }^{\prime}=\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{a}}-\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{a}}-\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{b}}$ | | | | | | | | | | | | |
| $\boldsymbol{A}_{\mathbf{2}}{ }^{\prime}=\mathbf{0}$ | | | | | | | | | | | | |

The group orbital wavefunctions are determined by multiplying the projection table values by the characters of each irreducible representation and summing the results.

BF_{3} - Projection Operator Method

In the projection operator method, we pick one AO in each set of identical AOs and determine how it transforms under each symmetry operation of the point group.

The group orbital wavefunctions are determined by multiplying the projection table values by the characters of each irreducible representation and summing the results.

BF_{3} - Projection Operator Method

$$
\begin{array}{cl}
\Gamma_{2 \mathrm{~s}}=A_{1}^{\prime}+E^{\prime} & \Gamma_{2 \mathrm{px}}=A_{2}^{\prime}+E^{\prime} \\
\Gamma_{2 \mathrm{pz}}=A_{2}^{\prime \prime}+E^{\prime \prime} & \Gamma_{2 \mathrm{py}}=A_{1}^{\prime}+E^{\prime}
\end{array}
$$

What is the shape of the group orbitals?

$E^{\prime}(y)$

$E^{\prime}(x)$

We can get the third group orbital, $E^{\prime}(x)$, by using normalization.

$$
\int \psi^{2} d \tau=1
$$

Normalization condition

BF_{3} - Projection Operator Method

Let's normalize the A_{1} group orbital:

$$
\begin{aligned}
& \psi_{A_{1}^{\prime}}=c_{\mathrm{a}}\left[\phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right] \quad A_{1}{ }^{\prime} \text { wavefunction } \\
& \int \psi^{2} d \tau=1 \quad \text { Normalization condition for group orbitals } \\
& c_{\mathrm{a}}^{2} \int\left[\phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]^{2} d \tau=1 \quad \begin{array}{r}
\text { nine terms, but the six } \\
\text { overlap }(S) \text { terms are zero. }
\end{array} \\
& c_{\mathrm{a}}^{2}\left[\int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right) d \tau+\int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right) d \tau+\int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right) d \tau\right]=1 \\
& c_{\mathrm{a}}^{2}[1+1+1]=1 \quad c_{\mathrm{a}}=\frac{1}{\sqrt{3}} \\
& \text { So the normalized } A_{1} \text { GO is: } \psi_{A_{1}^{\prime}}=\frac{1}{\sqrt{3}}\left[\phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]
\end{aligned}
$$

BF_{3} - Projection Operator Method

Now let's normalize the $E^{\prime}(y)$ group orbital:

$$
\begin{aligned}
& \psi_{E^{\prime}(y)}=c_{\mathrm{a}}\left[2 \phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right] \quad E^{\prime}(y) \text { wavefunction } \\
& c_{\mathrm{a}}^{2} \int\left[2 \phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]^{2} d \tau=1 \quad \begin{array}{c}
\text { nine terms, but the six } \\
\text { overlap }(S) \text { terms are zero. }
\end{array} \\
& c_{\mathrm{a}}^{2}\left[4 \int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right) d \tau+\int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right) d \tau+\int \phi^{2}\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right) d \tau\right]=1 \\
& c_{\mathrm{a}}^{2}[4+1+1]=1 \quad c_{\mathrm{a}}=\frac{1}{\sqrt{6}}
\end{aligned}
$$

So the normalized $E^{\prime}(y) \mathrm{GO}$ is:

$$
\psi_{E^{\prime}(y)}=\frac{1}{\sqrt{6}}\left[2 \phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]
$$

BF_{3} - Projection Operator Method

$$
\begin{aligned}
& \psi_{A_{1}^{\prime}}=\frac{1}{\sqrt{3}}\left[\phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)+\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right] \\
& \psi_{E^{\prime}(y)}=\frac{1}{\sqrt{6}}\left[2 \phi\left(2 s_{\mathrm{F}_{\mathrm{a}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]
\end{aligned}
$$

c_{i}^{2} is the probability of finding an electron in ϕ_{i} in a group orbital, so $\sum c_{i}^{2}=1$ for a normalized group orbital.

TABLE 5.6 SALC Coefficients and Evidence of Normalization

	Coefficients in Normalized SALCs			Squares of SALC Coefficients			Sum of the Squares = 1 for Normalization Requirement
	c_{a}	c_{b}	c_{c}	c_{a}^{2}	$c_{b}{ }^{2}$	c_{c}^{2}	
A_{1}	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
$E(y)$	$\frac{2}{\sqrt{6}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1
$E(x)$		$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{2}$	$\frac{1}{2}$	1
Sum of the squares for each $1 s$ wave function must total 1 for an identical contribution of each atomic orbital to the group orbitals				1	1	1	

So the normalized $E^{\prime}(x)$ GO is: $\psi_{E^{\prime}(x)}=\frac{1}{\sqrt{2}}\left[\phi\left(2 s_{\mathrm{F}_{\mathrm{b}}}\right)-\phi\left(2 s_{\mathrm{F}_{\mathrm{c}}}\right)\right]$

BF_{3} - Projection Operator Method

$$
\begin{array}{cl}
\Gamma_{2 \mathrm{~s}}=A_{1}^{\prime}+E^{\prime} & \Gamma_{2 \mathrm{px}}=A_{2}^{\prime}+E^{\prime} \\
\Gamma_{2 \mathrm{pz}}=A_{2}^{\prime \prime}+E^{\prime \prime} & \Gamma_{2 \mathrm{py}}=A_{1}^{\prime}+E^{\prime}
\end{array}
$$

What is the shape of the group orbitals?

notice the GOs are

Now we have the symmetries and wavefunctions of the 2 s GOs.
We could do the same analysis to get the GOs for the $p_{\mathrm{x}}, p_{\mathrm{y}}$, and p_{z} orbitals (see next slide).

Three $2 p_{y}$ orbitals

Three $2 p_{z}$ orbitals

Three $2 p_{x}$ orbitals

